
An Integrated Resource Management and Scheduling System for Grid Data
Streaming Applications

Wen Zhang1, Junwei Cao2,3*, Yisheng Zhong1,3, Lianchen Liu1,3, and Cheng Wu1,3
1Department of Automation, Tsinghua University, Beijing 100084, China

2Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
3Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

*Corresponding email: jcao@tsinghua.edu.cn

Abstract
Grid data streaming applications are novel from

others in that they require real-time data supply while
the processing is going on, which necessitates
harmonious collaborations among processors,
bandwidth and storage. Traditional scheduling
approaches may not be sufficient for such applications,
for they usually focus on only one aspect of resources,
mainly computational resources. A resource
management and scheduling system for such
applications is developed in this paper, which is
responsible for enabling their running based on
Globus toolkit. An integrated scheme is proposed,
including admission control, application selecting,
processor assigning, allocation of bandwidth and
storage, with corresponding algorithms elaborated.
Evaluation results show excellent performance and
scalability of this system.

1. Introduction
Streaming applications are gaining their popularity

recently, and in most cases data are pushed to the
computational resources for distributed processing
with real-time constraint, so the processing rate must
match the data arrival rate. Nowadays, new kinds of
streaming applications are emerging with different
requirements and characteristics. For example, LIGO
(Laser Interferometer Gravitational-wave Observatory)
[1] is generating 1TB scientific data per day and trying
to benefit from processing capabilities provided by the
Open Science Grid (OSG) [2]. Since most OSG sites
are CPU-rich but storage-limited with no LIGO data
available, data streaming supports are required in order
to utilize OSG CPU resources. In such a data
streaming scenario, data should be pulled rather than
pushed to the computational system in the form of
streams of tuples, and processing is continuously
executed over these streams as if data were always
available from local storage. What’s more, data arrival
rates must be controlled to match the processing
speeds to avoid waste of computational capacity or

data overflow. Meanwhile, processed data have to be
cleaned up to save space for the subsequently coming
data. Such applications are novel in that (1) they are
continuous and long running in nature; (2) they require
efficient transmission of data from/to distributed
sources/sinks in an end-user-pulling way; (3) it is often
not feasible to store all the data in entirety for later
processing because of limited storage and high
volumes of data to be processed; (4) they need to make
efficient use of high performance computing (HPC)
resources to carry out compute-intensive tasks in a
timely manner. Grid computing [3] paves a new way
for such kinds of applications, giving birth to the so-
called Grid Data Streaming applications.

Such applications require the combination of
bandwidth sufficiency, adequate storage and
processors to guarantee smooth and high-efficiency
processing, making them different from other batch-
oriented ones. Most scheduling infrastructures
available in the filed of grid, such as Legion [4],
Nimrod/G [5] and Condor [6], are largely geared to
support batch-oriented applications rather than the
streaming ones. Some schedulers are developed to
support data streaming applications, such as E-Condor,
GATES [7], and Streamline [8], but they just concern
on computational resource allocation, paying little
attention to storage and network bandwidth. Pegasus
[9] has the most similar motivation with the work
described in this paper, but it handles data transfers,
job processing and data cleanups in a workflow
manner. EnLIGHTened computing [10] and G-lambda
[11] project, which provide co-allocated computing
and network resources with advance reservation, but
they don’t concern with specific requirements of Grid
data streaming applications.

In this paper, an integrated resource management
and scheduling system is developed from viewpoint of
the resources, including processor, storage and
bandwidth, to make efficient use of them and
accommodate as many streaming applications as
possible to achieve high throughput. This resource

management and scheduling system tries to allocate
processors, storage and bandwidth synchronously to
guarantee such applications to execute smoothly with
high efficiency. Based on Globus toolkit [12], this
system is able to discover and manage resources
geographically distributed and belonging to different
management domains in a transparent and secure way.
Some key algorithms are proposed, including
admission control, application selecting, processor
assigning, bandwidth allocation and storage allocation.
Evaluation results show excellent performance and
scalability of this system.

The rest of this paper is organized as following:
Section 2 describes the overall architecture and
mechanism of this resource management and
scheduling system, whose core algorithms are
elaborated in the next section; some evaluation results
are included in Section 4, and the following section
concludes this paper.
2. System Architecture

The architecture of our resource management and
scheduling system is shown in Figure 1 and its key
components include but are not limited to:

 Client Tool
This tool is an interface for users to submit their

applications with their requirements in XML format,
including the executable, processor types and amount ,
minimum bandwidth and storage, data source, just like
but more than what Condor submission does. It is also
capable of monitoring the status of submitted
applications and that of the resources in the whole grid.
Nowadays, it is carried out in command lines, and in
the future a graphical user interface (GUI) will be
available.

 Management Engine
The management engine accepts users’ submissions

of applications and put them into the queue, which will
be accessed by the scheduler. Its main function is to
provide grid supports for streaming applications, such
as security, resource discovery and management. The
components of Globus toolkit used here include
GRAM (Globus Resource Allocation Manager), MDS
(Meta-computing Directory Service), GSI (Globus
Security Infrastructure), GASS (Global Access to
Secondary Storage), NWS (Network Weather Service),
GRIS (Grid Resource Information Service), GIIS (Grid
Index Information Service) and so on.

 Scheduler
This is the core component in the whole

architecture and its key algorithms will be discussed in
details in Section 3. It is responsible to carry out
admission control, application selecting, processor

assignment, and bandwidth and storage allocation. Its
instruction will be executed by the dispatcher.

 Dispatcher
The dispatcher is in charge of sending executables

with their description files to appropriate processors
and invoking a remote component, i.e., application
wrapper. This component will interact with the
services provided by grid middleware, such as GRAM.

Figure 1. System architecture
 Application Wrapper

This component will parse the description file
according to the XML schemas, initialize execution of
executables, and start data transmission to specified
storage with allocated bandwidth. Also, it will send
back the results through dispatcher. Another function
is to monitor the usage of storage to determine data
transmission status, see more details in subsection 3.5.

The overview of the running mechanism is

illustrated in Figure 2. Besides allocation of
computational resources as most traditional resource
management and scheduling systems do, it also deals
with allocation of bandwidth and storage to support
real-time data supply, which is required by data
streaming applications. Management and scheduling of
processors, bandwidth and storage are carried out in an
integrated way rather than independently.
3. Key Algorithms

This section just elaborates on the key algorithms
as the core of this resource management and
scheduling system, i.e., the scheduler. Note that
although processor assignment, allocation schemes for
storage and bandwidth are described and evaluated

Client Tool

Management Engine

Client Tool

Scheduler

Dispatcher

Wrapper …Wrapper
Other Middleware Services

Resource Discovery

Security

Grid Directory Services

Queue Management

…

Processor Storage Bandwidth

Grid Resources

Figure 2. Overall mechanism

Real-time data supply

MDS
server

Job
submission Scheduler Dispatcher GRAM

server

Wrapper

User
process

StorageRemote
Data Source

Bandwidth

separately, they are carried out synchronously as
integration.
3.1. Admission control

When a new job is submitted, admission controller
would decide to run it instantly or just keep it in the
waiting queue. This decision is made according to the
usage status of resources and the requirements of the
jobs. Each job can allege its minimum requirement of
resources, e.g., it needs some processors, bandwidth
and storage. An XML schema is developed for the
applications to express their requirements in the
manner similar to Resource Description Language
(RSL).

For each application s, it can declare its minimum
requirement of resources like

][ssss stbpR =
where ps stands for the number of processors it
requires, so ps=1 for simple applications (i.e.,
standalone applications) and ps>1 for composed
applications (such as a pipeline); bs and sts stand for
the required minimum bandwidth and storage
respectively. This information will be included in the
submission file in XML format.

Suppose the running applications in the computing
pool form a set, denoted as SR, and the total amount of
processors, bandwidth and storage be denoted as P, B
and S respectively. Some applications have their
special requirements upon processors, for example,
applications compiled on X86_64 cannot run on I386
processors, so not every processor is suitable for each
application. Suppose those processors eligible for
application s form a set, called Ps, and the number of
free (not occupied or reserved) processors in it when s
comes is denoted as | Ps |.

In any one of the following three cases, a new
application, sn, would just be kept in the waiting queue
for there are no enough resources (suitable and enough
processors, enough bandwidth and enough storage
respectively) for it.

nn ss Pp >

∑
∈

−>
R

n
Ss

ss bBb

∑
∈

−>
R

n
Ss

ss stSst

If an application’s minimum requirement can be
satisfied according to the current status of computing
pool, it will called a potential eligible application
(PEA), which means that it may be permitted into
computing pool.

3.2. Application selection
PEAs form a queue, within which maybe several

ones satisfy the admission control policy. A selecting
policy must be applied to choose some from the queue
and assign appropriate resources for them. Those
selected ones will be called eligible applications (EAs).

PEAs have different weights, and the higher
weights mean that they can be selected with bigger
priorities. PEAs will be classified into several groups
according to their weights, and in each group, the
selecting principle is first-come-first-serve (FCFS).

The selecting will be heuristic and iterative: the
first coming PEA with the highest weight will be
selected, and then the next one till the last one in its
group (if there are) will be tested in their arriving order;
then it is turn for the group with second highest weight,
till all the groups are tested. Notice that the PEAs with
higher weight will not be selected prior to those with
lower weight necessarily, for whenever a PEA is
accepted, the resource status will change and some
PEAs will become ineligible.

To some extent, this algorithm resembles first-fit
(FIFT) with backfilling mechanism. What is more, to
avoid that some PEAs starve for a long time, some
reservation policy will be adopted. Some resources
will be labeled as reserved when they are executing
other applications, and as soon as they are free, they
will be assigned to the applications which reserve them.
Weights of each application will increase as time goes
by, to avoid such cases where applications with lower
weights will be idle forever. The weights will be a
function of time, with the originally set value as their
initializations

() ()twftw ioii ,=

() ioioi wwf =0,
where wi0 is the initial weight of application i and f(t) is
an non-decreasing function about time t. A function in
case is

() () ()iiioioii Ttfdwtwftw ,*, +==

())/(, ii TtfloorTtf =
where di is the increase coefficient and di>0; Ti is the
increase period and function floor returns the nearest
integer towards minus infinity for t divided with Ti .
Then wi will increase by di once a period Ti. Assigning
appropriate values for di and Ti, after some time of
waiting, the applications with lower weights initially
will be endowed a high enough weight to be selected
from PEA queues.

Combination of reservation policy and increasing
weight over time will guarantee each application will
be accepted by the computing pool in appropriate time.

In one word, the selecting algorithm tries to make full
use of resources and keep fairness among applications.
3.3. Processor assignment

As soon as EAs are selected, it is time to assign
resources for them. Applications may have their own
styles, i.e., they may be executed more smoothly on
some processors than on others. So it is necessary to
assign appropriate processors for applications, and
purely random assignment will not work.

On the other hand, the processors can be classified
into several groups according to their characteristics,
their architecture for instance. One application will
achieve similar performance on the processors of a
group, so it is not necessary to launch it on each
processor for trial, but a processor can act as the
representative of its peers in the same group.

Matchmaking will be carried out to find candidate
processors for applications, and applications will be
assigned to processors in the matched group to run a
short period of time to get its performance information.
The applications with higher weights will have higher
priorities to find their matched processors, and the
processors producing the highest processing efficiency
will be selected.
3.4. Storage allocation

When new EAs arrive, the scheduler is responsible
for allocating bandwidth and storage for them, together
with the existing applications in the computing pool.

The overall principle for storage allocation is to
make full usage of storage to increase robustness while
getting ready for new coming applications. If there are
only a few applications running in the pool, the storage
allocated for each application can be set to a high value.
While the applications increase, the allocated storage
for each application may be decreased. There must be
some margin of storage for potentially coming
applications. An iterative allocation algorithm of
storage is proposed as following:

① initialization: suppose there are n applications
in the pool, to generate n random numbers, ri (∈ 0, 1),
i=1,2,…,n. Calculate each quota, qi as following

∑
=

= n

j
j

i
i

r

rq

1
② If qi*TS≥sti, reserve these numbers for initially

allocated storage for application i; else, repeat step ①
until all of these inequations hold true, where sti is the
minimal required storage of application i as mentioned
in subsection 3.1 and TS is the total storage available
for applications.

③ dynamic adjustment: periodically, monitoring
usage status of each allocated storage, and those with

high occupation percentages will be increased while
others will be decreased;

④ when a new EA is coming, decrease the amount
of the biggest partition of storage;

⑤ when an application is finished, its storage will
be divided and allocated to the minimal partitions;

⑥ repeat ③ , ④ and ⑤ until all the
applications are completed.
3.5. Bandwidth allocation

Bandwidth allocation plays an important role in the
whole resource allocating scheme, for appropriate
bandwidth is indispensable to guarantee data supply
for applications to make them run constantly. To make
a flexible allocation scheme, so-called utility functions
are introduced and genetic algorithm [13] is adopted to
maximize their sum. Different from traditional
bandwidth allocation, our scheme is storage aware, i.e.,
data transmission may be intermittent rather than
continuous to avoid data overflow, for allocated
storage for each application is limited. When the
storage is full of data, transmission will be halted for a
while until some data have been processed and cleaned
up so that some storage is released for more data. At
any moment, the amount of data in storage for each
application is affected by data supply and clean-up at
the same time, where the former tends to increase the
amount while the latter will decrease it.

The computing pool is connected to Internet
through which the data are streamed to the applications
being executed on the processors, and the total input
bandwidth, denoted as I, is limited, which is shared by
the data streams. The data streams, called sessions,
denoted as s, form a set S. Each session will be
assigned a bandwidth xs, where xs ∈Xs, Xs =[bs,Bs] and
bs >0, Bs <∞ . bs stands for the least bandwidth
required for session s, while Bs is the highest
bandwidth available for s from the corresponding data
source. Session s will have a utility Us(xs) when its data
is supplied at a rate xs, where Us(xs) is called utility
function and assumed to be concave, continuous,
bounded and increasing in the interval [bs,Bs]. Note
that it is not necessary that all the sessions adopt
identical utility functions. We try to maximize the sum
of the utilities of all the sessions, maintaining fairness
among them. The problem can be described as follows.

.P
()∑

∈Ss
ss xUmax ()1

..ts

∑
∈

≤
Ss

s Ix ()2

ss Xx ∈ ()3

Due to the usage status of storage, there are two

possible states for each s at any time, i.e., active and
inactive, which indicate a data transmission is on or off.
All the active sessions form a set, called SA, and it is
obvious that this set is varying because the states of
sessions are changing.

We just allocate bandwidth for active transmissions,
so the constraint (2) may be rewritten as

∑
∈

≤
ASs

s Ix ()4

An iterative optimization algorithm is proposed in
[14] and its convergence is analyzed, but it is required
to be aware of the congestion on the path, which is
hard to be satisfied in the wide Internet. According to
our situation, we make some modification upon it as
following.

While s ∈SA

()

() ()()[] ()

()[] ()
⎪
⎩

⎪
⎨

⎧

>

≤+
=

∑
∑

∈

∈+

A
s

A
s

Ss

k
sX

k
sk

Ss

k
sX

k
sk

k
s

k
s Ixifx

IxifxUx
x

ρβ

ρα '

1 ()5

Otherwise
()

A
k

s Ssx ∉∀=+ ,01 ()6
Here, xs

(k)is the bandwidth for session s∈S at the kth
step. {αk} and {βk}are two positive sequences. For the
sake of convenience, αk and βk are usually substituted
as a fixed value, denoted as α and β respectively. [·] Xs
denotes a projection on the set Xs and can be calculated
as

[] ()()ybBy ssX s
,max,min=

()⋅'U is the sub gradient of

() ()()∑
∈

=⋅
ASs

k
ss xUU ()7

and
()() ()

()k
s

k
s x

UxU
∂

⋅∂
='

If we define
() Ass SsxU ∉∀= ,0

formula (7) can be modified as
() ()∑

∈

=⋅
Ss

ss xUU

And ρ is the so-called safety coefficient to avoid
bandwidth excess, where ρ∈ (0, 1), i.e., there is some
margin from the full use of total bandwidth for
flexibility and robustness. Some heuristic algorithms,
such as genetic algorithm will be applied to find
optimal values for them.

A popular utility function can be expressed as
() () SsxxU ssss ∈+= ,1lnμ

where µs may stand for the session’s coefficient.
Essentially, bandwidth allocation here is a kind of

additive increase multiplicative decrease (AIMD)
algorithm which is usually used in TCP congestion
avoidance, but it has some pleasant new characters. It
is storage-aware, for the transmission will be stopped
if allocated storage is nearly full, so data overflow will
be avoided while enough data are supplied; it is
processing-aware, for the processing capacity of
processors will be inflected in the varying occupation
of storage, although it may not aware of the precise
values, and such bandwidth allocation is on-demand;
of course, it is congestion aware.

As mentioned above, the scheduler should make
allocation schemes in an evolving way to keep pace
with latest situation, i.e., when an application is
submitted or finished, or resources increase or decrease
dramatically, it will be invoked to make new schemes
to correspond to latest conditions.
4. Evaluation

A campus computational grid is being established
in Tsinghua University (Beijing, China) which holds a
large amount of supercomputers, personal computers
and other special instruments. Globus toolkit 4.0.1 is
being deployed to provide common grid services and a
simple Certificate Authority has been established to
sign certificates for hosts and users which will be used
to establish a secure and transparent environment for
data streaming applications. This campus grid is
connected to Internet with limited bandwidth, and
network file system (NFS) is established to which all
the data streams are directed.

Applications are submitted at moments complying
with negative exponential distribution law, and their
requirements of resources are also explicitly expressed.
Experiments are carried out for 10,000 units of time
and some results are obtained. Resource scheduling is
carried out once per 200 units of time to correspond to
updated situations.
4.1. Admission control

As the resources in the computing grid are limited
and each streaming application holds its own
requirement, it can be inferred that too many
applications accepted by the computing grid will lead
to low processing efficiency if no admission control is
carried out, and some experimental results verify it, as
shown in Figure 3.

Higher throughput is achieved in the scenario with
admission control than that in the scenario without
admission control. Note that in the latter scenario, one
processor may have to deal with more than one

application at the same time, which offends the
assumption made before that one application will
occupy a processor exclusively. Inadequate data
supply for each application and discount of
computational capacity due to competition among
applications on one single processor lead to a lower
data processing efficiency as a whole.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18
x 104

Time

P
ro

ce
ss

ed
 D

at
a

(M
B

)

With admission control
Without admission control

Figure 3. Throughput with/without admission control

What’s more, admission control can make
applications finished sooner than without, as
demonstrated in (a) and (b) in Figure 4, where the red
bars with character P stand for the pending status and
pink bars with character R mean for the running status
for each application. The numbers of completed
applications are 29 and 25 respectively. More
importantly, most of the makespans without admission
control are longer than their counterparts, which is
adverse for the requirements of quality of service.
4.2. Bandwidth allocation

Bandwidth is allocated to each running application
to guarantee their data supply. Parameters in
bandwidth allocation are obtained with genetic
algorithm and are applied in each period. This
bandwidth allocation is adaptive to the total available
bandwidth and requirements of running applications.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
R
R

R
R

R
R

R
R

R
R

P R
P R

P R
P R
P R

P R
P R

P R
P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

Time

A
pp

lic
at

io
n

S
ta

tu
s

app 1
app 2
app 3

app 28
app 29
app 30

(a) With admission control

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
R

R
R

R
R

R
R

R
R

R
R

R
R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

Time

A
pp

lic
at

io
n

S
ta

tu
s

app 1
app 2
app 3

app 28
app 29
app 30

(b) Without admission control

Figure 4. Status of applications in iterative bandwidth allocation
To justify our bandwidth allocation algorithm

(named iterative allocation), we compare it with the
even bandwidth allocation, where the bandwidth is
allocated to the running applications equably as shown
in Figure 5. In (a), the total available bandwidth is
relatively small which equals with that in case of
Figure 3, and 25 applications are finished; in (b), the
available bandwidth is relative big, so each application
can get enough data supply with the even allocation
scheme, and the result resembles that in (a) of Figure 4.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
R

R
R
R

R
R

R
R

R
R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

Time

A
pp

lic
at

io
n

S
ta

tu
s

app 1
app 2
app 3

app 28
app 29
app 30

(a) Low bandwidth

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
R
R

R
R

R
R

R
R

R
R

P R
P R

P R
P R
P R

P R
P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

Time

A
pp

lic
at

io
n

S
ta

tu
s

app 1
app 2
app 3

app 28
app 29
app 30

(b) High bandwidth

Figure 5. Status of applications in even bandwidth allocation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18
x 104

Time

P
ro

ce
ss

ed
 D

at
a

(M
B

)

Iterative bandwidth allocation/30
Even bandwidth allocation/40
Even bandwidth allocation/30

Figure 6. Throughput for bandwidth allocation schemes
Throughputs in the cases of iterative allocation and

even allocation are shown in Figure 6, where the
numbers at the end of legends stand for the total
available bandwidth. Then our allocation scheme is
justified that it can achieve high throughput with
relatively small available bandwidth for it is
processing-aware while the even allocation scheme is
not, so in that case some applications may starve while
others may be allocated redundant bandwidth.
4.3. Storage usage

Data supply in our scheme is storage-aware, i.e.,
data supply is controlled by the usage of allocated
storage, rather than spontaneously. The principle here
is just enough data is ok, not the more data the better.
Sometimes the data transmission is intermittent, not
always continuous. In this way high volume of data
can be processed with just reasonable storage, as
shown in (a) of Figure 7, where the used storage just
varies in a limited scope. If data supply is continuous
and available storage is big enough, the occupied
storage will be of high volume, which can be observed
in (b) of Figure 7.

Actually, small storage can achieve high
throughput in the streaming applications with well-
made data supply and processing scheme, which is the
prominent characteristic of such scenarios. Relative big
storage is not necessary but rather desirable, for more
data can be stored before processed to survive network
collapse when no more data can be supplied.
4.4. Processor assignment

Processors are assigned to applications, one for a
single application exclusively. Here, the allocation
resembles job shop problem scheduling, as shown in
Figure 8, where the numbers in the horizontal bars
stand for the corresponding applications executed on
the processors in a certain group. Group 1 and 2 deal
with more applications while they hold less processors
than group 3, so the average loads of processors are
heavier that those of group 3, as demonstrated in (a),
(b) and (c) respectively. Because some applications

may not be able to be executed on the processors in
group 3, they cannot be transferred to the processors in
group 1 and 2 to make a load balance.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

160

180

Time

O
cc

up
ie

d
st

or
ag

e
(M

B
)

(a) Storage-aware data supply

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3
x 104

Time

O
cc

up
ie

d
st

or
ag

e
(M

B
)

(b) Non-storage-aware data supply

Figure 7. Storage usage
5. Conclusions

Data streaming applications are of the novel types
of grid scenarios for own their characteristics, such as
requiring of real-time data supply and integrated
resource allocation schemes. Different from existing
resource management and scheduling schemes that just
focus on computing resources, the system proposed in
this paper takes computational resources, bandwidth
and storage into account simultaneously and make
integrated management and scheduling schemes,
which are proved to be feasible with excellent
performance.

Up to now, requirements of quality of service (QoS)
for applications have not been paid enough attention,
and this desirable character will be the emphasis of
further research. Scheduling for pipelined applications
will be studied which is more complex with
requirement of balance among stages and appropriate
data supply. Ongoing work includes the consideration
of data sharing scenarios among multiple data

processing applications. Also some heuristic
scheduling algorithm is under development for refined
performance optimization.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

4

7

9

11

13 15

20

21

23 27

29

time

processor 1

processor 2

processor 3

processor 4

processor 5

(a) Group 1

0 1000 2000 3000 4000 5000 6000 7000 8000

1

5

6

8 12

14

16

19

25

28

time

processor 1

processor 2

processor 3

processor 4

(b) Group 2

0 1000 2000 3000 4000 5000 6000

2

3

10

17

18

22

24

26

30

time

processor 1

processor 2

processor 3

processor 4

processor 5

processor 6

processor 7

(c) Group 3

Figure 8. Processor assignment for jobs

Acknowledgement
This work is supported by Ministry of Education of

China under the higher education quality engineering
project “National Open Course Integrated Systems”,
and Ministry of Science and Technology of China
under the national 863 high-tech R&D program (grants

No. 2006AA10Z237, No. 2007AA01Z179 and No.
2008AA01Z118).
References
[1]. E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L.

Pearlman, K. Blackburn, P. Ehrens, A. Lazzarini, R.
Williams, and S. Koranda, “GriPhyN and LIGO,
Building a Virtual Data Grid for Gravitational Wave
Scientists”, Proc. 11th IEEE Int. Symp. on High
Performance Distributed Computing, pp. 225-234,
2002.

[2]. R. Pordes for the Open Science Grid Consortium, “The
Open Science Grid”, Proc. Computing in High Energy
and Nuclear Physics Conf., Interlaken, Switzerland,
2004.

[3]. I. Foster and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann,
San Francisco, 1998.

[4]. S. J. Chapin, D. Katramatos, J. Karpovich and A. S.
Grimshaw, “The Legion Resource Management
System”, Job Scheduling Strategies for Parallel
Processing, Springer Verlag, pp.162-178, 1999.

[5]. R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An
Architecture for a Resource Management and
Scheduling System in a Global Computational Grid”,
Proc. High Performance Computing ASIA, 2000.

[6]. M. Litzkow, M. Livny, and M. Mutka, “Condor – A
Hunter of Idle Workstations”, Proc. 8th Int. Conf. on
Distributed Computing Systems, pp. 104-111, 1988.

[7]. L. Chen and G. Agrawal, “A Static Resource
Allocation Framework for Grid-based Streaming
Applications”, Concurrency and Computation:
Practice and Experience, 18:653–666, 2006.

[8]. B. Agarwalla, N. Ahmed, D. Hilley, and U.
Ramachandran, “Streamline: a Scheduling Heuristic for
Streaming Applications on the Grid”, Proc.13th Annual
Multimedia Computing and Networking Conf., 2006.

[9]. A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R.
Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and M.
Samidi, “Scheduling Data-intensive Workflow onto
Storage-Constrained Distributed Resources”, Proc. 7th

IEEE Int. Symp. on Cluster Computing and the Grid,
Rio de Janeiro, Brazil, pp. 401-409, 2007.

[10]. L. Battestilli, et al., “EnLIGHTened Computing: An
Architecture for Co-allocating Network, Compute, and
other Grid Resources for High-End Applications”,
Proc. HONET2007.

[11]. A. Takefusa, et al., “G-lambda: coordination of a grid
scheduler and lambda path service over GMPLS”, Proc.
iGrid2005.

[12]. I. Foster and C. Kesselman, “Globus: A
Metacomputing Infrastructure Toolkit”, Int. J.
Supercomputer Applications, vol. 11, No. 2, pp.115-
128, 1997.

[13]. J. H. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan Press, 1975.

[14]. K. Kar, S. Sarkar, L. Tassiulas, “A Simple Rate
Control Algorithm for Maximizing Total User Utility”,
Proc. Infocom 2001.

