
 

Adaptive Workflow Scheduling on Cloud Computing 
Platforms with Iterative Ordinal Optimization 

Fan Zhang, Senior Member, IEEE; Junwei Cao, Senior Member, IEEE; Kai Hwang, Fellow, IEEE; 
Keqin Li, Senior Member, IEEE; and Samee U. Khan, Senior Member, IEEE 

Abstract—The scheduling of multitask jobs on clouds is an NP-hard problem. The problem becomes even worse when complex 
workflows are executed on elastic clouds, such as Amazon EC2 or IBM RC2. The main difficulty lies in the large search space and 
high overhead for generation of optimal schedules, especially for real-time applications with dynamic workloads. In this work, a new 
iterative ordinal optimization (IOO) method is proposed. The ordinal optimization method is applied in each iteration to achieve sub-
optimal schedules. IOO aims at generating more efficient schedules from a global perspective over a long period. We prove through 
overhead analysis the advantages in time and space efficiency in using the IOO method. The IOO method is designed to adapt to 
system dynamism to yield suboptimal performance. 

In cloud experiments on IBM RC2 cloud, we execute 20,000 tasks in LIGO (Laser Interferometer Gravitational-wave 
Observatory) verification workflow on 128 virtual machines. The IOO schedule is generated in less than 1,000 seconds, while using 
the Monte Carlo simulation takes  27.6 hours, 100 times longer time to yield an optimal schedule. The IOO-optimized schedule results 
in a throughput of 1,100 tasks/sec with 7 GB memory demand, compared with 60% decrease in throughput and 70% increase in 
memory demand in using the Monte Carlo method. Our LIGO experimental results clearly demonstrate the advantage of using the 
IOO-based workflow scheduling over the traditional blind-pick, ordinal optimization, or Monte Carlo methods. These numerical 
results are also validated by the theoretical complexity and overhead analysis provided. 

Index Terms — Autonomic provisioning, big data, cloud computing, iterative ordinal optimization, and workflow scheduling 

——————————      —————————— 

1 INTRODUCTION 
Scientific workflows demand massive resources from 

various computing infrastructures to process massive amount 
of big data. Automatic provisioning of such big data 
applications on the cloud platform is challenging since current 
resource management and scheduling approaches may not be 
able to scale well, especial under highly dynamic conditions. 

For example, the Laser Interferometer Gravitational-wave 
Observatory (LIGO) experiments digest terabytes  of data per 
day [1]. The LIGO workload demands data-intensive analysis 
over workflow pipelines with millions of tasks to be 
scheduled on a computational grid or a cloud [8].  A typical 
LIGO workload shows the volume, velocity, and variety 
characteristics of big data. 

———————————————— 

• Fan Zhang is with the Kavli Institute for Astrophysics and Space 
Research, Massachusetts Institute of Technology, Cambridge, MA 
02139, USA. This work was carried out when the author was with the 
Research Institute of Information Technology, Tsinghua University, 
Beijing 100084, China. E-mail: f_zhang@mit.edu. 

• Junwei Cao is with the Research Institute of Information Technology, 
Tsinghua National Laboratory for Information Science and 
Technology, Tsinghua University, Beijing 100084, China. E-mail: 
jcao@tsinghua.edu.cn. 

• Kai Hwang is with the Department of Electrical Engineering, 
University of Southern California, Los Angeles, CA 90089, USA. E-
mail: kaihwang@usc.edu. 

• Keqin Li is with the Department of Computer Science, State 
University of New York, New Paltz, NY 12561, USA. E-mail: 
lik@newpaltz.edu.  

• Samee U. Khan is with the Department of Electrical and Computer 
Engineering, North Dakota State University, Fargo, ND 58108-6050, 
USA. E-mail: samee.khan@ndsu.edu. 

The LIGO raw data was collected at 7-9MB/s from more 
than 2,000 sampling points [20]. A majority of the raw data are 
disturbed by noisy sources, such as disturbance of an arrival 
train that adds a veracity of complication to the data sources 
[24].  To process the LIGO workload, parallel virtual machines 
(VMs) are provided as virtual clusters from large-scale data 
centers [16]. Virtual clusters (VCs) are elastic resources that 
can dynamically scale up or down. 

In general, scheduling multitask workflows on any 
distributed computing resources (including clouds) is an NP-
hard problem [38]. The main challenge of dynamic workflow 
scheduling on virtual clusters lies in how to reduce the 
scheduling overhead to adapt to the workload dynamics with 
heavy fluctuations. In a cloud platform, resource profiling and 
stage simulation on thousands or millions of feasible 
schedules are often performed, if an optimal solution is 
demanded. An optimal workflow schedule on a cloud may 
take weeks to generate [16]. 

Ho et al. [14] proposed the ordinal optimization (OO) 
method for solving complex problems with a very large 
solution space.  Subsequently, the authors demonstrated that 
the OO method is effective to generate a soft or suboptimal 
solution for most of the NP-hard problems. As an example, 
optimal power flow [25] is an NP-hard problem that was 
handled by the OO method with some success. 

The low overhead in the OO-based scheduling is attractive 
in real-time cloud computing applications [15], [30]. In our 
previous work [40], the OO is also applied to the multi-
objective scheduling (MOS) of many tasks in cloud platforms. 
The inner core of the approach is to generate a rough model 
resembling the workflow problem. The discrepancy between 
the rough and precise search models is minimized. We reduce 

 1 

mailto:f_zhang@mit.edu


 
the search space significantly to lower the scheduling 
overhead. 

In this paper, a new iterative ordinal optimization (IOO) 
algorithm is proposed. The IOO applies the OO method 
iteratively, in search of adaptive schedules to execute scientific 
workflows on elastic cloud compute nodes with dynamic 
workloads. During each iteration, the OO is applied to search 
for a suboptimal or good-enough schedule with very low 
overhead. From a global point of view, IOO can process more 
successive iterations fast enough to absorb the dynamism of 
the workload variations. 

The initial idea of this paper was presented at the 
CloudCom2011 [39] with some preliminary results. This 
paper extends significantly from the conference paper with 
some theoretical proofs supported by an entirely new set of 
experimental results. A synopsis of our contributions of this 
work is summarized below. 
 We present an analytical model of an autonomic resource 

provisioning scheme for multitasking big-data scientific 
application on a cloud platform. A follow-up novel 
simulation based approach is introduced to tailor for the 
need of tackling such a scheduling problem. 

 We systematically extend the OO method to a multi-stage 
scheduling scenario. Benefiting from the low overhead 
and efficiency of OO, the IOO is able to apply the OO in 
an iterative fashion so that the IOO has much better 
adaptability to the dynamic workload. During each period 
of scheduling, the OO can only achieve sub-optimal 
schedules; the purpose of the IOO is to generate better 
schedules from a global perspective over a sequence of 
workload periods. 

 Thereafter, we demonstrate the effectiveness of the 
proposed IOO approach with an extensive benchmarking 
with the LIGO experimental data. We apply the LIGO 
workflow [6] using hundreds of VMs. Both theoretical and 
experimental results show that the IOO scheduling 
method achieves higher throughput with lower memory 
demand, compared to the other two simulation-based 
approaches, Monte Carlo [28] and Blind-Pick [14]. 
The rest of the paper is organized as follows. Section 2 

characterizes the workflow scheduling problem on the VCs in 
a cloud with existing optimization methods introduced. In 
Section 3, we provide details on the proposed IOO method 
with theoretical overhead analysis. In Section 4, the 
experimental settings and design of LIGO experiments are 
provided. We also elaborative on the experimental results and 
discuss the various aspects pertaining to the IOO performance 
compared with Monte Carlo and Blind-Pick. Related work are 
reviewed in Section 5. Finally, we summarize our 
contributions and discuss future research in Section 6. 

2 WORKFLOW SCHEDULING ON CLOUDS 

2.1 Workflow Scheduling Model 

The provisioning of VMs to a virtual cluster is dynamically 
performed upon user demand. For clarity, an example job 

dispatching queuing model for mapping subdivided 
workflow tasks is given in Fig. 1. In this scheduling model, we 
define a task class as a set of computing jobs of the same type, 
which can be executed concurrently on VMs within the same 
virtual cluster.  

 
Fig. 1. The multitasking workload scheduler dispatches 
multiple tasks to VCs for parallel execution in a cloud 
platform.  Each VC is responsible for one task class. 

For the sake of simplicity during the analysis, we assume 
that all of the VMs within the same cluster take equal amount 
of time to execute the assigned tasks. In other words, the task 
execution time in a VM is the basic time unit in the 
performance analysis. For the easy of the reader, a summary 
of the most frequently used notations and definitions in this 
paper are listed in Table 1. 

TABLE 1.   BASIC NOTATIONS AND DEFINITIONS 
Notation Definition  

U Candidate set of all u possible schedules 

S Selection set of s schedules to simulate 
G Acceptance set of g good-enough schedules 

N Number of simulation runs per schedule candidate by 
Monte Carlo or Blind-Pick scheduling methods 

n The number of OO simulations per schedule 

θ A working schedule in the schedule space U 

P Average task execution time on a single VM  

D Average task memory demand on a single VM  

h   Time to simulate a schedule by Monte Carlo method 

M  Makespan to execute all tasks in a workflow 
T  Total workflow throughput in a cloud platform 

D Total memory demand in using virtual clusters 

H Overhead time of a particular scheduling method 
 

All of the VCs are distinguished by the index i. Let pi be 
the expected execution time of a single task within the i-th 
virtual cluster, VCi. Let vi be the number of VMs in VCi. We 
have βi = vi/pi as the task processing rate of cluster VCi. Let δi 
be the number of tasks of the corresponding queue.  

In light of the above model, we obtain the execution time 
of a task as ti = δi/βi = piδi/vi. We define the makespan of all n 
tasks in a scientific workflow by: 

 2 



 
             M = max {t1, t2, …, tc},                             (1) 

where c virtual clusters are used and ti = piδi/vi. The 
makespan is the total execution time between the start and 
finish of all tasks within a multitask workflow. We denote di 
as the memory used by one of the VMs within a cluster. 
Based on the above, the total memory demand by all VMs is   
calculated by: 

              
1

C
i ii

D d v
=

= ×∑ .                                     (2) 

A resource-reservation schedule specifies the sets of VMs 
provisioned at successive time slots, called periods. For 
example, the j-th schedule θj is represented by a set of VMs 
allocated in c clusters in a schedule space U. Therefore, such a 
schedule can be represented by a c-dimensional vector:   

             θj = [v1,  v2 , . . . , vc],                                (3) 

where vi is the number of VMs assigned within cluster VCi. At 
different time periods, different schedules may be applied. 
All of the candidate schedules at successive time periods 
form U. The cardinality of U can be calculated by the 
following expression: 

             u = (v − 1)!/[(v − c)!(c − 1)!],                       (4) 

where v is the total number of VMs used in c clusters. The 
parameter u counts the number of ways to partition a set of v 
VMs into c nonempty clusters. 

For example, if we use v = 20 VMs in c = 7 clusters for 
seven task classes, then we need to assess u = 27,132 possible 
schedules to search for the best schedule to allocate the VMs. 
Using simulation to determine the best schedule, such a 
number is deemed too high, leading to excessive simulation 
overhead time. Therefore, we must significantly reduce the 
schedule search space. 

The following objective function is used to search for the 
suboptimal schedules for the workflow scheduling. In 
general, we must conduct an exhaustive search to minimize a 
pair of objective functions on all possible makespan M(θj) 
and memory demands D(θj), jointly and simultaneously, i.e., 

           Min{M(θj)} and Min{D(θj)}                                         (5) 

for all possible schedules θj  in the search space U. 
The formulae for the makespan and memory demand are 

given in Eq. (1)–Eq. (5). The time/space complexity defies the 
traditional heuristic approach. In a resource-sharing cloud 
platform, the values of pi and di cannot be easily determined 
before runtime. For example, if all of the physical machines 
are populated with as many VMs as assigned by the jobs by 
other cloud users, then the pi must be much lower than usual. 
The aforementioned scenario will inevitably also lead to a 
higher value of di due to the resource contention. 

If the VMs are allocated in different geographical regions, 
where the workload of each region is highly diversified, then 
the problem becomes worse. Therefore, in simulating each 
schedule θj, we must also profile the resource usage of the 
VMs, generate pi, and di before we calculate M and D. We use 

the average over all of the simulations runs on θj to obtain the 
M(θj) and D(θj) in Eq. (5). 

2.2 Simulation-based Scheduling Optimization 
A) The OO Method 

The basic concept of the OO is illustrated in Fig. 2. 

 
Fig. 2.  The concept of OO using a set S intersecting with 
the set G to yield a set G∩S of k  acceptable (good-enough) 
schedules. 

Let U be a candidate set of all u = │U│ possible schedules. 
The set U is used in the exhaustive search of the best 
schedule. It is noteworthy to mention that the Monte Carlo 
applies to U, very slowly. In practice, we must define an 
acceptance set G of g = │G│ schedules. The schedules in G 
are acceptable or good-enough choices that are the top g 
schedules in U. In the OO, a rough and computationally fast 
model is applied to U.  Then, a promising but smaller 
schedule set S is derived. 

One can test only a reduced selection set S of s promising 
schedules. The OO method slowly searches from S to 
generate at least k good-enough schedules in G. The success 
rate of such a search is set at α = 98%.  Note that u >> s >> 
g >> k =│G∩S│. For example, if in Eq. (4), the value of u is 
equal to 27,132, then we will have s = 190, g = 10, and k = 1 for 
a single best schedule. These simulation parameters could be 
defined in the simulated optimization process, based on the 
requirements of a particular workflow application. In general, 
we must satisfy the following condition in the OO process: 

Probability {│G∩S│≥ k } ≥ α.                      (6) 

In our previous work described in [40], a bi-objective 
optimization scenario of multitask scheduling on the cloud is 
resolved based on the OO method, in which both the 
makespan and memory demands must be optimized within 
the 2-dimensional optimization space. This is illustrated in 
Fig. 3. 

M
ea

su
re

d 
Pe

rfo
rm

an
ce

 
(M

ak
es

pa
n)

Measured Performance (Memory Demand)

L’1
L’2

L’3
L’4

 
Fig. 3.  The OO-based bi-objective optimization. 

G∩S G S 

U:  The candidate set of all possible u 
       schedules in exhaustive search 
G: The acceptance set of g schedules 
S:  Promising schedule set of s schedules 
Note that u >> s >> g >> k =│G∩S│ 

U 

 3 



 
Each dot within the space corresponds to a working 

schedule that has been simulated. The dark circles are 
acceptable good schedules, grey ones are medium, and white 
circles (schedules) have the lowest performance. The 
acceptable schedules are scattered sparsely within the space. 
This may demand a larger set S to cover the schedules, 
corresponding to a larger number of skylines in a 2-
dimensional optimization space. A smaller S, may be enough, 
but may demand heavier scheduling overhead.  Therefore, 
tradeoff does exist between S and the scheduling overhead 
that a user can tolerate. In this work, during each iteration of 
the optimization process, the OO is actually applied for the 
same bi-objective optimization. 
B) Monte Carlo and Blind-Pick 

Monte Carlo and Blind-Pick methods are used to compare 
with the OO method. In Fig. 4, Search spaces for the three 
known methods are illustrated. 

 
(a) Monte Carlo                 (b) Blind-Pick                   (c) OO 

Fig. 4. The variation in the search space in three workflow 
scheduling methods. 

Fig. 4(a) shows that the Monte Carlo method simulates 
each schedule in schedule set U for a long time (N runs for 
each).  The selection set Smc equals to the schedule set U.  It 
can select all of the superior performing  schedules, denoted 
by the dark circles in the set G, at the cost of intolerable 
runtime. However, the Blind-Pick method  selects a random 
set Sbp. There is no guarantee that the good-enough schedules 
would be in the selection set.  On the other hand, the OO 
takes a “sneak peek” at all of the schedules, selects the most 
promising set Soo, and apply the longer simulation to the 
schedules of Soo. This results in superior performing 
schedules with significantly reduced overhead. 

3 ITERATIVE ORDINAL OPTIMIZATION 
The proposed IOO method is specified below to generate 

the optimal workflow schedules in the VCs with dynamic 
workload. The scheduling solutions are generated in an 
iterative fashion. During each of the iteration, suboptimal or 
good-enough schedules are obtained via OO-based bi-
objective scheduling. The IOO method adapts to the system 
dynamism pertaining to the fluctuations in the workload and 
resource provisioning in VCs. 

3.1 The IOO Flowchart 

In Fig. 5, we illustrate the IOO process is divided into two 
layers of simulation. During each iteration, IOO applies the 
schedule generated during the last iteration for execution of 
the workload. Meanwhile, the OO method is applied at the 

inner loop for fast generation of sub-optimal schedules for 
the next iteration. Monte Carlo and Blind-Pick are also 
processed in a similar way with much more iteration times 
due to the use of a much enlarged search space. 

 
Fig. 5. Flow chart of the new iterative ordinal optimization 
(IOO) for suboptimal schedule generation. 

During each period, IOO applies the schedule generated 
during the last period for actual execution of the workload. 
Meanwhile, the OO method is applied for fast generation of 
sub-optimal schedules for the next period. It is noteworthy to 
mention that the Monte Carlo and Blind-Pick are also 
processed in a similar way; however, the time period is much 
longer due to the scheduling overhead of the methods are 
higher. 

3.2 Complexity Analysis 

We use two metrics in our performance analysis. The first 
metric is the throughput T defined as: 

T = Nt/(t1 - t0),              (7) 

where Nt is the total number of tasks completed within the  
time interval [t0, t1]. The second metric is scheduling overhead 
H that is defined as the simulation time used to schedule 
VM resources for mapping a scientific workflow to a 
virtualized cloud platform. The scheduling overhead H is 
composed of two components, namely: 

 H = H1 + H2,           (8) 

where H1 is the time to select the set U or S of candidate 
schedules to simulate its performance, and H2 is the time to 
apply the precise but slow simulation to evaluate all of the 
selected schedules. 

We assess below the overhead to simulate any schedule θj 
in using the Monte Carlo method. Based on the flow chart in 
Fig. 5, the Monte Carlo process contains the following five 
steps: 

(1) Generate the values of di and pi with time h1. 
 4 



 
(2) Simulate θj using (di, pi) with time h2. 
(3) Compute the throughput and memory demands with 

time h3. 
(4) Go to Step (1) for N or n loops with time h4. 
(5) Calculate the average throughput and memory 

demand for all N simulations with time h5. 
In Table 1, we defined h as the time to perform one slow 

simulation on a given schedule. The variable N is the number 
of repeated simulation performed per schedule and n is the 
reduced simulation number used in the IOO method. The 
parameters are u =|U|, g =|G|, and sbp = |Sbp| for the Blind-
Pick method, and s = |S| for the IOO method, respectively. 
The parameter k = |G∩S|. In the following theorem, we 
analyze the time complexities of the three workflow 
scheduling methods considered in this paper. 

Theorem 1: The overhead time H to simulate all of the selected 
schedules within the three workflow scheduling schemes can be 
represented as:   

Hmc =  Nuh ,   (9a) 

Hbp = Nkuh/g,    (9b) 

Hioo = nuh + Nhs,    (9c) 

where all of the input parameters are defined in Table 1.  
Proof. We have Hmc = u[N(h1+h2+h3+h4)+h5]. The variables h1, 
h3, h4, and h5 terms are negligible, when compared with the 
much greater magnitude of h2. In Eq. (11a), we simply denote 
h = h2. We have H1 = 0 for the Blind-Pick method. By using 
the results described in [17], we have the probability 
distribution for the intersection set bp bps i sk

bp g u g uP G S k C C C−
−

 ∩ = =  . 

Therefore, we have Exp[|G∩Sbp|] = gsbp/u. To simulate sbp = 
ku/g schedules, it takes Hbp = H2 = Nkuh/g time. For the IOO 
method, we have H1 = unh, and H2 = Nhs, leading to the 
expression for Hioo.                                                            □  

The following theorem proves the speedup of the 
proposed IOO method, compared with the other two known 
methods. 
Theorem 2: Using simulation to generate the suboptimal 
schedules, the IOO scheduling method is  

R1 = Hmc/Hioo =  1/(n/N+ s/u),               (10a) 

R2 = Hbp/Hioo = (k/g)/(n/N+s/u),               (10b) 

times faster than the Monte Carlo method and the Blind-Pick 
method, respectively.  
Proof. Consider the speedup ratio R1 = Hmc /Hioo = 
Nuh/(nuh+Nhs) = 1/(n/N+ s/u) and the speedup ratio R2 = Hbp 

/Hioo = (Nkuh/g)/(nuh+Nhs) = (k/g)/(n/N+s/u).  R1 and R2 are 
thus proven.                                                                   □ 
     The following corollary gives the speedup of our proposed 
IOO method when u >> s. 
Corollary 1: When u >> s, the second term in both of the 
denominators of R1 and R2 tends to become zero, and we 
have the speedup values R1 ≈ N/n and R2 ≈ Nk/ng. 

Because a user must define the magnitude of g and k 
under the constraint u >> s, in our simulation experiments, we 
had u = 27,132, N = 1,000, s = 190, n = 10, g = 10, and k = 1 for 
the LIGO workload.  Therefore, the overhead reduction ratios 
of the IOO method are R1 ≈ 100 and R2 ≈ 10 times over the 
Monte Carlo and Blind-Pick, respectively. We will verify these 
analytical results with the simulation results to be reported in 
Sections 4.3A. 

3.3 IOO Advantages 

We illustrate the rationale behind the IOO method in Fig. 
6. Let T be the scheduling overhead using the Monte Carlo 
method, and t be that of the IOO method. For example, at 
time t0, Monte Carlo is used for simulation. It is not until t1 
that the Monte Carlo can generate its optimal schedule. While 
the solution is optimized at t1, it is not possible to generate 
such an optimized schedule between t1 and t2. As for the 
proposed IOO method, at time t1, the predicted workload is 
used to generate a suboptimal schedule at time t1+t, and then 
at t1+2t, …., and so on. 

tttttttttttt
T T T

t0 t1 t2 t3

W
or

kl
oa

d

Time
 

Fig. 6.   IOO adaptability to dynamic workload variations. 

This process is continued at each of the period to capture 
the variation in the workload in a much finer granularity to 
improve the performance. The IOO is carried out 
dynamically to iteratively upgrade the performance. During 
each iteration, the workflow scheduling follows the OO 
method to reduce the overhead and generate a good-enough 
solution. From a global point of view, the successive 
iterations are processed fast enough to absorb the dynamism 
of the system, and the overall performance is improved. 

A further simplified example is given in Fig. 7 to show 
how IOO can be advantageous when being applied to such a 
multi-period scheduling problem. 

 
Fig. 7. An example showing the timing advantage of IOO.  

 5 



 
Suppose a scheduling platform use 15 VMs to process five 

different task classes. Four batches of workloads arrive 
during the scheduling period of the Monte Carlo method.  
For example, NVC1=10 at the start point means there are 10 
independent tasks of task class one arrive at VC1.  We can see 
that the workload is very fluctuating due to the big variance 
between two consecutive workloads.  

Monte Carlo, Blind-Pick and the IOO methods use their 
selected schedule. Take the first batch of workload as an 
example, Blind-Pick chooses a schedule [3, 1, 2, 5, 4] that 
indicates that the VC1 has 3 VMs, VC2 has one VM, etc.  
Monte Carlo applies a same schedule over all of the four 
periods. 

For simplicity, we assume that each of the VM processes 
each task at a fixed rate that equals to one task per second.  
The performance metric used here is the aggregated 
makespan of the all the scheduling periods.  For each period, 
the period-makespan is calculated by the time to finish the 
slowest task class. For example, the makespan of using Blind-
Pick method at the first batch of workload is calculated by 
Max{10/3, 20/1, 30/2, 40/5, 50/4} = 20. 

Aggregating the four scheduling periods, the total 
makespan of using the Blind-Pick method comes to 97 
seconds.  Similarly, the aggregated makespan of using the 
Monte Carlo and the IOO methods are 67 and 60 seconds, 
respectively.  The IOO shows its advantage in this case. 

As we can deduce from the workload characteristics, the 
best schedule for all the four periods should be [1, 2, 3, 4, 5], 
[5, 4, 3, 2, 1], [1, 2, 3, 4, 5], [5, 4, 3, 2, 1] respectively. The IOO 
probably cannot achieve all of the best schedules due to the 
reduced simulation time t.  However, the IOO still selects the 
schedules very similar to the sequenceand leads to an overall 
best performance. 

 4 LIGO WORKFLOW EXPERIMENTS 
In this section, we design the LIGO experiments used to 

test the effectiveness of the proposed IOO method for 
scientific workflow. First, we introduce the experimental 
settings. Thereafter, we examine the LIGO task classes and 
task parallelism. 

4.1 Experimental Settings 
The cloud simulations/experiments were carried out 

using ten servers of IBM RC2 Cloud at the IBM China 
Development Laboratory, Beijing (see Fig. 8) similar to the 
Amazon Web Service [3].  

 
Fig. 8. Research compute cloud (RC2) over eight IBM 
Research and Development Centers. 

Each sever is equipped with Intel Xeon MP 7150N 
processor and 24 GB memory. The virtualized physical 
servers in the IBM Beijing Center are specified in Table 2. We 
installed up to fourteen VMs per physical server. A physical 
server runs with the OpenSuSE11/OS. All of the LIGO tasks 
were written in Java. With ten servers, we experimented with 
128 VM instances. To test the scalability of the various 
scheduling techniques, we vary the VC configuration from 
sixteen to 32, 64, and 128 VMs. 

TABLE 2.   VIRTUALIZED PHYSICAL CLUSTER 

Cluster Size 10 servers per physical cluster 

Node 
Architecture 

IBM X3950 Server built with 16-core Xeon MP 
7150N, 24 GB memory running with the 
OpenSuSE 11 OS 

VM 
Architecture 

CPU: 1 Core with 1 GB memory running with OS: 
OpenSuSE 11 

VMs/server 14 VMs in each server 

4.2 LIGO Verification Workflow 

The LIGO project was designed for the detection of 
gravitational waves on earth surface. This is a large-scale 
scientific experiment as predicted by Einstein’s general 
theory of relativity a century ago. The LIGO workflow 
demands an identification of the potential faults before the 
actual program execution. Our analysis was performed over 
different verification logic demands. Each verification logic 
or task class contains many subtasks over massive data sets. 

The workload involved is divided into seven task classes, 
as listed in Table 3. It embodies analysis of three sensitive 
detectors (L1, H1, and H2) on the earth surface. Sufficient 
cloud resources (VMs) are provisioned to satisfy the LIGO 
workflows. The seven independent task classes can be 
executed in parallel on their own VCs. 

TABLE 3.   TASK CLASSES IN A LIGO WORKFLOW 

Task 
Class 

Functional  
Characteristics 

Parallel Tasks 

Class-1 Operations after tinplating 3,576 

Class-2 Restraints of interferometers 2,755 

Class-3 Integrity  contingency  5,114 

Class-4 Inevitability of contingency 1,026 

Class-5 Service reachability 4,962 

Class-6 Service Terminatability 792 

Class-7 Variable garbage collection 226 

Task Class 1 executes a template bank (TmpltBank) in two 
major steps (Inspiral and TrigBank). The Class 2 matches the 
expected wave of H2 (Inspiral_H2) until both data in H1 and 
H2 pass two contingency tests. The Class 3 minimizes the 
noise signal ratio by testing the data collected. This task has 
the highest degree of parallel (DOP). Task Class 4 continues 
the process of matching the expected waves to create 
template banks. 

 6 



 
The Class 5 ensures that all of the services are reachable. 

This task also has a high DOP. Class 6 ensures that all of the 
services are fermentable with limited DOP. Finally, the Class 
7 collects the garbage of used intermediate variables that has 
the lowest DOP. We want to find a range of solutions to use 
θj to minimize both M and D defined in Table 1. In our LIGO 
experiments, there are seven task classes running on 20 VMs. 
There are 27,132 schedules in total to be evaluated. 

4.3 Comparative Results and Discussions 

In this section, we report the simulation/experimental 
results. First, we show that the measured scheduling 
overhead of applying the IOO approach. Thereafter, we 
report the measured makespan and memory demands in the 
LIGO workload experiments. 
A) Scheduling Overhead 

The Monte Carlo simulations exhaust the entire 
scheduling space.  For each schedule, one must implement all 
of the task classes on all VCs. The time used for this 
exhaustive search causes a great amount of scheduling 
overhead. The proposed IOO method requires the least 
amount scheduling overhead compared to the rest of the 
techniques, as demonstrated in Fig. 9.  The schedule is 
generated by averaging over a small set of schedules.  

16 32 64 1280.001

0.1

10

1,000

100,000

No. of VMs

Sc
he

du
lin

g 
O

ve
rh

ea
d 

Ti
m

e,
 S

ec
on

d

 

 
Fig. 9. Simulation overhead times of three workflow 
scheduling methods under 10% good-enough schedules. 

Our proposed IOO method avoids the exhaustive search 
experienced by using the Monte Carlo method. We search in 
a much smaller schedule space. Good-enough schedules are 
found in a few iterations of each OO process.  As shown in 
Fig. 9, the IOO performance for the workflow scheduling is 
evaluated by comparing the overhead times among three 
methods for variable number of VMs used.  This comparison 
is made under the assumption of k/g = 10% good-enough 
schedules to apply the IOO method.  

As the cluster size varies from sixteen to 128 VMs, we 
observe that the IOO method has a scheduling overhead of 
1,000 sec., compared to 100,000 sec., with the Monte Carlo 
method. The scheduling overhead of Blind-Pick is slightly 
lower than the Monte Carlo method, but still much higher 
than the IOO method. As the number of VMs increase, the 
trade-off space also increases. It is noteworthy to mention that 

these results stay within the theoretical bounds set in 
Theorem 1.  
B) Throughput and Memory Demand 
      To further investigate experiment details, a truncated 
illustration of dynamic workload is included in Fig. 10 and the 
corresponding experimental results are included in Fig. 11. 
The numbers of tasks and virtual machines are default. The 
simulation time of Monte Carlo is 32 hours that is taken as the 
period time. Only two periods of data are shown in Fig. 11. 
Dynamically changing of workload and corresponding 
scheduling results are illustrated. In Fig. 11, throughput and 
memory demand of all the methods are calculated for each 
stage. The proposed IOO method may not have better 
performance all of the time during each of the iteration. 

5 10 15 20 25 30200

400

600

800

1000

1200

1400

Experiment Time (Hour)

W
or

kl
oa

d 
(ta

sk
s/

se
c)

 
Fig. 10.  Illustration of the dynamic workload in a single 
iteration. 

10 20 30 40 50 60200

400

600

800

1000

1200

1400

Experiment Time (Hour)

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

 

 

Monte Carlo
iOO
Blind Pick

 

(a) Throughput 

10 20 30 40 50 604000

5000

6000

7000

8000

9000

10000

Experiment Time (Hour)

M
em

or
y 

De
m

an
d 

(M
B)

 

 

Monte Carlo
iOO
Blind Pick

 
(b) Memory demand 

Fig. 11.   Throughput and memory results running the LIGO 
verification workflow on the RC2 cloud platform. 

  

IOO Blind Pick Monte Carlo 

 7 



 
While at the beginning of each iteration the Monte Carlo 

can generate a best schedule, within each iteration, it is 
obvious that the Monte Carlo shows the worst adaptability. 
This is due to the fact that it cannot generate new schedules 
fast enough to adapt to new workload. On the other hand, the 
proposed IOO method maintains the exact same performance 
level during all stages of an iteration.  The IOO method’s 
performance gain can be better illustrated from a global 
perspective, detailed below. 

We present in Fig. 12, the average throughput and 
memory demands during the whole experiment period. The 
experiments were carried out in eight simulation periods. 
Each period lasts a time length of h of a single Monte Carlo 
simulation. During each period, the OO method is applied 
iteratively, as the IOO scheduling time is much shorter. The 
default workload contains  20,000 LIGO tasks and 128 VMs. 

5K 10K 20K

200

400

600

800

1000

1200

No. of Tasks

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

 
(a) Effect of task number for 128 VMs. 

16 32 64 128

200

400

600

800

1000

1200

No. of VMs

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

 
(b) Effect of cluster size for 20K tasks. 

 

Fig. 12.  Relative performance of three workflow scheduling 
methods plotted against task and cluster sizes. 

In Fig. 12(a), we demonstrate the effect of the increase in 
the number of tasks  in the LIGO application on the system 
performance. The proposed IOO method demonstrates 
approximately three times higher throughput than the Monte 
Carlo method with the variation in the number of  tasks. The 
proposed IOO method offers 20% to 40% times higher 
throughput than that of Blind-Pick as the task number varies. 

Fig. 12(b) shows the effects of the VC size on the 
throughput performance of the three scheduling methods. We 
observed a 2.2 to 3.5 times throughput gain by the IOO over 
Monte Carlo as the VC size increases from sixteen to 128 VMs.  
The IOO method exhibited approximately 15% to 30% 
throughput gain over Blind-Pick as the VC size increases. 

Fig. 13 shows the relative memory demands of the three 
workflow scheduling methods. The results are plotted as a 
function of the task number and cluster size.  From the results 
we can observe that the Monte Carlo has the highest memory 
demand, the IOO method requires the least memory. The  
Blind-Pick method sits in the middle. In Fig. 13(a), the IOO 
method saved about 45% memory from that demanded by the 
Monte Carlo method. The Blind-Pick method required about 
20% higher memory than the IOO method as the task number 
increases.  

5K 10K 20K2000

4000

6000

8000

10000

12000

No. of Tasks

M
em

or
y 

D
em

an
d 

(M
B

)

 
 (a) Effect of task number for 128 VMs. 

16 32 64 1282000

4000

6000

8000

10000

12000

No. of VMs

M
em

or
y 

D
em

an
d 

(M
B

)

 

 
(b)  Effect of cluster size for 20,000 tasks. 

Fig. 13.   Memory demands of three workflow scheduling 
methods plotted over variable tasks and cluster sizes. 

In Fig. 13(b) for 20,000 tasks, the memory demands were 
11.5 GB, 8 GB, and 7 GB on 128 VMs for the Monte Carlo, 
Blind-Pick, and IOO methods, respectively. The reported 
results indicate that the IOO outperforms the two other 
competing methods by providing a low-overhead scheduling 
solution. The reduced overhead leads to less simulation and 
profiling time that plays a key role in offering shorter and 
finer granularity schedule periods in real runs. These cater to 
the need for scheduling fluctuating workflow. 

5 RELATED WORK 
In this section, we review related work on cloud resource 

provisioning and task scheduling, compared to our proposed 
IOO approach to solving the same problem. Scheduling large-
scale scientific tasks on supercomputers or grid systems has 
been studied by many researchers in the past. In particular, 

IOO Blind Pick Monte Carlo 

IOO Blind Pick Monte Carlo 

 8 



 
we see a growing interest in [2, 10~13, 18, 22~23, 26, 29 ~ 31, 
35, 37~38]. There is an escalating interest on resource 
allocation for scientific workflows on computing clouds [9, 15, 
27, 32]. 

Many classical optimization methods, such as 
opportunistic load balance, minimum execution time, and 
minimum completion time, are described in [11]. Several 
heuristics, such as sufferage, min-min, max-min, and auction 
have been proposed in the past [31].  

Yu and Buyya [38] proposed economy-based methods to 
handle large-scale grid workflow scheduling under deadline 
constraints, budget allocation, and QoS. Benoit et al. [5] 
designed resource-aware allocation strategies for divisible 
loads. Li and Buyya [23] proposed model-driven simulation of 
grid scheduling strategies. Lu and Zomaya [26] proposed a 
hybrid scheduling method for job scheduling in 
heterogeneous computational grids.  

These scheduling approaches in computational grids [12] 
serve different purpose than the methods proposed in the 
autonomic big-data cloud platform.  The cloud scheduling 
methods, such as IOO, partition and allocate computing 
resource in an elastic manner to improve the throughput of 
multitasking workloads. 

In 1992, Ho et al. [14] proposed the OO method for 
discrete-event dynamic systems. In their work, they 
demonstrated that the OO method is effective to generate a 
soft or suboptimal solution to most NP-hard problems. The 
OO technique has been applied in advanced automation and 
industrial manufacturing [18, 19, 33].   

Wieczorek et al. [36] analyzed the five facets that may have 
a major impact on the selection of an appropriate scheduling 
strategy. They proposed taxonomies to classify multi-objective 
workflow scheduling schemes. Prodan and Wieczorek [29] 
proposed a dynamic algorithm, which outperforms the 
SOLOS and BDLS methods to optimize bi-criteria problems.  

In the past, Cao et al. [7], [39] have studied the LIGO 
problems on the grid environments. Duan et al. [12] suggested 
a game-theoretic optimization method. Dogan and Özgüner 
[11] developed a matching and scheduling algorithm. Smith, 
Siegel, and Maciejewski [31] have proposed robust static 
resource allocation for distributed computing systems 
operating under imposed QoS constraints. None of these 
methods investigated the profiles and runtime system 
performance. Our proposed IOO method fills the gap. 

Runtime uncertainty is handled in Batista’s work [4]. Our 
work inherits the idea of OO, which reduces scheduling 
overhead by narrowing down the search space. Along the OO 
line, many other heuristic methods have been proposed [21] 
[34] [41]. These methods quickly reduce the subset of “good 
enough” solutions with manageable overhead.  

The OO is specifically designed to solve large problems in 
automated manufacturing, communication, power systems, 
and distributed computing systems [39].  The simulation 
based optimization tenet in our IOO is directly inspired by 
these real-life applications. 

Different the selection rules for the OO are compared in 
[17] to discuss the relative performance. The consesus is that 
no selection rule is absolutely better than the others in all 
applications. We apply the OO method in an iterative way to 
dynamically optimize cloud scheduling or provisioning 
scenario to meet special requirements of scientific workflows, 
such as LIGO.  

6 CONCLUSIONS 
This paper offered the first attempt to an iterative 

application of the OO method for fast dynamic multitask 
workload scheduling in a cloud computing platform. The 
major advantage of the IOO method resides in its adaptability 
to a scenario with fluctuating workloads. The IOO method 
was compared with Monte Carlo and Blind-Pick. The 
conclusions of our findings are summarized in Table 4. 

TABLE 4.   SUMMARY OF THREE WORKFLOW SCHEDULING 
METHODS 

Meth
od Strength and Advantages Weakness and 

Limitations 
Mont
e 
Carlo 

High accuracy to obtain 
optimal schedule. Monte 
Carlo  results  in high  
system throughput with 
reduced memory demand 
for a fixed and short 
scheduling period 

High simulation overhead 
due to exhaustive search 
for optimality, The 
method does not adapt to 
fast variation in workload. 
The performance will 
degrade with extended 
scheduling periods. 

Blind
-Pick 

With moderate overhead, 
this method applies to a 
reduced search space and 
can adapt to the fast 
variation in workload to 
some extent. 

Moderate accuracy due to 
lower overhead. With a 
poor selection set, the 
performance will degrade 
to that of Monte Carlo. 

IOO With low overhead, the 
IOO can adapt to the fast 
variation in workload to 
obtain suboptimal schedule 
that runs with high 
multitask throughput and 
reduced memory demand 

The suboptimal schedules 
generated at each period 
may not be as optimal as 
that generated by Monte 
Carlo. Under a high noise 
level, the IOO-generated 
schedule may degrade. 

The major contributions of this paper are summarized 
below in four technical aspects.  

(1) The IOO method worked very well on a cloud platform 
under dynamically changing workload. We reduced the 
search space from a very large space of 27,132 candidate 
schedules to a much smaller search space of 190 schedules. 
The low-overhead IOO method adapted to the workload 
variations. This method captured the workload dynamics to 
make fast scheduling decisions. 

(2) Compared with what we had reported in the 
CloudCom 2011 conference paper [39], we performed a 
thorough theoretical time/space complexity analysis for the 
three comparative scheduling methods. We also 
quantitatively proved the adaptability of our IOO method. 
Simulation/experimental results also echoed the theoretical 
claims. 

 9 



 
 (3) Large-scale LIGO gravitational wave data analysis 

pipelines are used to effectively test the new IOO method. The 
verification workflow of LIGO data analysis offered a typical 
multitask application that required real-time dynamic task 
scheduling support on cloud platforms. 

(4) We provided an efficient and effective profiling and 
simulation method for multitask workload scheduling in a 
virtualized cloud platform. The cloud service environments 
contained many uncertainty factors that were dealt with 
appropriately by the proposed IOO method. Our IOO method 
applied well in EC2-like cloud services to increase the 
throughput and in S3-like services to reduce the memory 
demands. 

ACKNOWLEDGMENTS 
This work was supported in part by the National Nature 

Science Foundation of China under grant No. 61233016, by the 
Ministry of Science and Technology of China under National 
973 Basic Research Grants No. 2011CB302505 and No. 
2013CB228206. The work was also partially supported by an 
IBM Fellowship for Fan Zhang, and by the Intellectual 
Ventures endowment to Tsinghua University. 

REFERENCES 
[1] A. Abramovici, W. E. Althouse, et. al., “LIGO: The Laser 

Interferometer Gravitational-Wave Observatory”, Science, Vol. 
256, No. 5055, pp. 325 – 333, 1992. 

[2] S. Abrishami, M. Naghibzadeh, D.H.J. Epema, "Cost-Driven 
Scheduling of Grid Workflows Using Partial Critical Paths", 
IEEE Trans. Parallel Distrib. Syst. Vol. 23, No.8, 2012, pp. 1400-
1414. 

[3] Amazon EC2 and S3,  “Elastic Compute Cloud (EC2) and 
Simple Scalable Storage (S3)”, http://en.wikipedia.org/ wiki/ 
Amazon_Elastic_Compute_Cloud 

[4] D.M. Batista, N.L.S. da Fonseca, "Scheduling Grid Tasks in Face 
of Uncertain Communication Demands", IEEE Trans. Network 
and Service Management, Vol. 8, No.2, 2011, pp. 92 - 103. 

[5] A. Benoit, L. Marchal, J. Pineau, Y. Robert, F. Vivien. “Resource-
aware Allocation Strategies for Divisible Loads on Large-scale 
Systems”.  Proc. of IEEE Int’l Parallel and Distributed Processing 
Symp.(IPDPS), Rome,  2009. 

[6] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. 
McNabb, “A Case Study on the Use of Workflow Technologies 
for Scientific Analysis: Gravitational Wave Data Analysis”, in 
Workflows for eScience: Scientific Workflows for Grids, Springer 
Verlag, pp. 39-59, 2007. 

[7] J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd, “GridFlow: 
Workflow Management for Grid Computing”, Proc. 3rd 
IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Tokyo, 
Japan, 198-205, 2003. 

[8] E. Deelman, C. Kesselman, et al,  “GriPhyN and LIGO, Building 
a Virtual Data Grid for Gravitational Wave Scientists”, Proc. 
11th IEEE Int. Symp. on High Performance Distributed Computing 
(HPDC’02), pp. 225-234, 2002. 

[9] E. Deelman, G. Singh, M.Livny, B. Berriman, and J. Good, “The 
cost of doing science on the cloud: the Montage Example”, Proc. 
of the ACM/IEEE Conf. on Supercomputing (SC’08), Austin, 2008. 

[10] P. Delias, A. Doulamis, N. Doulamis, N. Matsatsinis, 
"Optimizing Resource Conflicts in Workflow Management 

Systems", IEEE Trans. Knowledge and Data Engineering, Vol. 
23, No.3, 2011, pp. 417-432. 

[11] A. Dogan, and F. Özgüner. “Biobjective Scheduling Algorithms 
for Execution Time–Reliability Trade-off in Heterogeneous 
Computing Systems”. The Computer Journal, vol. 48, no.3, 
pp.300-314, 2005. 

[12] R. Duan, R. Prodan, and T. Fahringer, “Performance and Cost 
Optimization for Multiple Large-scale Grid Workflow 
Applications”,  Proc. of IEEE/ACM Int’l Conf. on SuperComputing 
(SC’07), Reno, 2007. 

[13] L. Golubchik and J. Lui, “Bounding of Performance Measures 
for Threshold-baded Systems: Theory and Application to 
Dynamic Resource Management in Video-on-Demand 
Servers”， IEEE Transactions of Computers, 51(4), pp 353-372, 
April, 2002. 

[14] Y. C. Ho, Q. C. Zhao, and Q. S. Jia. Ordinal Optimization, Soft 
Optimization for Hard problems. Springer, 2007. 

[[1155]]  C. Hoffa, et al., “On the Use of Cloud Computing for Scientific 
Workflows,” IEEE Int’l Conf. on eScience, Dec. 2008  

[16] K. Hwang, G. Fox, and J. Dongarra, Distributed and Cloud 
Computing Systems: from Parallel Processing to The Internet of 
Things, Morgan Kauffmann, 2011  

[17] Q. S. Jia, Y. C. Ho, and Q. C. Zhao, “Comparison of Selection 
Rules for Ordinal Optimization”, Mathematical and Computer 
Modelling, Vol. 43, No. 9,  2006. 

[18] J. Kolodziej and S. U. Khan, "Multi-level Hierarchical Genetic-
based Scheduling of Independent Jobs in Dynamic 
Heterogeneous Grid Environment," Information Sciences, vol. 
214, pp. 1-19, 2012. 

[19] J. Kolodziej, S. U. Khan, L. Wang, M. Kisiel-Dorohinicki, S. A. 
Madani, E. Niewiadomska-Szynkiewicz, A. Y. Zomaya, and C.-
Z. Xu, "Security, Energy, and Performance-aware Resource 
Allocation Mechanisms for Computational Grids," Future 
Generation Computer Systems, vol. 31, pp. 77-92, 2014. 

[20] A. Lazzarini, “Data from the LIGO I Science Run”, 
http://www.ligo.caltech.edu/docs/P/P010002-00/P010002-
00.pdf 

[21] D. Li, L. H. Lee, and Y. C. Ho, “Constrained Ordinal 
Optimization”, Information Sciences, Vol. 148, No. 1-4, pp. 201-
220, 2002. 

[22] H. Li, "Realistic Workload Modeling and Its Performance 
Impacts in Large-Scale eScience Grids", IEEE Trans. Parallel 
Distrib. Syst. Vol. 21, No.4, 2010, pp. 480 - 493. 

[23] H. Li and R. Buyya, “Model-driven Simulation of Grid 
Scheduling Strategies”, Proc. of 3rd IEEE Int’l Conf. on e-Science 
and Grid Computing, 2007. 

[24] LIGO and Virgo Collaborations, “Application of a Hough 
search for continuous gravitational waves on data from the 5th 
LIGO science run”, General Relativity and Quantum 
Cosmology, arXiv:1311.2409v2. 

[25] S. Y. Lin, Y. C. Ho, and  C. H. Lin. “An ordinal optimization 
theory-based algorithm for solving the optimal power flow 
problem with discrete control variables”,   IEEE Trans. on Power 
Systems. Vol. 19, No. 1, pp.276-286, 2004 

[26] K. Lu, and A. Y. Zomaya, “A Hybrid Schedule for Job 
Scheduling and Load Balancing in Heterogeneous 
Computational Grids,” IEEE Int’l Parallel & Distributed 
Processing Symp., July 5–8, pp. 121–128, Austria. 

[27] S. U. R. Malik, S. U. Khan, and S. K. Srinivasan, "Modeling and 
Analysis of State-of-the-art VM-based Cloud Management 
Platforms," IEEE Trans. on Cloud Computing, vol. 1, no. 1, pp. 50-
63, 2013. 

 10 

http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud


 
[28] N. Metropolis and S. Ulam, “The Monte Carlo Method”, Journal 

of the American Statistical Association, 44 (247), pp.335–341, 1949. 
[29] R. Prodan and M. Wieczorek, “Bi-criteria Scheduling of 

Scientific Grid Workflows”. IEEE Trans. on Automation Science 
and Engineering, Vol. 7, No.2, 2010, pp. 364 - 376. 

[30] X. Qin, W. Wang and P. Mishra, "TCEC: Temperature and 
Energy-Constrained Scheduling in Real-Time Multitasking 
Systems", IEEE Trans. Computer-Aided Design of Integrated 
Circuits and Systems, Vol. 31, No.8, 2012, pp. 1159 - 1168. 

[31] J. Smith, H. J. Siegel and A. A. Maciejewski. “A Stochastic 
Model for Robust Resource Allocation in Heterogeneous 
Parallel and Distributed Computing Systems”, Proc. of IEEE Int’l 
Parallel & Distributed Processing Symp. (IPDPS’08), Miami, FL. 
2008. 

[32] T. S. Somasundaram and K. Govindarajan, "CLOUDRB: A 
framework for scheduling and managing High-Performance 
Computing (HPC) applications in science cloud", Future 
Generation Computer Systems. Vol. 74, No. 3, pp.2152-2165, 2014. 

[33] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “A Cooperative 
Game Framework for QoS Guided Job Allocation Schemes in 
Grids,” IEEE Trans. on Computers, Vol. 57, No. 10, pp. 1413–1422, 
2008. 

[34] S. Teng, L. H. Lee, and E. P.Chew, “Multi-objective Ordinal 
Optimization for Simulation Optimization Problems”, 
Automatica,  pp.1884-1895, 2007. 

[35] N. Tziritas, C.-Z. Xu, T. Loukopoulos, S. U. Khan, and Z. Yu, 
"Application-aware Workload Consolidation to Minimize both 
Energy Consumption and Network Load in Cloud 
Environments," Proc. of the 42nd IEEE Int’l Conf. on Parallel 
Processing (ICPP’13), Lyon, France, 2013. 

[36] M. Wieczorek, R. Prodan, and A. Hoheisel, “Taxonomies of the 
Multi-criteria Grid Workflow Scheduling Problem” CoreGRID, 
TR6-0106, 2007. 

[37] Y. Wu, K. Hwang, Y. Yuan, and W. Zheng, “Adaptive 
Workload Prediction of Grid Performance in Confidence 
Windows”,  IEEE Trans. on  Parallel and Distributed Systems,  Vol. 
21, No. 7, pp. 925-938, 2010. 

[38] J. Yu and R. Buyya, “Scheduling Scientific Workflow 
Applications with Deadline and Budget Constraints using 
Genetic Algorithms”, Scientific Programming, Vol. 14, 2006. 

[39] F. Zhang, J. Cao, K. Hwang, and C. Wu, “Ordinal Optimized 
Scheduling of Scientific Workflows in Elastic Compute Clouds”, 
Third IEEE Int'l Conf. on Cloud Computing Technology and Science 
(CloudCom’11), Athens, Greece, Nov.29-Dec.1, 2011, pp. 9-17. 

[40] F. Zhang, J. Cao, K. Li, S. U. Khand, and K. Hwang, “Multi-
Objective Scheduling of Many Tasks in Cloud Platforms”,  
Future Generation Computer Systems, 2014 (accepted and online 
publication). 

[41] Q. C. Zhao, Y. C. Ho, and Q. S. Jia. “Vector Ordinal 
Optimization”,  Journal of Optimization Theory and Applications, 
Vol. 125, No. 2, pp. 259-274, May 2005.  

AUTHORS’ BIOGRAPHIES 
Fan Zhang (SM’13) is currently a postdoctoral associate with the 
Kavli Institute for Astrophysics and Space Research at Massachusetts 
Institute of Technology. He is also a sponsored researcher in Tsinghua 
University, Beijing, China. He has been appointed as a visiting 
associate professor in the Shenzhen Institute of advanced technology, 
Chinese Academy of Science since Jan 2014.  He received his Ph.D. in 
Department of Control Science and Engineering, Tsinghua University 
in Jan. 2012.  

       From 2011 to 2013 he was a research scientist at Cloud Computing 
Laboratory, Carnegie Mellon University. An IEEE Senior Member, he 
received an Honorarium Research Funding Award from the University 
of Chicago and Argonne National Laboratory (2013), a Meritorious 
Service Award (2013) from IEEE Transactions on Service Computing, 
two IBM Ph.D. Fellowship Awards (2010 and 2011). His research 
interests include big-data scientific computing applications, simulation-
based optimization approaches, cloud computing, and novel 
programming models for streaming data applications on elastic cloud 
platforms. 

Junwei Cao (SM’05) received his Ph.D. in computer science from the 
University of Warwick, Coventry, UK, in 2001. He received his 
bachelor and master degrees in control theories and engineering in 
1998 and 1996, respectively, both from Tsinghua University, Beijing, 
China. He is currently Professor and Deputy Director of Research 
Institute of Information Technology, Tsinghua University, Beijing, 
China. He is also Director of Open Platform and Technology Division, 
Tsinghua National Laboratory for Information Science and Technology. 

       Prior to joining Tsinghua University in 2006, he was a Research 
Scientist at MIT LIGO Laboratory and NEC Laboratories Europe for 
about 5 years. He has published over 150 papers and cited by 
international scholars for over 6,000 times. He has authored or edited 6 
books. His research is focused on distributed computing technologies 
and applications. Prof. Cao is a Senior Member of the IEEE Computer 
Society and a Member of the ACM and CCF. 

Kai Hwang (F’86) is a professor of Electrical Engineering and 
Computer Science, University of Southern California. He is also an 
EMC-endowed visiting chair professor at Tsinghua University, China. 
He received the Ph.D. from University of California, Berkeley in 1972. 
His has published 8 books and 230 papers, which have been cited over 
12,000 times with a citation h-index of 49. His latest book Distributed 
and Cloud Computing (with G. Fox and J. Dongarra) was published by 
Kaufmann in 2011 which has been trnslated to Chinese in 2013.   

       An IEEE Fellow, Hwang received CFC Outstanding Achievement 
Award in 2004, the Founders Award from IEEE IPDPS-2011 and a 
Lifetim Achievemnt Award from IEEE Cloudcom-2012. He has served 
as the Editor-in-Chief of the Journal of Parallel and Distributed 
Computing for 28 years and delivered 35 keynote speeches in major 
IEEE/ACM Conferences. Presently, he serves on the editorial boards of 
IEEE Trans. on Cloud Computing and International Journal of Big 
Data Intelligence. He also co-chair the Second International Conf. on 
Big Data Science, Social Computing, and Cybersecurity held at 
Stanford University in  May 27-29, 2014. 

Keqin Li (SM’96) is a distinguished professor of computer science and 
at the Statye University of New York. He is  an Intellectual-Ventures 
endowed visiting chair professor at Tsinghua University, China. His 
research interests are mainly in design and analysis of algorithms, 
parallel and distributed computing, and computer networking. Dr. Li 
has over 245 research publications and has received several Best Paper 
Awards for his research work. He is currently on the editorial boards of 
IEEE Transactions on Parallel and Distributed Systems and IEEE 
Transactions on Computers. 

Samee U. Khan (SM’12) is an assistant professor at the North Dakota 
State University. He received his Ph.D. from the University of Texas at 
Arlington in 2007. Dr. Khan's research interests include optimization, 
robustness, and security of: cloud, grid, cluster and big data computing, 
social networks, wired and wireless networks, power systems, smart 
grids, and optical networks.. His work has appeared in over 225 
publications with two receiving best paper awards. He is a Fellow of 
the IET and a Fellow of the BCS. 

 

 11 


	——————————   (   ——————————
	1 Introduction
	2 Workflow Scheduling on Clouds
	2.1 Workflow Scheduling Model
	2.2 Simulation-based Scheduling Optimization

	3 Iterative Ordinal Optimization
	3.1 The IOO Flowchart
	3.2 Complexity Analysis
	3.3 IOO Advantages

	4 LIGO Workflow Experiments
	4.1 Experimental Settings
	4.2 LIGO Verification Workflow
	4.3 Comparative Results and Discussions

	5 Related Work
	6 Conclusions
	Acknowledgments
	References
	Authors’ Biographies

