
 
Committee-based Member Verification for Dynamic Virtual Organizations 

 
Zhen Wang and Junwei Cao* 

Research Institute of Information Technology 
Tsinghua National Laboratory for Information Science and Technology 

Tsinghua University, Beijing 100084, P. R. China 
*Corresponding email: jcao@tsinghua.edu.cn 

 
Abstract 

 
A grid organizes geographically distributed CPU, 

storage and network resources across multiple 
organizations as one virtual administrative domain, 
which can be considered as a special type of virtual 
organizations (VO). To improve scalability and 
flexibility, a cyberinfrastructure (CI) environment is 
proposed to support formation and management of 
multiple such VOs to meet various computing demands 
for researchers and scientists in different areas. Due to 
dynamism and the wide range of resources in CI, 
verification of a new applicant and assignment of 
proper privileges become a major challenge for VO 
management. In this paper, a committee-based 
applicant verification method (CAVM) is proposed for 
a VO to evaluate and verify a new applicant 
automatically and comprehensively, inspired by 
real-world verification mechanisms. CAVM includes 
two layers: the representative layer using fuzzy k-nn 
(FKNN) method to make individual judgments on 
applicants and the committee layer using fuzzy 
decision making scheme to aggregate individual 
judgments to make a comprehensive decision. In 
particular, our work is compared with the eBay 
reputation system (ERS), the most widely used 
reputation system for e-commerce. Simulation results 
show higher performance of our approach in terms of 
distinguishing deceitful members from trustworthy 
members. 
 
1. Introduction 
 

As more and more domain-specific grid [1] 
infrastructures become available, a cyberinfrastructure 
(CI) [2] environment is required for formation and 
management of multiple such grid enabled virtual 
organizations (VO) [3, 4] for a larger scale 
cross-domain resource sharing. For example, the open 
science grid (OSG) [5] provides a general platform to 
aggregate resources from different grids and 

reorganizes them for many different scientific 
applications. Users and resource providers (RPs) who 
agree on the same usage policies and purposes are 
aggregated in one virtual administrative domain. 

VO assigns different memberships to every member 
according to its requirements and reputation, and 
authorizes proper privileges based on Role-Based 
Access Control (RBAC) [6, 7] mechanisms. Since a 
VO is proposed for a specific scientific collaboration, it 
is frequently (re-)created, expanded to aggregate more 
resources, and finally dissolved to release these 
resources. Verification of new applicants and guarantee 
member security among VOs becomes a challenging 
issue. Many methods are proposed to address this issue 
including decentralized [8] and centralized security 
models [9]. For example, OSG developed a centralized 
mechanism, VOMS (Virtual Organization Membership 
Service) with EDG (European DataGrid) to verify new 
applicants artificially. In VOMS, a VO administrator 
selects one of its members as a representative who is 
familiar with the VO policy and the scientific project 
the VO is supporting. The representative checks the 
new applicant artificially from different aspects 
including usage plans, relationships with OSG, past 
memberships and so on. Such a centralized verification 
procedure is hard to adapt to more complex, dynamic 
and larger scale applications. The centralized 
architecture can’t ensure objectiveness and 
comprehensiveness of verification. Meanwhile, it takes 
too long for both applicants and representatives to 
complete a verification procedure. 

In this paper, we propose a decentralized and 
automatic verification method, a committee-based 
applicant verification method (CAVM), to help 
members in a VO to verify new applicants 
comprehensively, automatically and objectively. The 
most trustworthy and informed members in the VO are 
selected as representatives to found a VO committee to 
verify new applicants. Each representative contributes 
their judgments to the committee and a fuzzy 
decision-making scheme is proposed to make a 



compromising decision after comprehensive 
consideration of all these judgments. CAVM is 
particularly compared with the eBay reputation system 
(ERS) [10], the most widely used reputation system for 
e-commerce. Simulation and analysis results show 
CAVM is more accurate, stable and scalable than ERS. 

The rest of this paper is organized as follows. Some 
relevant technologies including committee based 
recognition method and ERS are introduced in Section 
2. CAVM is presented in details in Section 3 and 
performance of CAVM compared with ERS via 
simulation is included in Section 4. The paper 
concludes in Section 5. 
 
2. Related Work 
 

Member verification on Internet is a fundamental 
issue for all types of virtual communities, including 
P2P, e-commerce, grids and CI. As e-commerce is the 
most established driven force for virtual communities, 
many reputation systems are proposed to help buyers 
evaluate and verify unacquainted sellers online. 

As a trade platform for buyers and sellers, an 
e-commerce system usually provides a reputation 
system for buyers to evaluate unknown sellers online, 
conduct successful trade and inhibit malicious and 
deceitful behaviors [11]. When a trade is completed, 
the buyer will provide a feedback to the seller, which is 
finally accumulated and calculated as the seller’s 
reputation value. Reputation models in e-commerce 
can be roughly classified into two types: the 
accumulated reputation model and average reputation 
model. In the accumulate reputation model, feedbacks 
from buyers on a seller are accumulated as current 
reputation value of the seller. eBay [12, 13], Yahoo! 
and TaoBao [14] all adopt the accumulated trust model. 
The average trust model also accumulates all feedbacks 
to a seller, though divided by the number of feedbacks. 
Amazon and AuctionSoup adopt the average reputation 
model. Among existing reputation systems for 
e-commerce, ERS is most successful and referred by 
many other companies. In this paper, we compare 
CAVM with ERS for performance evaluation of our 
approach. The ERS is calculated following three 
simple policies: 

 A buyer can give three different feedbacks, 
positive feedback 1, neutral feedback 0 or 
negative feedback -1, to a seller after a deal. 

 The feedback to a seller is added to its current 
reputation value. The higher reputation is, the 
more trustworthy the seller is. 

 A buyer is not allowed to provide more than 1 or 
less than -1 feedback to one seller in one month, 
which can avoid collusive deceitful behaviors. 

While reputation systems for e-commerce provide 
an effective and feasible solution to seller evaluation, 
they cannot be directly applied in a CI environment for 
two reasons. 

 Since a VO may have various requirements for 
new applicants, single reputation value can’t 
provide sufficient information to evaluate and 
verify whether or not an applicant is totally 
consistent with complex VO policies. 

 Reputation systems can be cheated by collusive 
deceitful behaviors when a coconspirator 
provides fictitious positive feedbacks to a certain 
member. 

The committee has been widely used in real world 
scenarios to evaluate and verify an applicant to an 
organization. Inspired by this strategy, we design an 
automatic committee based decision making method to 
evaluate and verify new applicants, which can make a 
more comprehensive, reliable and robust decision 
whether or not an applicant is consistent with VO 
policies. In the next section, a detailed introduction to 
CAVM is given below. 
 
3. Committee-based Applicant Verification 
 

 Figure 1. The architecture of CAVM 
CAVM is a decentralized method consisting of two 

layers as shown in Figure 1: the representative layer 
making judgment individually and contributing them to 
the committee and the committee layer collecting 
judgments from representatives and making a 
comprehensive and compromising decision. The main 
purpose of CAVM is to evaluate the applicant into two 
classes: the one who is trustworthy and consistent with 



VO policies and the one who is distrustful or has 
conflicting usage plan against VO policies. CAVM 
tries to consider opinions from all members and make a 
comprehensive decision. 

In this paper, we generally use nodes to present both 
resource providers and users in the CI, and members to 
represent that a node belongs to a certain VO. The 
applicant is the node who wants to join the VO. 

The VO administrator is responsible for selecting 
the most trustworthy, informed or important VO 
members as representatives of the VO committee. 
Since in virtual communities, member activity 
distribution obeys the Power-law [15, 16], it is 
reasonable to use the selected representatives to present 
opinions of all other members. The VO administrator 
can monitor all members and directly select the most 
trustworthy and informed members, who have 
relatively higher reputation values, as representatives. 

 
3.1 The Representative Layer using FKNN 
 

There are many types of pattern recognition 
methods for classification issues, including neural 
networks, fuzzy k-nearest neighbor (FKNN) classifier, 
Bayesian classifier, support vector machine (SVM) and 
so on. The Bayesian classifier requires to know the 
possibility distribution, SVM can’t provide reliability 
theoretical analysis and neural networks may be 
unstable without mathematical theory supports. 
Compared with other methods, FKNN is a reliable and 
stable method with little overhead and strict 
mathematical support in theory and is good at 
classifying unknown samples with sparsity learning 
samples. In CAVM, we adopt FKNN as the method to 
classify applicants at the representative layer. 

We divide a new applicant into three types: the one 
which is trustworthy, the one which needs to be further 
determined and the one which should be rejected. We 
denote the three types as p1, p2, and p3, respectively. 
Each representative has a learning table recording the 
nodes which have been already classified based on this 
representative’ past individual interaction history, as 
shown in Figure 2. 

 
Figure 2. The learning table of a representative 

The node in the table is described with the target 
vector x and classified with membership vector 
M=(μ1,μ2,μ3), respectively representing the membership 
degree of belonging to the set p1, p2, or p3. To evaluate 
a new applicant f, the representative firstly selects k 
nearest neighbors based on the distance to the target 
vector. The distance between x1 and x2 is calculated as: 

1 2 1 2x x x x− = • . 
Assuming the new applicant is f with the target 

vector xf and k nearest neighbors of f is xh, h=1,2…k, 
and the hth node has the target vector x.h and 
membership Mh=(μh
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where b is the weight that defines how the distance will 
affect the membership. 
 
3.2 The Committee Layer using FDMM 
 

The fuzzy decision making mechanism (FDMM) 
has two advantages, capability to handle uncertainty, 
fuzziness, and incomplete information adaptively and 
capability to make comprehensive decisions by 
integrating multiple factors. Considering weightiness 
discrepancy among different representatives and 
robustness of decisions, we use FDMM to 
comprehensively evaluate and aggregate various 
judgments from representatives [17, 18, 19]. In general, 
FDMM consists of four elements: 

 The factor set, the list of representatives in our 
application; 

 The weight vector, indicating the power that 
preventative affects on the final decision; 

 The factor membership matrix, consisting of 
judgments about an applicant that representatives 
in the committee make; 

 The evaluation set, the final decision that 
committee makes based on judgments from 
representatives and the weight vector. 

Assuming there are n representatives in the 
committee, the ith representative submits a judgment 
vector Mi of the applicant h to the committee and these 
judgments are aggregated and considered with the 
weight vector A=(a1,a2,…….an), respectively, 



representing the importance of corresponding 
representatives. 0 means totally unimportant and 1 
means very important. 

The factor membership matrix R is: 
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representative. The M(∧ ) model is used to calculate 
and normalize the evaluation set B. 
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where bj represents the percentage degree the 
committee think the applicant should belongs to the 
class pj. The committee can configure a threshold for bj. 
If there is a bj higher than the threshold, the committee 
will classify the applicant as pj, since this decision can 
represent the majority view of the committee or VO 
members. If there is no bj higher than the threshold, the 
committee can choose the highest one as the final 
decision or check up the applicant further. 
 
4. Performance Evaluation 
 

Currently no automatic verification system has been 
developed and deployed in any grid or CI environment, 
in which evaluation and verification procedures are 
accomplished artificially by an appointed and 
trustworthy expert. However, reputation systems have 
been widely used to assist buyers to evaluate 
unacquainted sellers in e-commerce environments. In 
this section, we compare our CAVM with ERS, which 
is regarded as the most successful and widely used 
system, and test CAVM performance by simulation 
experiments. 

 
4.1 Simulation Configurations 
 

In order to evaluate the CAVM performance, a 
simulated e-commerce environment is implemented 
with a reputation system totally consistent with that 
developed by eBay. 

In the simulation environment, we assume there are 
a number of buyers and sellers and interactions occur 
between buyers and sellers at random. When an 
interaction is finished, a feedback is produced from the 
buyer to the seller. Also, continuous feedbacks from a 
buyer to a seller in a short time is not allowed 
according to ERS, which may be collusive deceitful or 
malicious behaviors. The behavior pattern of a seller is 
described using the vector PT=(pt1, pt2, pt3), 
respectively representing possibilities of receiving 
positive feedbacks, neutral feedbacks and negative 
feedbacks. A seller who sells commodity with good 
quality has higher possibility of receiving positive 
feedbacks (can’t guarantee all feedbacks are positive) 
while the seller who sells the counterfeit has higher 
possibility of receiving negative feedbacks (can also 
receive positive feedbacks). Detailed simulation 
configurations are included in Table 1 and described 
below. 

Table 1. Parameters in the simulation 
Number of sellers 100 
Number of buyers 500 
Number of representatives 5 
Interaction frequency: 100/period 
k (For FKNN classifier) 3 
Classification threshold 0.5 
Trustworthy seller: pt1 0.95-1 
Trustworthy seller: pt2 0-0.01 
Trustworthy seller: pt3 0-0.04 

Deceitful seller: pt1 0.75-0.8 

Deceitful seller: pt2 0.04-0.11 

Deceitful seller: pt3 0.12-0.16 

Number of deceitful sellers 10 

Deceitful interaction frequency 2-5/period 

4.1.1. Configurations for ERS. In the simulation, 
the reputation of a seller is accumulated by feedbacks 
from buyers according to ERS regulations: one 
positive feedback adds 1, one neutral feedback adds 0 
and one negative feedback adds -1 to the reputation 
value. Continuous feedbacks within a month are 
forbidden to avoid collusive deceitful behaviors. 
According to the record in eBay, generally speaking, 
the number of interactions that occur in a month 
distributes mainly from 10 to 500. Since trade 
activities obey the Power-law [15, 16], it is reasonable 



to estimate that about 100 interactions occur every 
month on average. We assume there are about 100 
interactions in a simulation period, representing 
interactions in a month in the actual systems, in which 
one buyer can provide feedbacks to one buyer only 
once. 

4.1.2. Configurations for CAVM. In our 
simulation, CAVM obtains the three values, positive 
feedback value x1, neutral feedback value x2 and 
negative feedback value x3 as target vector x=( x1, x2, 
x3). Sellers are also divided into three classes: the 
trustworthy, the one need further artificial verification 
and the deceitful, respectively denoted as p1, p2, and p3. 
When a failed interaction occurs between a 
representative and a seller, e.g. the seller sells a 
counterfeit to a representative, the representative will 
record this seller on his learning table as a classified 
sample for FKNN. The representative also learns when 
a successful interaction occurs. We just select the most 
informed buyers as representatives to found the 
committee. At the committee layer, the classification 
threshold 

4.1.3. Deceitful behaviors. Deceitful behaviors 
always result in more accumulated positive feedbacks 
and would not have impact on the number of negative 
feedbacks. We simulate all types of deceitful behaviors 
by adding 2-5 positive feedbacks to a deceitful seller in 
each period, as the deceitful interaction frequency is set 
to 2-5 per period. Totally there are 10 deceitful sellers 
configured in the environment. 

In order to obtain a statistical result, we repeat every 
experiment for ten times, the data shown in the figures 
below are mean values from 10 repeated experiments. 

 
4.2 Performance Metrics 
 

The main purpose of both ERS and CAVM is to 
distinguish deceitful members from trustworthy ones. 
Deceitful members may also have high reputation 
values due to collusive or any other deceitful behaviors. 
So main metrics should be defined to evaluate the 
performance of member classification. Errors of 
classifying trustworthy members as deceitful ones are 
negative errors (NE) and errors of classifying deceitful 
members as trustworthy ones are positive errors (PE). 

ERS doesn’t directly classify the sellers but just 
provide buyers with a referred rank, which is sorted by 
sellers’ reputation values. We define positive errors 
and negative errors for ERS as follows: 

PE = (Number of deceitful sellers with higher 
reputation than a trustworthy seller) / (Number of 
deceitful sellers); 

NE = (Number of trustworthy sellers with lower 
reputation than a deceitful seller) / (Number of 
trustworthy sellers). 

For CAVM, NE and PE are calculated exactly as 
defined: 

PE = (Number of deceitful members classified as 
trustworthy ones) / (Number of deceitful members); 

NE = (Number of trustworthy members classified as 
deceitful ones) / (Number of trustworthy members). 

Obviously, the smaller PE and NE are, the higher 
performance of a reputation system. However, PE and 
NE changes as external environments or parameters 
change. An ideal classifier should be robust over 
different environments and parameters. We compare 
the performance of CAVM with that of ERS over 
different external environments in Section 4.3, which 
indicate that errors of CAVM is only a quarter of that 
of ERS. To evaluate robustness of our approach, we 
further check up PE and NE of CAVM with different 
parameters in Section 4.4 and find some optimal values 
as parameters evolve. 

 
4.3 Performance Comparison over External 
Environments 
 

There are two external factors having potential 
impact on the performance of CAVM and ERS, 
simulation time represented using the number of 
periods and the percentage of deceitful members in the 
environment. We investigate the performance of 
CAVM and ERS against these two configurations. 

Figures 3 and 4 indicate how the performance of 
CAVM and ERS evolves as simulation time increases. 
The mean value of PE of CAVM is 1.98% and that of 
ERS is 7.75%, which is four times of that of CAVM. 
The mean value of NE of CAVM is 0.34% and that of 
ERS is 1.94%, which is five times of that of CAVM. It 
is obvious that CAVM has much higher performance 
than ERS as the system evolves over time. 
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Figure 3. PE comparison of CAVM and ERS 

over time 
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Figure 4. NE comparison of CAVM and ERS 

over Time 

Besides that, we can find that NE and PE for both 
ERS and CAVM decrease as the number of 
interactions increases. That is because the longer a 
seller is observed, the more accurate the conclusion 
would be. The principle that one buyer can only give a 
feedback to a particular seller during one period limits 
the scale of deceitful behaviors. The effect of deceitful 
behaviors, which add limited falsehood positive 
feedbacks to a seller in every period, decreases as the 
number of period increases, since the final reputation 
mainly consists of feedbacks produced by real 
interactions. As shown in Figures 3 and 4, after about 
two periods with 200 interactions, CAVM and ERS 
have nearly the same performances and can classify 
sellers with very low NE and PE. 

However, in an actual environment most of sellers 
have low reputation values and small number of 
historical interactions. In fact, the number of sellers 
distribute over reputation values based on an 
exponential distribution [15, 16]. So it is a significant 
problem to verify sellers with short historical data and 
low reputation values. As shown in Figures 3 and 4, 
ERS can’t classify sellers with short histories 
accurately due to deceitful behaviors. That is why 
buyers prefer to choose sellers that have joined the 
eBay community for a long time, since only in this 
case, the reputation value of a seller is trustworthy and 
reliable. 

CAVM can still identify most of deceitful members 
with very low NE and PE even if these members have 
short interaction histories. The first reason is that we 
comprehensively consider all three types of feedbacks 
to evaluate a member, not just positive feedbacks. The 
second is representatives in the committee contribute 
their own judgments to make a more general decision, 
which corresponds to expand the learning sample with 
different weights in FKNN. Compared with directly 
integrating learning samples from the representative to 
train one FKNN classifier, in CAVM, the most 

deceitful member has the highest frequency appearing 
in different representatives, which means they have 
more influence on the classifier and so are trustworthy 
members. In this way CAVM provides better 
performance than a single FKNN. 

Figures 5 and 6 show the robustness of CAVM over 
different numbers of deceitful members. In this 
experiment, the simulation time equals to 0.25 period. 
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Figure 5. PE comparison of CAVM and ERS 
against the number of deceitful members 
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Figure 6. NE comparison of CAVM and ERS 
against the number of deceitful members 

For ERS, PE decreases along but NE increases 
along with the percentage of deceitful members. But 
the absolute number of members classified into the 
wrong class increases. Both NE and PE for ERS are 
higher than those of CAVM. 

For CAVM, the NE and PE keep stable over 
different percentages of deceitful members. This is 
because the accuracy and sensitiveness of CAVM is 
only influenced by learning samples of representatives, 
the configuration of FKNN and the number of 
representatives in the committee. 

 
4.4 CAVM Parameter Analysis 
 

There are two parameters that have impact on the 
final performance of CAVM, the number of 
representatives in the committee and the value of k for 
FKNN at the representative layer. We analyze the 
stableness of CAVM over these two parameters in 
Figures 7 and 8. 
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Figure 7. Performance of CAVM with different 

numbers of representatives 

Figure 7 shows how the committee size influences 
the performance of CAVM. Generally speaking, more 
representatives lead to higher performance, namely 
lower PE and NE, because a larger committee contains 
more learning samples and covers large scale of 
situations.  However, as illustrated in Figure 7, we 
can conclude that NE varies little no matter how many 
representatives involved in the committee. PE 
dramatically decreases if the number of representatives 
in the committee increases from 2 to 6 and keeps stable 
after that. That means the effect of the representative 
reduces to nearly zero if the committee already 
includes 6 representatives. Since the overhead of 
CAVM increases with the number of representatives, it 
is most efficient to include six representatives in the 
committee in our simulation experiments. 

From Figure 7, we can conclude that there is a 
turning point for the number of representatives in 
CAVM. Before the turning point, the more 
representatives in the committee, the better 
performance of CAVM. After the turning point, the 
effect of adding new representatives in the committee 
decreases to almost zero. This turning point defines the 
optimal number of representatives in the committee for 
a certain application. This number is influenced by the 
number of deceitful members and the number of 
learning samples recorded by the representatives. 
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Figure 8. Performance of CAVM with different k 

values for FKNN 

Figure 8 shows the performance of CAVM using 
different k values in FKNN. The overall trend is that 

PE and NE decrease as k increases. This is because 
more available learning samples in FKNN lead to a 
more accurate and comprehensive judgment. But this 
also brings more overhead for CAVM. We can find 
there is an inconspicuous turning point at k=3. If k is 
smaller than 3, the number of nearest neighbors has 
greater effect than that after k=3, on both PE and NE of 
CAVM. But after that point, the effect of k decreases 
though still reduces NE and PE. 

Figure 8 proves that there also exists a turning point 
of k for the performance of CAVM. The effect of the 
number of available samples for a representative 
changes at the turning point: before that turning point, 
k has greater influence on CAVM performance but this 
effect greatly decreases after that point. This turning 
point indicates an optimal k value for an application. 
This number is influenced by the behavior pattern 
definition and the percentage of deceitful members. 

Figures 7 and 8 show that performance of CAVM 
keep stable over different parameters. Also there exist 
optimal values for the number of representatives and k. 
We can get highest performance/cost ratio of CAVM 
using these parameter values at turning points. 

 
5. Conclusion and Future Work 
 

In this paper, we propose a committee-based 
applicant verification method for a CI environment to 
provide trust and reputation supports on building 
grid-type dynamic virtual organizations. The proposed 
implementation consists of the FKNN classifier on the 
representative layer and the fuzzy decision making 
scheme on the committee layer. 

CAVM is a decentralized verification method used 
in a CI environment, which can provide stable, reliable 
and scalable services to help VO evaluate new 
applicants comprehensively and automatically. 
Because there is no other well-developed evaluation 
and verification method for CI currently, we evaluate 
the performance of CAVM by comparing it with the 
reputation system of eBay, which is widely used and 
referred. A simulation environment is developed to 
compare the performance of CAVM and ERS with 
different configurations and parameters. Experimental 
results show that CAVM can provide more accurate 
and stable evaluation services than ERS. Its 
decentralized architecture also ensures CAVM has 
high scalability and adaptability for CI applications.  

Future work include implementation and 
deployment of CAVM in real world CI testbeds (e.g. 
OSG) and integration of CAVM trust and reputation 
management with VOMS. 
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