NDSS: A Named Data Storage System

Shuo Chen, Junwei Cao*

Research Institute of Information Technology
Tsinghua National Laboratory for
Information Science and Technology
Tsinghua University, Beijing 100084, China
*jcao@tsinghua.edu.cn
Lipeng Zhu
Smart Grid Institute of State Grid Corporation of China
Nanjing 210003, China
zhulipeng @sgri.sgcc.com.cn

Abstract—NDSS (Named Data Storage System) is an architec-
ture of distributed storage system which integrates local storage
and networking with named data design. In traditional cloud and
network storage system, local storage system and networking
are separately designed. Storage data and network packet are
encoded in different descriptions. NDSS is proposed to integrate
the data description in both storage and network to reduce the
overhead in data format transition and to provide new method for
data operations. In this paper, the architecture and system design
are proposed. Initial implementation design is also demonstrated
based on Named Data Networking (NDN). The performance and
functional comparison are conducted conceptually to show the
advantages of NDSS.

Keywords-Network Storage; Named Data Networking

I. INTRODUCTION

The volume of network storage grows dramatically in this
big data era. Many cloud and network storage solutions have
been released, such as Google File System [1], Amazon S3!,
and Hadoop HDFS?. The architecture of large volume storage
has transferred from Network Attached Storage and Storage
Area Network architecture to large distributed file system
working on commodity server and network device like GFS
and HDFS. HDFS is reviewed for example. The basic storage
unit of HDFS is data block. Data blocks are directly stored in
file system on local machines. The meta data of data blocks
are all managed by central nodes. Data block requests are
transmitted through TCP/IP network, operated on local file
system and also responsed through network. There is data
description reinterpretation between network and local file
system.

In [2], the layering architecture of application and network
is reviewed. The performance of UNIX protocol stack and
ISODE implementation of OSI upper layer application is
evaluated. 97% of the total protocol stack overhead is attribute
to the network data presentation function.

Named Data Storage System (NDSS) is proposed in this
paper. The major contribution of NDSS is to integrate network
and local storage data description with named data. Named

' Amazon S3: http:/aws.amazon.com/s3/
2HDFS: http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

data of network is not a new concept. Named data networking
(NDN) is a clean-slate methodology compared to TCP/IP ar-
chitecture. The network packets are not identified by the source
or destination address, but hierarchically structured names in
NDN. NDSS adopts named data to describe both network
packet and local storage data and keeps the mapping between
network or local storage location and uniform name of data.
This is the conceptual approach of NDSS to integrate network
and storage. An implementation design is also proposed based
on NDN Forwarding Daemon (NFD) [3].

The rest of paper is organized as follows. Section II intro-
duces the background of named data networking and storage.
Section III demonstrates the architecture design of NDSS.
Section IV introduces the implementation design of NDSS.
Section V analyses the function and performance. Finally,
section VI concludes the paper and addresses the future work.

II. BACKGROUND
A. Named Data Networking

Named Data Networking (NDN) [4] [5] is a clean-slate data-
oriented architecture different from TCP/IP. The key element
of TCP/IP architecture success is the simple, universal network
layer (IP) which realizes the global connections and supports
most of the network functions. NDN also adopts this “’thin”
waist® design by replacing IP format packet with named data
packet. The structure of NDN network stack is shown in Fig.
1.

NDN network packet includes interest packet and data
packet. Name of NDN is hierarchically structured like URL.
The data packet contains the name and content of the data.
Besides this, data packet also contains the signature of to
authenticate the data. Inferest packet is the request of certain
data and it contains the name of the requested data. The basic
network transportation process is that the data requester sends
the interest into NDN network and NDN network responds
the data packet matching the name of the interest.

When an interest is sent by a consumer, it will be routed
through NDN nodes. The architecture of NDN node is shown

3Thin waist of IP and NDN: http://named-data.net/project/execsummary/

email WWW phone ... browser chat...

SMTP HTTP RTP ... File Stream ...
TCP UDP ... Individual Apps Security ...
Pacliets Every Node g::r‘j::
ethernet ppp ... Individual Links strategy
/ CSMA async sonet ... \ / IP UDP TCP P2P... \

f copper fiber radio ... \ f copper fiber radio ... \

Fig. 1. 1P vs NDN

in Fig 2. Forwarding Information Base (FIB) keeps records of
name prefixes and faces to be sent, which means NDN node
will look up the FIB to match the name of the interest and
prefix of records to decide where to forward this interest. FIB
is just like routing table in IP network. The difference is that
IP routing table keeps prefixes of IP addresses and NDN FIB
keeps prefixes of names. Pending Interest Table (PIT) keeps
unsatisfied interests. The interest and its coming faces will be
kept before matching data returns. Content Store (CS) is the
cache of the data. When a data packet arrives NDN node, CS
can keep this data for certain period for fast data acquisition.

Content Store (CS) Face 0

Name Data

/tsinghua.edu/fit/video/intro.
mp3/v3/s0 Face 1

Pending Interest
Table (PIT)

Prefix Requested Faces

/tsinghua.edu/fit/video/intro.
mp3/v3/s1

Forwarding Information
Base (FIB)

Prefix Face List

/tsinghua.edu/fit/video/ 0,1

Fig. 2. NDN node

The typical process of NDN node handling interest packet
is as follows:

a an interest packet is sent to an NDN node

b NDN node checks CS to look up whether there is a data
packet matching the interest. If found, return data packet of
the coming interest. If not, continue

¢ Put the interest into PIT and record its coming face.

d Look up FIB to match interest with longest-match prefix.
If found, forwards the interest to the designated face. If not
found, drop the interest.

B. Named Data Storage

Named Data Storage in this section is defined as certain type
of network storage system, network packet and data block of
which adopts the same format.

1) NDN Repository: NDN Repository (NDN Repo) is an
persistent storage model to store named data over NDN
network. It is an application to manipulate named data and
to transfer data packet through NDN network. The operation
of NDN repo includes reading from, insertion to and deleting
from data objects in NDN repository nodes. A set of NDN
repo protocol* is defined for semantics and operating process
for persistent storage node in NDN. Once an interest is sent
a NDN repo, the repo will search the local storage with the
name of the interest. Once found, the repo will return the data
packet matching the interest.

The repo protocol is a typical realization of application level
framing [2]. NDN protocol just provides basic semantics and
transportation process. Specific controls like congest control,
flow control are all defined by upper repo protocol. In addition,
the repo application directly handles the network named data.

Repo-ng (repo of new generation) is an implementation
of NDN persistent in-network storage conforming to repo
protocol. It uses ndn-cxx as NDN client library and database
sqlite3 as underlying data storage. The named data packet
is directly stored in the sqlite3 database and all the network
interactions are through NFD.

The process of fetching data from repo-ng through NDN
network stack is as follows:

a an interest is forwarded to the repo

b the repo query the named data database with the requested
interest.

c if the named data matching the interest exists in the local
repo. the repo will just responds the data packet through
NFD.

2) Data-Centric Storage in Sensornets: Data-Centric Stor-
age [6], [7] is proposed for sensornet which is a distributed
sensing network. It demonstrates a primitive data distribution
network with named data. In a large topology of network
with 100,000 nodes, the Data-Centric Storage reduces the
total network load and hotspot network usage as compared
with external storage and local storage. This result shows the
advantage of integrating network and storage with named data,
in large data dissemination. The NDSS design will also adopt
this advantage.

III. DESIGN OF NAMED DATA STORAGE SYSTEM
ARCHITECTURE

NDSS involves a major resign of distributed storage. In
this section, we first illustrates the motivation and presents
network and storage stacks design. The specific process is also
demonstrated.

4Repo Protocol: http://redmine.named-data.net/projects/repo-ng/wiki

A. Motivation

The motivation of NDSS design is to reduce the redundant
processes in transporting data between different hosts through
network, due to the different description of network and
storage data. For typical distributed file system like HDFS
over TCP/IP network and posix file system, there are 2
major redundancies in data transportation process. One is the
semantics conversion between network packet and application
usable data. Once a network packet arrives the data node, it
first converts extracts the content from the network packet and
reorganizes these contents to data or command for applica-
tion. The other redundancy is conversion between application
readable data and data block on local storage drive. There is
usually also a semantics conversion in this process. For HDFS,
when the datanode fetches the data from the local filesystem,
it should converts the high level location on data block to
specific location on local file system.

For repo-ng, it reduces the first redundancy process that
conversion between network packet and application usable
data. The main reason is the naming semantics of NDN
design. NDN adopts hierarchical structured naming like url.
This naming convention can be directly used by the upper
application.

Our NDSS adopts the NDN repo’s application level framing
design. Besides, NDSS makes several major improvements
based on the architecture of NDN node to integrate the
application level data and local storage data block. NDSS
also proposes a more flat network stack based on NDN. The
specific design is demonstrated on the following sections.

B. Named Data Design

The key approach to integrate network and storage is
by named data. Compared with NDN design, inferest and
data packets are introduced to serve as network request and
response. The motivation of NDSS semantics design is to
propose uniform data request and response for both network
and local storage data. For common application dealing with
file system, the application fetches certain piece of data by
identifying the file name and location of the file. This mech-
anism is naturally suitable with NDN naming mechanism.
However, for file system like linux or windows, posix api is
conventional standard and system call is the uniform interface,
which is practically different from how NFD works.

In NDSS design, the request and response of data is
designed in abstract level. NDSS also defines interest and data
for data request and response. Interest carries the name of
data requested and selectors. Selector’ in NDN is defined as
extra constraints to select the data. NDSS proposes an extra
selector named priority. Since network and local storage are
two sources of data, the major function of priority is to choose
the prior data source.

In NDN, signature is a must section of data packet. While
if an application fetches the self published data from local
storage, there is no need to authenticate the data. In NDSS, tag

Shttp://named-data.net/doc/ndn-tlv/interest. html#selectors

local is proposed to guarantee the local source. The constraints
of tag local is that this data is published by local host and never
transported outside the host. If an outside data packet arrives
the local node or an inner data packet is forwarded to the outer
network, the node would first converts the local tag to false.

C. NDSS Node Model

NDSS data transportation is driven by the consumers of
data. NDSS borrows data transmission mechanism from NDN
that Data is transmitted only in response to an inferest and
consumes that interest. [4] In NDN, interests are forwarded to
network according to FIB. While in NDSS, the interest is not
only forwarded to network, but also handled by underlying
local storage. The FIB is modified as Local and Forwarding
Information Base (LFIB). The architecture of NDSS node is
shown as Fig. 3:

Content Store (CS)

|
|
Face 0 |
—— |
(. I
Name Data } } C:'A::> @
[I
[
/tsinghua.edu/fit/video/intro. |
mp3/v3/s0 Face 1 !
facel | .
| | | @ »
| Pending Interest | | C:;::>
| Table (PIT) } |
L1
Prefix Requested Faces face2 |
- |
|
/tsinghua.edu/fit/video/intro. o | }
mp3/u3/s1 [C:,i> S
| N4
_ L1 :
I Local and Forwarding |
| Information Base (LFIB) _— |
[|a]afalalalafalalalall
| Prefix Face List | Local Index |{o|ofojo fojo o jo|o |0 |
I IERERERERERERERERERER I
| /tsinghua.edu/fit/video/ 0,1 NULL |6 |e|6|6|6|6|6|6|6|6 |
| /tsinghua.edu/fit/audio/ NULL] 77‘k77 }
| |
I | |
... ... BlockstorageDevice |
Fig. 3. NDSS node

As shown in Fig. 3, NDSS adopts CS and PIT table as NDN
node. CS serves as the cache of the data and PIT preserves
the outgoing and unsatisfied requests. The key approach to
integrate network and local data is redesign of the FIB to
LFIB. Compared to NDN FIB, LFIB includes an extra column
local index. For one entry in LFIB, it not only records the
faces to request the data from network, but also the specific
index on local storage device. Block device such as hard disk
is the mainstream settings for current hosts. The local index
directly locates the specific block on the block storage device
by recording the location. Thus, when an interest arrives at the
node, NDSS node can query the data by the same metadata
table.

D. Flat Network Stack

Network protocol of NDSS adopts most of the NDN pro-
cess. The common implementation of NDN such as CCNx®
or NDNLP [8] is deployed upon traditional address routing
network, usually upon TCP/IP network. These overlay de-
signs are easy to implement and could adopts advantages of

Shttp://www.ccnx.org/what-is-ccn/

current network architecture. However, this layered network
stack produces multiple overheads besides NDN. For example,
CCNx, named data packets is split and reassembled through
TCP/IP stack. Besides, the routing process should be executed
twice in both NDN router and common IP router. Most
network issues such as flow control, congestion control and
reliable communication could be handled within NDN network
architecture. In [2], Application level framing is proposed to
achieve Integrated Layer Processing for efficient data manipu-
lation. The NDSS network design adopts Application Data
Unit (ADU) to reduce the overheads in data transmission.
Compared with overlay network, the NDSS design is named as
underlay network. The architecture of NDSS network design
is show as Fig. 4.

Overlay

Named Data Chuncks:
TCP or UDP:
o 1P o
Link Layer:
Physical Layer

L 8

Host 1 Host 2
Named Data Chunks
O Ethernet Frame-----—------ o
Physical Layer———
Host 1 Host 2

Underlay

Fig. 4. NDSS Underlay Network

Compared with overlay design upon TCP/IP network, the
named data protocol directly runs on link layer Ethernet in
underlay design. For NDN network, the only constrain for
underlying network is to guarantee hop by hop transmission.
In NDSS design, the MAC address of Ethernet header is
removed.

E. NDSS Data Transportation Process

The motivation of NDSS design is to reduce overhead of
data transmission. The NDSS node model is to reduce the
overhead from network to storage device. The NDSS underlay
network is to reduce between hosts through network. Processes
of data transportation are introduced in this section.

1) Local Application Request Local Data:

a Application sends request for certain data

b Check if CS holds any data matching the request. If found,
return the data and quit the process

¢ Check if PIT holds the same interest. If found, put local
application identifier into the PIT and quit the process

d Check LFIB table. If there is an entry matching the interest,
there are 2 conditions to select data from local storage:

interest sets priority selector as local or local index is
selected by forwarding strategy.

e The data block is directly selected by the local data index.

f Data is responded according to the PIT entry and the
matching entry is removed.

g The named data block is inserted into the CS.

h Application gets the responded data packet.

i Check the local tag of the data block. If the local tag is false,
application should validate the signature of the named data
block according to application defined security policy.

2) Local Application Request External Data:

a Application sends interest for certain data

b Check if CS holds any data matching the interest. If found,
return the data and quit the process

¢ Check if PIT holds the same interest. If found, put local
application identifier into the PIT and quit the process

d Check LFIB table. If there is an entry matching the interest,
forward the interests according to the face list.

e Wait for the responded data packet.

f Extract the data block directly from the ethernet frame. This
data can be directly used by the upper application.

g Remove the matching entry in PIT.

h The named data block is inserted into the CS.

i Validate the signature of the data packet.

j If upper application would store the data packet, the data
packet can be directly assigned in the block of storage
device. The local index of such name would be updated
in the LFIB.

3) NDSS Node Handles the External Interest:

a NDSS node receives interests from external faces.

b Check if CS holds any data matching the interest. If found,
return the data and quit the process

¢ Check if PIT holds the same interest. If found, put local
application identifier into the PIT and quit the process

d Check LFIB table. If there is an entry matching the interest,
node will forward the interest according to the face list. If
local index is also the target, the named data block is directly
selected by the local data index.

e The local tag of data block is set to be false.

f Data is responded according to the PIT entry and the
matching entry is removed.

g The named data black can be directly encoded in the
ethernet frame and be sent.

h The named data block is inserted into the CS.

IV. DESIGN OF NDSS IMPLEMENTATION

The implementation of NDSS consists of two major parts:
NDSS model and redesign of network stack. The network
stack is implemented and evaluation is demonstrated in next
section. The implementation design of NDSS model is pro-
posed in this paper and the practice will be introduced in future
works.

A. NDSS Model Implementation Design

In conventional system, upper application fetches local data
through local file system and network data through sockets. In

linux, these data sources can all be accessed by file descriptor
through read() and write() methods. In NDSS design, the
unit of data access is based on block and the application can
directly accesses data block instead of file. If application wants
to execute data upon file level, file system module could be
built upon NDSS like NDNFS [9].

The initial implementation of NDSS node is based on Linux
shown as Fig. 5. A block device is mounted on the VFS and
provides basic read() and write() methods. Raw socket is used
for directly encapsulating named data block into the Ethernet

: :
C)

Local App

i

NDSS Node

Network
Stack

Block Device

Fig. 5. NDSS Node Implementation

B. Network Stack Implementation

Ethernet is used as NDSS underlying protocol. There are
two key points to be handled: size of named block and removal
of ethernet header.

Ethernet does not provide segmentation and the common
MTU is 1500. The common named block size is more than
this. The size of Ethernet frame could be handled by Jumbo
frame. Jumbo frames are Ethernet frames with more than 1500
bytes of MTU. Conventionally, jumbo frames can carry up
to 7000 bytes of MTU. Most Gigabit Ethernet NICs support
jumbo frames.

The ethernet frame without MAC address will be dropped,
since NIC will filtered ethernet frames by destination address.
Promiscuous . In our NDSS implementation, the network
interface is set as promiscuous mode.

V. EVALUATION OF NDSS DESIGN
A. Evaluation of NDSS Process

Compared with the conventional layered system, NDSS
reduces the following processes:
a conversion between TCP/IP packet and named network data.
b redundant forwarding according to IP FIB.
¢ conversion between network content between application
usable data

d conversion between network usable data and local storage
data.

B. Evaludation of NDSS Underlay Network

Underlay network of one hop between 2 hosts is im-
plemented. Data throughput is tested using CCNx project
cengetfile tool. The result is shown as Fig. 6. There is a
slight performance drop between underlay and TCP. The major
reason is that TCP/IP protocol stack is well-tuning in the
kernel, while implementation of raw socket is not optimized.

—=a— underlay
—e—TCP

underlay (MB/s)

T T T 1
1 2 4 8 16 32 64 128 256 512

Data Size (MB)
Fig. 6. One Hop Throughput

VI. CONCLUSION

NDSS idea is inspired by the concept of application level
framing. The principle of NDSS is to deeply reduce the
overhead in data transmission between hard disks through
network. The design of LFIB is the key to integrate network
and strorage by named data. The process of data operation
is discussed and network performance is evaluated. There is
a reasonable performance drop due to the unoptimized imple-
mentation. There are many works in future such as integrating
the NDSS into the kernel, building access and privacy control
over NDSS, and implementing metadata system over NDSS.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China (grants No. 61472200 and No.
61233016), Ministry of Science and Technology of China
under National 973 Basic Research Program (grant No.
2013CB228206), and S&T projects of State Grid Corporation
of China.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in
ACM SIGOPS Operating Systems Review, vol. 37, no. 5. ACM, 2003,
pp. 29-43.

[2] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for a
new generation of protocols,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 20, no. 4. ACM, 1990, pp. 200-208.

[3]

(4]

[3]

(6]

(71

(8]
(91

A. Afanasyev, J. Burke, P. Crowley, S. DiBenedetto, J. Thompson,
B. Zhang, and L. Zhang, “An introduction to ndn and its software
architecture,” in Proceedings of the Ist international conference on
Information-centric networking. ACM, 2014, pp. 1-2.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
Sth international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1-12.

L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters,
B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al., “Named data
networking (ndn) project,” Relatorio Técnico NDN-0001, Xerox Palo Alto
Research Center-PARC, 2010.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “Ght: a geographic hash table for data-centric storage,” in
Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications. ACM, 2002, pp. 78-87.

S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-
centric storage in sensornets,” ACM SIGCOMM Computer Communica-
tion Review, vol. 33, no. 1, pp. 137-142, 2003.

J. Shi and B. Zhang, “Ndnlp: A link protocol for ndn,” The University
of Arizona, Tucson, AZ, NDN Technical Report NDN-0006, 2012.

W. Shang, Z. Wen, Q. Ding, A. Afanasyev, and L. Zhang, “Ndnfs: An
ndn-friendly file system.”

