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Abstract

This paper investigates the energy management problem in the field of energy

Internet (EI) with interdisciplinary techniques. The concept of EI has been pro-

posed for a while. However, there still exist many fundamental and technical

issues that have not been fully investigated. In this paper, a new energy reg-

ulation issue is considered based on the operational principles of EI. Multiple

targets are considered along with some constraints. Then, the practical energy

management problem is formulated as a constrained optimal control problem.

Due to its complexity, the problem considered in this paper cannot be simply

solved by conventional methods. To obtain the desired control scheme, a model

free deep reinforcement learning algorithm is applied. A practical solution is

obtained, and the feasibility as well as the performance of the proposed method

are evaluated with numerical simulations.

Keywords: Energy Internet, Energy Routers, Microgrids, Optimal Control,

Deep Reinforcement Learning

1. Introduction

As alternative to conventional fossil fuels, the demand for renewable energy

has considerably increased during the past decades. As such, investigation on

renewable power generation, e.g, solar power and wind power have attracted

much attention [1, 2]. Although renewable energy sources (RESs) have ad-

vantages including sustainable and environmental friendly, they have inherent

defects such as nonlinear, intermittent and stochastic [3, 4]. On the other hand,
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microgrids (MGs) have been viewed as a solution to the challenges facing tra-

ditional power systems [5, 6]. When vast distributed RESs are utilized in MGs,

it is difficult to achieve a reliable power balance in MGs (especially the isolated

ones), if without proper regulation; see, e.g., [7–10].

In recent years, to solve the aforementioned challenges, research emphasis

has been directed towards the development of energy Internet (EI) which was

first proposed in [11]. Inspired by the core of Internet, the EI treats MGs as

infrastructures at the end of future energy systems, allowing the access of large

amounts of distributed energy resources (DERs) [12, 13]. In [14], it is pointed

out that EI can be viewed as the upgraded version of the smart grid. A variety of

networking topology of EI has been introduced in [15]. Within the scope of EI,

multiple MGs are interconnected via energy routers (ERs) [16, 17], also known

as energy hubs [18], or power routers [19]. In this fashion, energy exchange can

be realized via the interconnected MGs, and the capacity of their energy storage

(ES) devices can be shared, such that power generation-consumption balance for

the whole EI scenario can be achieved. According to [12–15], the basic energy

management principle in EI is that autonomous power balance in single MG

should be achieved with priority. If local MG’s power balance is difficult to be

achieved, then energy exchange in wide area network shall be implemented.

In the field of EI, research on energy control strategies has attracted much

attention and significant advances on this topic have been made; see, e.g., [20]-

[23]. In [20], voltage regulation issue for one DC MG in EI scenario has been

transformed into a non-fragile robust H∞ control problem. Besides, in the field

of EI, H∞ control theory has been applied to regulate the frequency deviations

in AC MGs [21]. A class of distributed coordinated control algorithm for EI

has been proposed in [22]. A graph theory based energy routing algorithm in

EI has been studied in [23].

It is notable that most of the control problems in power systems are solved

based on explicit mathematical models of various electrical devices. For ex-

ample, ordinary differential equations (ODEs) are used to represent the power

dynamics of photovoltaic (PV) units and wind turbine generators (WTGs) and
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loads in e.g., [4, 9, 24, 25], while stochastic differential equations (SDEs) [26] are

used to represent the power dynamics of RESs and loads in e.g., [10, 20, 21, 27].

Although the SDEs can reflect the stochastic nature of the DERs, it is difficult

for engineers to obtain their accurate mathematical models. It is notable that

in order to represent power dynamics for a relatively long time period (for ex-

ample, one day), a mathematical model with complicated differential equations

shall be established, which is somehow restrictive. In this sense, finding a series

of mathematical models for the power of DERs in EI is time-consuming as well

as costly.

On the other hand, the applications of artificial intelligence on power sys-

tems has been popular in the past decade. The electricity forecasting is one

of the most important issues for EI. There are already a number of literatures

on the electricity forecasting for PVs, WTGs, loads, etc.; see, e.g., [28–30]. To

illustrate, neural networks are used for the power modeling of PVs and loads

in [28] and [29], respectively. Based on extreme learning machine and improved

gravitational search algorithm, a novel short-term load forecasting method has

been proposed in [30]. Besides, for the application of reinforcement learning

into residential load control, readers can refer to [31]. A novel distributed en-

ergy management approach based on deep learning algorithm has been reported

in [32]. Since the estimation performance of the advanced methods in these re-

search outputs are satisfactory and most of these techniques are practical, it is

feasible to design control schemes for the EI system based on the power forecast

results.

In this paper, the energy management problem for a typical scenario of

EI is investigated. A generalized EI scenario is considered, in which multiple

MGs are interconnected via ERs. Each MG is assumed to consist of PV units,

WTGs, micro-turbines (MTs), diesel engine generators (DEGs), battery energy

storage (BES) devices and loads. Historical data from [33] are used as the

forecast results for power of PVs, WTGs, and loads for simplicity. Based on

the energy management principle of EI, the desired targets for optimal energy

management are formulated as cost functions mathematically. Next, a series of
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penalty functions are formulated. Besides, some constraints for the optimization

problem are introduced. Next, the energy management issue considered in this

paper is formulated as an optimal control problem.

Generally, the Hamilton-Jaccobi-Bellman (HJB) equation is used to find the

solution to the continuous/discrete time optimal control problem [34]. For the

discrete time system, it is usually called Bellman equation. There have been

many algorithms for the optimal control problem based on Bellman equation; see

e.g., [35, 36]. However, these methods cannot be applied to solve the optimal

control problem formulated in this paper, the reasons of which are analysed

below.

Firstly, most of the existing solutions to the HJB equations adopt “grid

based” methods, which means that they rely on the discretization of action space

and state space. As a result, these methods suffer from the “curse of dimension-

ality”. The computation and storage complexities increase exponentially with

the growth of the dimensions of action space and state space. Although there

are a few approaches providing polynomial-time solutions [37], they may rely on

some specified property of the problem. In this paper, the considered EI system

is rather complex. There is no system modelling for the power of PVs, WTGs,

and loads. Their power dynamics are just assumed to be time series data ob-

tained from proper electricity estimation techniques. Hence, there is no explicit

formula for these time series. Thus, the conventional methods mentioned above

cannot be applied in this paper.

With the development of the reinforcement learning theory and algorithm,

the solvability to a general optimal control problem becomes possible. In this

paper, we convert our considered optimal control issue into a reinforcement

learning problem which can be solved by the A3C algorithm [38] The importance

and contribution of this paper can be highlighted as follows.

• Optimal energy management strategies are considered for a generalized

EI system, allowing for a variety of optimization targets. The considered

objectives include the transmission loss for ERs, power generation cost
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for MTs and DEGs, and lifetime extension for BES devices. Different

kinds of trade-off between these objectives can be achieved by adjusting

their weighting factors. It is notable that the above targets have not been

considered simultaneously in EI scenarios.

• By intelligently scheduling the energy flow of multiple MGs and ERs, the

power supply-demand balance is realized not only in each individual MG,

but also in the entire EI system, such that the customers can benefit from

the guaranteed reliable power supply.

• The power of PVs, WTGs and loads are represented with data directly,

based on which, a new energy optimization problem is considered. A

model free approach is applied to solve the problem. In this sense, the

system modelling error is successfully avoided, thus making the obtained

control strategies more reliable.

• When formulating the cost functions, a class of penalty functions are con-

sidered for the constraints of the EI system. The rational utilization of

MTs, DEGs, ERs and BES devices are considered. In this sense, the en-

ergy management approach proposed in this paper is of both theoretical

complexity and practical usefulness.

• In this paper, we consider control problems among cross disciplinary sub-

jects, including mathematics, computer sciences and smart grids. Since

the formulated problem is complicated, in the sense that it cannot be

effectively solved by conventional methods, e.g., particle swarm optimiza-

tion (PSO) [39], genetic algorithm (GA) [40], simulate anneal arithmetic

(SAA) [41], etc., we apply the new deep reinforcement learning approach

to solve the synthetical optimal control problem. The most recent A3C

algorithm is applied to achieve the target. The simulation results show

the effectiveness of the proposed method.

The rest of this paper is organized as follows: Section 2 introduces the EI

system modelling. The optimal control problem formulation is introduced in
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Section 3. In Section 4, solution to the energy management issue is provided.

Numerical examples are illustrated in Section 5. Finally, Section 6 concludes

the paper.

2. System modelling

As is shown in Figure 1, the EI network is assumed to be disconnected with

the power utility. Each MG in the considered EI system is interconnected via

ERs. Each ER in the system is able to exchange electric power with other ERs

through the power transmission lines. All of the MGs are assumed to consist

of the same components, including PVs, WTGs, MTs, DEGs, BES devices and

loads. The structure of such MG is presented in Figure 2.

ER1

MG1

...

...

...

...ER2

ER3

ER4

ER6

ER5

ER7

MG2

MG3

MG4

MG6

MG5

MG7

Figure 1: EI topology

In this paper, historical data from [33] are used as the power forecast results

of PVs, WTGs and loads. These data are sampled at 1/60 Hz, so the power

of PVs, WTGs and loads in the MGs are represented with discrete time series

with time step of 1 minute.

Suppose that there are totally N MGs and N ERs in the considered EI

system. The subscripts of ERs belong to the set V = {1, 2, . . . , N}. We denote
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Figure 2: MG topology

the ith MG as MGi, i ∈ V and denote the ER tied to MGi as ERi, i ∈ V . The

set of the connections among ERs is denoted as E. We have

E = {(i, j)|ERi ↔ ERj , i, j ∈ V },

where↔ means that ERi and ERj are interconnected. Thus, the total number

of the connections is 1
2 |E|. In this section, time t in the power of DERs and

ERs is omitted for notation simplicity. For every two ERs, ERi and ERj in

the system, the energy transmitted from ERi to ERj is denoted as PERi,j . With

these notations, we have

PERi,j = −PERj,i , i, j ∈ V,

PERi,j = 0, (i, j) /∈ E,

PERi,i = 0, i ∈ V,

where PERi,j ≥ 0 means that the energy is transmitted from ERi to ERj , and

vice versa.

In real power systems, the capacities of power transmission lines are affected

by a variety of factors, e.g., length of the line, temperature [42, 43]. Hence, there

exist an upper bound for the power transmitted through a power transmission
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line. We denote such upper bound for the transmission line between MGi and

MGj as UERi,j . Apparently, UERi,j = UERj.i , and (1) is established.

0 ≤
∣∣PERi,j ∣∣ ≤ UERi,j , i, j ∈ V. (1)

Here, the |·| stands for the absolute value function.

The power of PVs, WTGs and loads are considered to be uncontrollable,

but could be forecasted with a certain degree of accuracy. In MGi, the power

forecast results for PVs, WTGs, and loads are denoted as PPVi , PWTG
i and PLi ,

respectively. The sum of the power for these uncontrollable components are

denoted as PUCi which is assumed to be obtained by

PUCi = PLi − PPVi − PWTG
i + PEi ,

where PEi is a scalar Weiner process [26]. Due to the stochastic and uncertain

nature of PVs, WTGs and loads, there is no doubt that PUCi has similar stochas-

tic characteristics. The Weiner process PEi is used to represent such character.

We denote the output power of MTs, DEGs, and the power transmitted to ERi

as PMT
i , PDEGi and PERi , respectively. According to the notations for PERi,j , we

have

PERi =
∑
j∈V

PERj,i ,

where PERi ≥ 0 corresponds to the situation that MGi absorbs energy from

other MGs; PERi ≤ 0 means that MGi transmits energy to other MGs.

In each MG, the output power of MTs and DEGs is controlled by the EI

system manager. Usually the control decisions are generated according to the

system states and the pre-set control schemes. Generally, both MTs and DEGs

have their maximum output power. For output power of MTs and DEGs in

MGi, the following constraints are applied,

0 ≤ PMT
i ≤ UMT

i , i ∈ V,

0 ≤ PDEGi ≤ UDEGi , i ∈ V,
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where UMT
i and UDEGi are the upper bounds for power of MTs and DEGs,

respectively.

The charge/discharge power and state of charge (SOC) for BES devices in

MGi are denoted as PBESi and SOCi. The BES devices are used to balance the

power generation and consumption in MGs, which means that BES devices can

passively absorb the power deviations in MGs. It might happen that instant

power deviation in a MG is too large for the BES devices. In order to protect

BES devices from being damaged, their maximum charge/discharge power is

restricted. Meanwhile, the SOC should also be maintained within a proper

range. The running constraints for BES devices are given by

0 ≤
∣∣PBESi

∣∣ ≤ UBESi , i ∈ V,

LSOCi ≤ SOCi ≤ USOCi , i ∈ V,

where UBESi is the maximum allowed charge/discharge power for BES devices;

LSOCi and USOCi are the lower and upper bounds for SOC, respectively.

Since the maximum charge/discharge power of BES devices is restricted, an

inappropriate control policy may lead to the unbalanced supply-demand power

in one MG, although BES devices have been fully utilized. To deal with such

problem, the slack variable PUBi is introduced in (2).

PBESi = PUCi − PERi − PMT
i − PDEGi − PUBi . (2)

The slack variable PUBi is obtained with the following formula,

PUBi =


0, |∆P i| ≤ UBESi ,

∆P i − UBESi , ∆P i ≥ UBESi ,

∆P i + UBESi , ∆P i ≤ −UBESi ,

where ∆P i = PUCi − PERi − PMT
i − PDEGi . During the operation of the MG

system, PUBi should be kept to be zero, such that the unbalanced power devi-

ations in MGs could be absorbed by BES devices completely. In this sense, an

autonomous operation of MG in EI can be achieved.
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According to [44], the dynamics of SOC are given in (3),

˙SOCi = −ηiPBESi /Qi, (3)

where Qi is the capacity of BES devices; ηi is the charge/discharge coefficient

for BES devices and it is defined in (4).

ηi ,

 ηini , PBESi ≤ 0,

1/ηouti , PBESi ≥ 0.
(4)

The coefficients ηini and ηouti in (4) are related to the charge/discharge efficiency

of BES devices.

In addition to the constraints for the components in MGs mentioned above,

when the power deviation could be eliminated within one MG (i.e., autonomous

operation of such single MG is achieved), it is unnecessary to exchange energy

with other MGs based on the energy management principle of EI [14]. Typically,

if one of the cases in (5) and (6) is satisfied, MGi has the ability to absorb its

inside power fluctuations. Thus, the action to dispatch energy from other MGs

for MGi would be unwise and should be avoided.

Case 1 :


SOCi ≥ LSOCi ,

0 ≤ PUCi ≤ UMT
i + UDEGi + UBESi ,

PERi ≥ 0,

(5)

and

Case 2 :


SOCi ≤ USOCi ,

−UBESi ≤ PUCi ≤ 0,

PERi ≤ 0.

(6)

3. Problem formulation

In this section, several types of cost for the operation of EI system is intro-

duced. Some related penalty functions are designed. After that, the optimal

control problem for the considered EI system under the constraints is formu-

lated.
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Let us denote the state space and action space of the considered system as

S and A, respectively. At each time step t, the state variable s(t) ∈ S of the

considered EI system consists of PUCi , PBESi , PUBi , SOCi, (i ∈ V ) and t.

Let

sUC(t) =
[
PUC1 (t), . . . , PUCi (t), . . . , PUCN (t)

]′
,

sBES(t) =
[
PBES1 (t), . . . , PBESi (t), . . . , PBESN (t)

]′
,

sUB(t) =
[
PUB1 (t), . . . , PUBi (t), . . . , PUBN (t)

]′
,

sSOC(t) = [SOC1(t), . . . , SOCi(t), . . . , SOCN (t)]
′
.

Denote

s(t) =
[
sUC(t)

′
, sBES(t)

′
, sUB(t)

′
, sSOC(t)

′
, t
]′
. (7)

The controllable components are the power of ERs, MTs and DEGs.

Let

aER(t) =
[
PER1,1 (t), . . . , PERi,j (t), . . . , PERN,N (t)

]′
,

aMT (t) =
[
PMT
1 (t), . . . , PMT

i (t), . . . , PMT
N (t)

]′
,

aDEG(t) =
[
PDEG1 (t), . . . , PDEGi (t), . . . , PDEGN (t)

]′
,

Then, the controller a(t) ∈ A can be formulated as

a(t) =
[
aER(t)

′
, aMT (t)

′
, aDEG(t)

′]′
. (8)

The initial state at t0 is denoted as s0. At each time step t, the controller

a(t) is obtained from a control scheme u(s(t), t) ∈ U and the system state s(t).

3.1. Cost function for the EI system

The operation of the EI system during time interval t ∈ [0, T ] is considered.

Since the power estimations for PVs, WTGs and loads in this paper are discrete

time series, the EI system is studied in a discretization fashion. Suppose that

there are M +1 estimation data during [0, T ], the time range is then discretized

to be M + 1 time steps, i.e., t0, t1, . . . , tM . The length between every two time

steps is set to be ∆t = tk+1 − tk = T/(M + 1), k = 0, 1, . . . ,M .
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Firstly, the cost for power transmission between MGs are considered. In real-

world power systems, transmission loss always occurs due to the long-distance

power transmission and electrical conversions in converters [45, 46]. Thus, the

following relationships are established.

CERi.j = CERj,i , i, j ∈ V,

CERi,i = 0, i ∈ V,

where CERi,j is the transmission loss coefficient for the power line between ERi

and ERj . In the field of EI, the transmission loss can be measured with the

power of the related ER, and the cost for energy transmission from time step tk

to tk+1 can be described by

∆JER(tk) =
1

2

∑
(i,j)∈E

CERi.j
∣∣PERi,j (tk)

∣∣∆t.
Noted that since the same transmission loss is calculated twice in the summation

above, 1
2 is used to modify the result. Let us denote JER as the total cost for

ERs within [0, T ]. Then, we have

JER =

M∑
k=0

∆JER(tk). (9)

Apart from the cost of power transmission, the remarkable operation cost

brought by MTs and DEGs are also worth considering. During the normal

operation of the EI system, output power of MTs and DEGs can be properly

controlled to meet the power demand. If irrational control schemes are applied,

for example, in any MG, if power generation by PV units and WTGs is already

enough for power consumption, and MTs and DEGs are still producing power

consistently, then such status would significantly increase the operation cost of

the EI system. Here, we assume that such cost is proportion to the output

power of MTs and DEGs. From time step tk to tk+1, the cost of generators can

be measured by

∆JG(tk) =
∑
i∈V

(CMT
i PMT

i (tk) + CDEGi PDEGi (tk))∆t,
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where CMT
i and CDEGi are constant coefficients for MTs and DEGs in MGi,

and they are related to the price of fuels and other concerned factors. The total

cost of generators in the considered time period is given in (10).

JG =

M∑
k=0

∆JG(tk). (10)

According to [47, 48], the lifetime of BES devices could be measured by the

Puekert lifetime energy throughput (PLET) model. The battery lifetime energy

throughput cPLET in the PLET model is defined as

cPLET , (1− s)kP n,

where s is SOC of BES devices; kP is the Peukert lifetime constant and it is

usually within the range [1.1, 1.3]; n is the total number of battery cycles. As is

introduced in [47], for any specified lower bound for SOC in the charge/discharge

cycle of BES devices, the total cPLET , which is denoted as CPLET , for given

BES devices is nearly constant. So, it can be used as a criteria for the lifetime

of BES devices. Since kP is close to 1, approximation formula for the reduction

of cPLET during a charge/discharge process of BES devices is derived based on

[47] as follows:

∆cPLET =

(∑
i

∆si

)kP
≈
∑
i

∆si
kP ,

where ∆si is the SOC change in a short time period. Thus, the reduction for

cPLET of BES devices at time t can be approximated with

∆cPLET (t) = |∆s(t)|kP .

We denote the total Peukert lifetime throughput and Peukert lifetime constant

of the BES devices in MGi as CPLETi and kPi , respectively. The loss of lifetime

of BES devices, denoted as ∆Li, in MGi during the considered time period is

13



formulated in (11).

∆Li =
∆cPLETi

CPLETi

=

M∑
k=1

∆cPLETi (tk)/CPLETi

=

M∑
k=1

|SOCi(tk)− SOCi(tk−1)|k
P
i /CPLETi , (11)

To obtain the cost function for BES devices, the dynamics of the SOC in MGi

is rewritten in the discretization form in (12).

SOCi(tk) = SOCi(tk−1)− ηiPBESi (tk−1)∆t/Qi. (12)

With (11) and (12), the cost for BES devices from tk−1 to tk is formulated

in (13).

∆JBES(tk) =
∑
i∈V
|SOCi(tk)− SOCi(tk−1)|k

P
i /CPLETi

=
ηi
kPi

Qi
kPi CPLETi

∑
i∈V

(
∣∣PBESi (tk−1)

∣∣∆t)kPi . (13)

So, the objective function for BES lifetime extension can be calculated from (14).

JBES =

M∑
k=0

∆JBES(tk). (14)

3.2. Penalty functions

In order that the constraints considered for the system in Section 2 hold

during the operation of the EI system, a series of penalty functions are required

to be formulated as follows.

Given the power of PVs, WTGs, DEGs, MTs, ERs, BES devices, loads, and

SOC of BES devices at time step tk, penalty functions are used to represent the

constraints for the EI system. When all of the constraints hold, all of the penalty

function are set to be zero. Whereas when there is one or more constraints been

violated, the corresponding penalty functions will be assigned with a positive
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value. To simplify the formulas, the characteristic function is employed. The

characteristic function I(x) is defined as

I(x) ,

 1, if x is true,

0, if x is false,

where x is a logical expression.

For the constraints of ERs, the penalty function φER(tk) is formulated as

φER(tk) =
1

2

∑
(i,j)∈E

∆ER
i,j (tk)I(∆ER

i,j (tk) ≥ 0),

where

∆ER
i,j (tk) =

∣∣PERi,j (tk)
∣∣− UERi,j .

For the constraints of MTs and DEGs, we set two penalty functions φG(tk)

and φdG(tk). Here, φG(tk) is used to restrict the output power of MTs and

DEGs, and φdG(tk) is used to avoid the over-control of MTs and DEGs. Let

φG(tk) =
∑
i∈V

∆MT
i (tk)I(∆MT

i (tk) ≥ 0) + ∆DEG
i (tk)I(∆DEG

i (tk) ≥ 0),

φdG(tk) =
∑
i∈V

∆PMT
i (tk)I(∆PMT

i (tk) ≥ 0) + ∆PDEGi (tk)I(∆PDEGi (tk) ≥ 0),

in which

∆MT
i (tk) =PMT

i (tk)− UMT
i ,

∆DEG
i (tk) =PDEGi (tk)− UDEGi ,

∆PMT
i (tk) =

∣∣PMT
i (tk)− PMT

i (tk−1)
∣∣− VMT

i ,

∆PDEGi (tk) =
∣∣PDEGi (tk)− PDEGi (tk−1)

∣∣− V DEGi ,

where VMT
i and V DEGi are the upper bounds for the output power change

of MTs and DEGs between two adjacent time steps, respectively. With such

penalty for the power fluctuations of MTs and DEGs, the policies that may lead

to over-control shall not be regarded as optimal.
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For the constraints of BES devices, let us set penalty functions

φBES(tk) =
∑
i∈V

∆BES
i (tk)I(∆BES

i (tk) ≥ 0) + ∆UB
i (tk),

φSOCtk
=
∑
i∈V

I(SOCi ≤ LSOCi ) + I(SOCi ≥ USOCi ),

where

∆BES
i (tk) =

∣∣PBESi (tk)
∣∣− UBESi ,

∆UB
i (tk) =

∣∣PUBi (tk)
∣∣.

For the basic energy management principle of EI introduced in Section 1, let

us set penalty functions

φEI(tk) =
∑
i∈V
−PERi I(PERi ≤ 0)C1 + PERi I(PERi ≥ 0)C2,

where

C1 =I(SOCi ≥ LSOCi )I(0 ≤ PUCi (tk) ≤ UMT
i + UDEGi + UBESi ),

C2 =I(SOCi ≤ UBSOCi )I(PUCi (tk) ≤ 0)I(PUCi (tk) + UBESi ≥ 0).

For the simplicity of the problem, all of the above penalty functions are

summed with different weight factors, and the combined penalty function for

the EI system at time step tk is

φ(tk) =εERφ
ER(tk) + εGφ

G(tk) + εdGφ
dG(tk) + εBESφ

BES(tk)

+ εSOCφ
SOC(tk) + εEIφ

EI(tk),

where εER, εG, εdG, εBES , εSOC , εEI are weight factors for different penalty func-

tions.

The penalty function for the considered time period is then calculated as

Φ =

M∑
k=0

φ(tk)∆t. (15)

Any control scheme that causes the violation of these constraints will lead to

a nonzero value of (15). In other words, if the penalty function during the

considered period is minimized, then no constraint is violated.
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3.3. Optimal control problem with constrains

For the energy management issue of the considered EI system, all of the costs

derived in (9), (10) and (14) need to be taken into consideration. To achieve

the trade-off of these costs, the cost function to be minimized is formulated as

their weighted sum, given as follows,

J = αERJER + αGJG + αBESJBES , (16)

where scalars αER, αG and αBES are the weight coefficients. By properly

adjusting the weight coefficients in (16), different optimal objectives can be

achieved. For example, if we set αER to be significantly larger than the rest two

coefficients, the optimal control scheme would emphasize to reduce the amount

of energy exchange among MGs. If JBES is emphasized, the optimal control

policy would rely more on ERs to absorb power deviations in the considered EI

system.

Our goal is to find the optimal control scheme u∗(s(t), t), such that the sum

of cost function (16) and the penalty function (15) is minimized. In this sense,

the optimal control problem can be rewritten as (time t omitted)

min
u∈U

E[J + Φ],

subject to s(t0) = s0,
(17)

where E is the mathematical expectation. Due to the stochastic character of

PUCi , both J and φ are stochastic processes. So, the expectation operator is

used here.

4. Solution to the optimal control problem

Instead of solving the Bellman equation directly, there are several solvable

methods for the HJB/Bellman equation; see, e.g., [35, 36]. They are able to

deal with systems similar as (17). However, almost all of these solutions use

“grid based” methods [35, 36] which means that they rely on the discretization

of action space and state space. As a result, these methods suffer from the
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“curse of dimensionality” when the dimension of action space and state space

becomes larger [37]. For the considered EI system, the dimension of action space

is 2|V |+ |E| and the dimension of the state space is 4|V |+1. In real scenarios of

EI, since there may exist a number of MGs, it is obvious that these grid based

approaches are not applicable for EI systems.

Meanwhile, in this paper, a set of constraints are set for the considered

EI system. These constraints make it even harder to obtain solutions with

conventional methods. Fortunately, with the help of deep reinforcement learning

approach, it is possible to obtain practical solutions for our problem. Noted

that not all reinforcement learning techniques can be applied to our considered

optimal control problem. The value based approaches will suffer from the curse

of dimensionality, due to the continuous action space. In this paper, the cutting-

edge reinforcement learning technique named asynchronous actor-critic agents

(A3C) [38] is employed to find solutions to (17).

4.1. Converting optimal control problem to reinforcement learning problem

Here, we convert the optimal control problem into a suitable form for the

reinforcement learning issue. In a reinforcement learning problem, there are an

agent and an environment. The agent interacts with the environment based on

certain control policy and the state observed from the environment. At each

time, a reward is provided to the agent as the feedback for the action taken by

the agent. By exploring the action space A, the agent learns the optimal control

policy that maximizes the total reward.

In this paper, the EI system is the environment for the agent. The agent is

assumed to control the power of ERs, MTs, and DEGs in MGs. At time step

tk ∈ [0, T ], the environment provides the system state to the agent. The agent

generates action a(tk) based on its control policy π and the observed system

state s(tk). According to the EI system modelling, the sum of the uncontrollable

components PUCi in MGi is a stochastic process. Other components in the state

variable are deterministic variables. Since the scalar Weiner process PEi in PUCi

has Markov property, the transition probability from s(tk−1) to s(tk) is only
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related to the action a(tk−1) and s(tk−1), as is described in (18).

Pa(s, s′) = P{s(tk) = s′|s(tk−1) = s, a(tk−1) = a)}, s, s′ ∈ S, a ∈ A. (18)

From tk to tM , the total reward Rtk is

Rtk =

M∑
i=0

γir(ti+k), (19)

where γ ∈ [0, 1] is the attenuation coefficient; r(ti+k) is the reward for the state

transition from s(tk−1) to s(tk) with action a(tk), and

r(ti+k) = ra(tk)(s(tk), s(tk−1)).

Given a policy π, the value function of for state s at time step tk is

V π(s(tk)) = E[Rtk |s(tk) = s].

The target for the agent is to find the optimal control policy π∗ that maximizes

V π
∗
(s0, t0).

In this paper, the attenuation coefficient γ is set to be 1, such that the

rewards can directly correspond to the target J + Φ in (17). The design for the

reward at each time step is demonstrated as follows.

Based on the costs and penalty functions formulated in Section 3, the reward

at time step tk is derived as

rtk = −αER∆JER(tk)− αG∆JG(tk)− αBES∆JBES(tk)− φ(tk)∆t.

Thus, the following relationship is established,

V π(s(t0)) = −E[J + φ].

The optimal controller u∗ for (17) is equivalent to the optimal policy π∗ that

maximizes V π(s(t0)).

Now, the discrete time EI system is described with a Markov decision pro-

cess [49] (S,A, P·(·, ·), r·(·, ·), γ). It can be solved with the reinforcement learning

approaches [50].
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4.2. A3C algorithm and network structure

In the A3C algorithm, the actor-critic architecture is applied. The value

function V π(s(tk)) is estimated with a neural network “critic”. The control

policy π is approximated with another neural network “actor”. To capture the

potential temporal features, recurrent neural network (RNN) [51] is constructed

as the first layer of the whole network. As is shown in Figure 3, the normalized

state s(t) is fed as the input of the RNN layer, and the output of this layer is

assigned to the critic and actor networks simultaneously. The critic network

consists of two full connection layers. The output is a scalar which is denoted

as v(s(t); θc). Similar as the critic network, the actor network has two full

connection layers. For better exploration performance, Gaussian policy [52] is

used to obtain the controller at each time. Thus, there are two outputs of the

actor network. One is the mean value of the action µ(s(t); θa), and the other is

the standard variance of the action σ(s(t); θa). The action a(t) is sampled from

the normal distribution N (µ(s(t)), σ2(s(t)); θa). Here, θc and θa are parameters

of the two neural networks.

μ σ v
a(t)

s(t)

Environment

R(t)

200

128

150

120 120

150

200 200

150

120

Na 1Na

relu
softplus
tanh

Output

Dense3

Dense2

Dense1

RNN

Input

ac
tio
n

state
reward

Figure 3: network structure

According to [38], the gradients for the critic and actor networks are calcu-
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lated with

∂

∂θc
(Rt|s(t)− v(s(t); θc))

2,

and

∇θa logP{a(t)|s(t); θa}(Rt|s(t)− v(s(t); θc)).

During the training, there are multiple threads running asynchronously. In

each thread, the network in Figure 3 is constructed and used to generate the

controller at each time step. The states of the environments in different threads

are updated independently. Meanwhile, a global network is maintained. Once

a thread collects a series data of n steps, the parameters of the global network

are updated with these data. After that, the parameters of the network in

the same thread will sync with the global network. By training in this way,

the correlation between the training data is eliminated. Thus, the “replay”

technique is unnecessary and the training process is more efficient.

By applying the A3C algorithm in the training of the neural network de-

signed in Figure 3, the intelligent controller for the EI system can be contained

finally. Given an observation of the EI system, the network will generate corre-

sponding controller to achieve an intelligent operation.

5. Simulation

In this section, the effectiveness of the proposed energy management strate-

gies for EI system is evaluated. Although the sub-optimal solutions to our opti-

mal control problem could be found by some heuristic algorithms, e.g., particle

swarm optimization (PSO) [39], genetic algorithm (GA) [40], simulate anneal

arithmetic (SAA) [41], etc., due to the large search space, it will be difficult

to find an appropriate solution to the energy management problem with these

conventional methods. Besides, in this paper, the constraints for real EI system

is formulated as penalty functions, which will essentially lead to the failure of

these heuristic algorithms. Thus, only the feasibility of the proposed control

method is evaluated in this section.
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Without of loss of generality, the numerical simulation is carried out on a

network consists of four MGs and four ERs. The topology of the investigated

system is shown in Figure 4 where MG1 is interconnected with MG2; MG2 is

interconnected with MG1, MG3, and MG4; MG3 and MG4 are interconnected

with each other. As is mentioned in Section 2, all of these MGs are assumed

to consist of similar components. In case of equipment damage, we assume

that MTs and DEGs in MG4 are out of order. Thus, the realization of power

balance in MG4 would rely heavily on power exchange via ERs. According to

[21], such EI topology can be extended to a generalized EI scenario without

essential difficulty.

ER1

MG1

ER2

ER3

ER4

MG2

MG3

MG4

Figure 4: simulation-EI-topology

The simulation time period is set to be one day, e.g., t ∈ [0, 24] (time unit

hour omitted). The data used as the power forecast results for PVs, WTGs and

loads are generated from [33]. The parameters for the simulation are given in

Table 1.

By training the neural network with A3C algorithm [38], the intelligent con-

trol scheme for the EI network considered in this section is obtained. The curves

for power flow of ERs are plotted in Figure 5. The detailed power dynamics of

MG1, MG2, MG3 and MG4 are presented in Figure 6, Figure 7, Figure 8 and
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Parameters Value Parameters Value

UERi,j , i, j = 1, 2, 3, 4 2000(kW) UMT
i , i = 1, 2, 3, 4 900(kW)

UDEGi , i = 1, 2, 3, 4 800 (kW) UBESi , i = 1, 2, 3, 4 600(kW)

VMT
i , i = 1, 2, 3, 4 20(kW) V DEGi , i = 1, 2, 3, 4 30(kW)

LSOCi , i = 1, 2, 3, 4 0.2 USOCi , i = 1, 2, 3, 4 0.8

ηini , i = 1, 2, 3, 4 0.96 ηouti , i = 1, 2, 3, 4 0.97

CMT
i , i = 1, 2, 3, 4 0.004 CDEGi , i = 1, 2, 3, 4 0.005

CER1,2 0.24 CER2,3 0.23

CER2,4 0.31 CER3,4 0.15

CPLET1 23 CPLET2 23

CPLET3 23 CPLET4 23

Q1 80(kWh) Q2 40(kWh)

Q3 55(kWh) Q4 50(kWh)

kPi 1.075 αER 3.6

αG 0.7 αBES 0.1

εER 3.0 εG 3.0

εdG 3.0 εBES 3.0

εSOC 3.0 εEI 1.0

Table 1: Parameters

Figure 9, respectively.

From Figure 6, the SOC of BES devices is properly maintained within the

lower bound and upper bound set in Table 1. It is notable that within the time

period [0, 12], MG1 is able to achieve power balance without exchanging energy

with the energy routing network. During time period [12, 18], the output power

of PVs grows rapidly with the increasing solar irradiation. In order that the

SOC of BES devices does not exceed the upper bound USOC1 , MG1 transmits

the redundant energy to the energy routing network. Thus, there is a trough in

the power curve of PER1 in such period.

In MG2, it is assumed that the local loads require a plenty of electric power.
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Figure 6: Power dynamics of MG1

To compensate such power consumption, the output power of MTs and DEGs

shall be controlled at a high level, as is shown in Figure 7. In order to protect

the BES devices as well as to consume energy shared by other MGs, energy is

transmitted to MG2 consistently via the energy routing network. According to

Figure 8, abundant power is generated by PVs and WTGs in MG3. Since the
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Figure 7: Power dynamics of MG2

capacity of BES devices is limited, MG3 would share more power to the energy

routing network, as is presented in Figure 5.
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Figure 8: Power dynamics of MG3

The dynamics of MG4 is illustrated in Figure 9 where we find that ERs play

an important role for MG4 operation. In the considered time period, although

the MTs and DEGs in MG4 are not able to function normally, with the help of
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Figure 9: Power dynamics of MG4

the ER network, the power balance is still achieved in MG4, and the SOC of

BES devices has been kept in a proper range.

Based on the simulation result, the feasibility and effectiveness of the ob-

tained controller is evaluated. The advantages of the EI system in which MGs

in different areas are interconnected via ERs are demonstrated. Since the situ-

ations in different MGs are diverse, the energy routing network can fully utilize

the available resources and capacities in the EI system and provide more reliable

power supply.

6. Conclusion

In this paper, the energy management issue for a generalized EI system

is investigated. The deep reinforcement learning approach is applied to solve

such control problem. The simulation results shows the effectiveness of the

proposed method. In the future, it is also important to develop distributed

control schemes for EI scenarios, such that the energy management strategies

for the whole system would become more flexible and robust.
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