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A computational grid is a hardware and software infrastructure that provides 

dependable, consistent, pervasive, and inexpensive access to high-end 

computational capability. An ideal grid environment should provide access to the 

available resources in a seamless manner. Resource management is an important 

infrastructural component of a grid computing environment. The overall aim of 

resource management is to efficiently schedule applications that need to utilise the 

available resources in the grid environment. Such goals within the high 

performance community will rely on accurate performance prediction capabilities. 

An existing toolkit, known as PACE (Performance Analysis and Characterisation 

Environment), is used to provide quantitative data concerning the performance of 

sophisticated applications running on high performance resources. In this thesis an 

ASCI (Accelerated Strategic Computing Initiative) kernel application, Sweep3D, 

is used to illustrate the PACE performance prediction capabilities. The validation 

results show that a reasonable accuracy can be obtained, cross-platform 

comparisons can be easily undertaken, and the process benefits from a rapid 

evaluation time. While extremely well-suited for managing a locally distributed 

multi-computer, the PACE functions do not map well onto a wide-area 

environment, where heterogeneity, multiple administrative domains, and 
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communication irregularities dramatically complicate the job of resource 

management. Scalability and adaptability are two key challenges that must be 

addressed. 

In this thesis, an A4 (Agile Architecture and Autonomous Agents) methodology is 

introduced for the development of large-scale distributed software systems with 

highly dynamic behaviours. An agent is considered to be both a service provider 

and a service requestor. Agents are organised into a hierarchy with service 

advertisement and discovery capabilities. There are four main performance 

metrics for an A4 system: service discovery speed, agent system efficiency, 

workload balancing, and discovery success rate. 

Coupling the A4 methodology with PACE functions, results in an Agent-based 

Resource Management System (ARMS), which is implemented for grid 

computing. The PACE functions supply accurate performance information (e.g. 

execution time) as input to a local resource scheduler on the fly. At a meta-level, 

agents advertise their service information and cooperate with each other to 

discover available resources for grid-enabled applications. A Performance 

Monitor and Advisor (PMA) is also developed in ARMS to optimise the 

performance of the agent behaviours. 

The PMA is capable of performance modelling and simulation about the agents in 

ARMS and can be used to improve overall system performance. The PMA can 

monitor agent behaviours in ARMS and reconfigure them with optimised 

strategies, which include the use of ACTs (Agent Capability Tables), limited 

service lifetime, limited scope for service advertisement and discovery, agent 

mobility and service distribution, etc. 

The main contribution of this work is that it provides a methodology and 

prototype implementation of a grid Resource Management System (RMS). The 

system includes a number of original features that cannot be found in existing 

research solutions. 
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IINNTTRROODDUUCCTTIIOONN  

 

In fifty years, the raw speed of individual computers has increased by around one 

million times. However, they are still too slow for more and more scientific 

problems. For example, in some physics applications, data is produced by the 

fastest contemporary supercomputer, and it is clear that the analysis of this data 

would need much more computing power. 

One solution to the computing power challenge leads to the research on Cluster 

Computing [Buyya1999]. Multiple individual computers can be linked into each 

other and work together to provide high computing capabilities. For example, the 

ASCI white system at Lawrence Livermore National Laboratory in the USA 

currently is the No. 1 supercomputer in the TOP500 list. This consists of SMP 

(Symmetric Multi-Processor) nodes, each containing 16 processors and clustered 

together using a high performance interconnect. Although clustering technologies 

enable a great deal of progress in providing computing power, a cluster remains a 

separate machine, dedicated to a specific purpose, and not being able to scale 

across organisation boundaries, which limits how large such a system can 

become. 
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With the rapid development of communication technologies, Internet Computing 

[Foster2000] provides another attempt towards supplying computing power in a 

more decentralised way. There are millions of powerful PCs around the world, 

however, most of them are idle much of the time. It is thought possible to harness 

these free CPU cycles so that scientists could solve important problems via the 

Internet. However, the real requirements may become much more complex. Email 

and the Web can only provide basic mechanisms for scientists to work together. 

Scientists may also want to link their data, their computers, and other resources 

together to provide a virtual laboratory [Foster2001]. The so-called Grid 

Computing technologies seek to make this possible. 

1.1 Grid Computing 

Civilisation has benefited from many successful infrastructures developed during 

20th century. These include road systems, railways, the power grid, the telephone 

system, and the Internet. Once you press a light switch in a room, the light turns 

on. One can use it without knowing where the power comes from. The Internet is 

the latest important infrastructure, which is often referred to as the information 

highway. Given a domain name, you can get the information you want from your 

computer without knowing where the information comes from and how it reaches 

you. 

The emerging concepts such as “The network is the computer” , “world-wide 

computer” , and “ information power grid”  [Leinberger1999] enable researchers in 

the high performance community to seek a new infrastructure that can provide not 

only information, but also high-end computing capabilities through networks. 

Once connected via your resource-short notebook to the network, it would be 

possible to run large scientific programs without worrying where the computing 

power comes from and whether it is a supercomputer in the US, Europe, or Japan 

that is actually doing computation for you. 

A computational grid is a hardware and software infrastructure that provides 

dependable, consistent, pervasive, and inexpensive access to high-end 
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computational capability [Foster1998]. It provides the protocols, services, and 

software development kits needed to enable flexible, controlled resource sharing 

on a large scale. The main components in the grid architecture include 

[Baker2001]: 

• Grid Fabric - Comprising global resources geographically distributed and 

accessible from anywhere on the Internet. These resources might include 

computers (such as PCs and workstations running operating systems such 

as UNIX or Windows NT), supercomputers, clusters (running cluster 

operating systems or resource management systems), databases, and other 

special scientific instruments. 

• Grid Services - Offering core services, such as information, 

communication, naming, resource management, performance analysis, 

visualisation, security and authentication, accounting, etc. 

• Grid Tools - Providing high-level services allow programmers to develop 

grid applications. These services include languages, libraries, APIs, SDKs, 

debuggers, web tools, etc. 

• Grid Applications - Grid-enabled applications developed using grid tools. 

There are many kinds of potential grid applications, such as wide-area 

distributed supercomputing, high-throughput computing, data-intensive 

computing, on-demand computing, etc. 

The research into grid computing technologies can be split into three main phases: 

• Exploration phase (- 1998). Several early attempts, which are now 

considered to be the classical projects in grid research, started with 

different motivation and together build an umbrella termed 

“Computational Grids” . The key sign during this phase is the emergence 

of the GUSTO (Globus Ubiquitous Supercomputing Testbed), a prototype 

for future computational grids. Also the publication of the book in 1998, 

“The GRID – Blueprint for a New Computing Infrastructure”  

[Foster1998], indicate that the concept of the grid comes into being. 
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• Spreading phase (1998 - 2001). During this period, the concept of the grid 

has spread very rapidly. Researchers from the high performance 

community and others give annotations to the concepts from different 

views. Many projects begin to fit their research backgrounds into this new 

context. The key sign of this phase is that in March 2001, 360 researchers 

from USA, Europe, and Japan attended the first global grid forum (GGF1) 

held in Amsterdam (with 60 people having registration refused), and in 

May about 200 researchers from all over the world attended the first 

IEEE/ACM international symposium on cluster computing and the grid 

(CCGrid2001) held in Brisbane, Australia. 

• Exploding phase (2001 -). Entering the new millennium, grid computing is 

considered to be an active research field with great potential and well 

known by most of computer scientists. Researchers from different fields of 

computer science will contribute work in this context. Companies support 

related activities on grid research. Governments begin to make plans to 

support native grid research and development. For example, the European 

Union gives 9.8 million euros funding over three years in support of the 

DataGrid project [Segal2000]. The UK Department of Industry also 

earmarked a large sum of money for their e-Science activities [Hey2001]. 

However, a practical grid environment does not yet exist. It is clear that the grid 

software infrastructure will be a large-scale distributed software system that is 

perhaps more complex than any existing software system. The most essential parts 

of the grid are its services, which act as middleware between grid resources and 

grid-enabled applications. Currently many grid-oriented software systems are 

being developed separately with different motivations, methodologies and tools. 

Many new ideas in them are important to accelerate the grid development. In 

order to integrate existing efforts and put the grid into practice, advanced software 

engineering methodology and technologies should be applied for the grid 

infrastructure development. 
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1.2 Software Agents 

Software agents are becoming an important software development technology. 

The key sign of this trend is the emergence of diverse applications and approaches 

in many different areas [Bradshaw1997], including intelligent user interfaces 

[Lieberman1997], industry [Parunak1998], electronic commerce [Nwana1998], 

business process management [Jennings2000], digital libraries [Atkins1996], 

electronic meeting [Chen1996], entertainment [Maes1995], network management 

[Davison1998], and so on. 

Agents are computer systems, capable of flexible, autonomous action in dynamic, 

unpredictable, typically multi-agent domains. Autonomy is the most essential 

feature, which differentiate the agent from other simple programs. Unfortunately, 

as mentioned in [Jennings1998], autonomy is a difficult concept to pin down 

precisely, but we mean it simply in the sense that the system should be able to act 

without the direct intervention of humans (or other agents), and should have 

control over its own actions and internal state. 

There are basically two different ways for agents to achieve autonomy: 

intelligence and social ability. Intelligence means that an agent can achieve the 

autonomy by an AI approach within the ability of itself, such as personality, 

emotion, self-learning, life-like, knowledge reasoning, etc. Social ability means 

that an agent achieves its autonomy by relationships with the other agents in a 

Multi-Agent System (MAS), such as communication via an Agent 

Communication Language (ACL), coordination, negotiation, evolution, self-

organisation, market mechanism, and mobility, etc. 

For any new technology to be considered to be useful, it must offer either the 

ability to solve problems that have hitherto not been solved or the ability to solve 

problems that can already be solved in a significantly better (cheaper, more 

natural, easier, more efficient, or faster) way [Jennings2001b]. Software agents 

can be used to develop three classes of system: 
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• Open systems. An open system is one in which the structure of the system 

itself is capable of dynamically changing. The characteristics of such a 

system are that its components are not known in advance, can change over 

time, and may be highly heterogeneous. The best-known example of a 

highly open software environment is the Internet; and the grid is likely to 

also be an open system on a scale possibly larger than the Internet. The 

functionality is almost certain to require techniques based on negotiation 

or cooperation, which lie very firmly in the domain of MAS. 

• Complex systems. The most powerful tools for handling complexity in 

software development are modularity and abstraction. Agents represent a 

powerful tool for making systems modular. They can provide a useful 

abstraction in just the same way those procedures, abstract data types, and 

objects provide abstractions. They allow a software developer to 

conceptualise a complex software system as a society of cooperating 

autonomous problem solvers. For many applications, this high-level view 

is simply more appropriate than the alternatives. 

• Ubiquitous computing systems. Interaction between computer and user 

must become an equal partnership. The machine should not just act as a 

dumb receptor of task descriptions, but should cooperate with the user to 

achieve their goal. These considerations give rise to the idea of an agent 

acting as an expert assistant with respect to some application, 

knowledgeable about both the application itself and the user, and capable 

of acting with the user in order to achieve the user’s goals. 

Software agents have been accepted as a powerful high-level abstraction for the 

modelling of complex software systems like the grid software infrastructure. 

However, though in current grid-oriented software systems agent technology has 

been used in different ways, many new techniques developed in agent research 

have not yet been applied. The work described in this thesis integrates agent, 

performance, and scheduling technologies to implement one of the most important 

grid services, resource management. 
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1.3 Thesis Contributions 

In this work the methodology, tools and implementation of agent-based resource 

management for grid computing are introduced. The performance prediction 

capabilities are used to provide quantitative data concerning the performance of 

sophisticated applications running on local high performance resources. At a 

metacomputing level, agents cooperate with each other and perform resource 

advertisement and discovery functions to schedule applications that need to utilise 

the available resources. The performance of the agent system can be also 

monitored, simulated, steered, and improved. The main contributions of this thesis 

include: 

• Performance prediction driven QoS (Quality of Service) support of 

resource management and scheduling. Existing performance evaluation 

technologies can provide accurate prediction information regarding the 

execution of parallel and distributed applications. In this work, we 

integrate these performance prediction capabilities into resource 

management for grid computing. This is a key feature that differentiates 

this work from other solutions. 

• Agent-based hierarchical model for service discovery. Agent hierarchies 

can be found in other agent applications [Ciancarini1999]. In this work, a 

hierarchy of homogenous agents with service advertisement and discovery 

capabilities is defined at a meta-level of a grid computing environment. 

This provides the first scalable agent-based resource management system 

for grid computing. 

• Simulation-based performance optimisation and steering of agent-based 

service discovery. Most current grid resource management infrastructures 

focus on the implementation of data models and communication protocols. 

Performance issues have not been the key consideration of these systems. 

In our work, we focus more on performance optimisation of agent 

behaviours for service discovery. Several optimisation strategies and 

steering policies are provided and simulation tools and results are included 
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to show their impact on the overall system performance. To the authors’  

knowledge, this cannot be found in any of other works. 

In summary, all of the above provide an available methodology and prototype 

implementation of agent-based resource management for grid computing, which 

can be used as a fundamental framework for further improvement and refinement. 

However, there are still some limitations on the system implementation aspect of 

this work. 

• An existing PACE toolkit is used to provide performance prediction 

capabilities. For example, the PACE application performance modelling is 

based on the source code analysis, and a PACE resource model includes 

only static performance information of a resource. 

• In the implementation of the agent-based grid resource management 

system, grid applications refer to only scientific computing applications 

that are computing intensive rather than data intensive, and grid resources 

are considered to be providers of high performance computing power 

rather than storage capabilities. 

• While the performance monitoring and optimisation of agent behaviours 

are described as automatic processes, this is not implemented in the system 

described in this work. The use of the performance optimisation strategies 

and steering policies must be supervised by a system manager. 

1.4 Thesis Outline 

The introduction to agent-based resource management is divided into four parts. 

The PACE performance prediction capabilities are described using a parallel 

benchmarking program, Sweep3D. The agent hierarchy is included in the 

introduction of an A4 methodology. An initial implementation of the agent-based 

resource management for grid computing, ARMS, is given in an individual 

chapter. And the following chapter gives details of performance optimisation 

issues and an implementation of a performance monitor and advisor (PMA) in the 

ARMS. 
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The remaining parts of the thesis is organised in the following way: 

Chapter 2 reviews existing performance techniques for parallel and 

distributed applications. The PACE toolkit, developed at the 

University of Warwick, is presented in greater detail. 

Several current solutions to grid resource management are 

also described and compared. Current challenges are then 

summarised. 

Chapter 3 reviews existing agent infrastructure and service discovery 

techniques. The state of the art of agent technologies for 

grid computing is also summarised. 

Chapter 4 introduces Sweep3D, a case study of performance 

evaluation using the PACE toolkit. The PACE performance 

model for Sweep3D is given in some detail. Validation 

results on different platforms with different data sizes are 

also included to show the prediction capabilities of PACE. 

Chapter 5 presents the A4 methodology, agile architecture and 

autonomous agents, which can be used to build large-scale 

distributed systems that exhibit highly dynamic behaviour. 

The main issues include agent hierarchy, agent structure, 

agent capability tables, service advertisement and 

discovery, performance metrics. A simulator for A4 has 

been developed and is used to illustrate these issues. 

Chapter 6 describes an implementation of an agent-based resource 

management system for grid computing, ARMS, which 

integrates PACE functions using the A4 methodology. The 

ARMS architecture and agent structure are presented in 

detail. The main modules in an ARMS agent include a 

communication module, an ACT (Agent Capability Tables) 

manager, a scheduler and a matchmaker. Experiments are 
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also included to show the grid resource management 

capabilities of ARMS. 

Chapter 7 discusses performance optimisation issues that arise from 

the agent system of ARMS. A special agent, PMA, acts as a 

performance monitor and advisor for ARMS, which is 

capable of performance modelling and simulation for agent 

resource discovery. Some optimisation strategies are 

suggested, including use of ACTs, limit resource lifetime, 

limit scope for resource advertisement and discovery, etc. 

Chapter 8 draws conclusions from the work presented in this thesis 

and offers suggestions for future improvement to the 

methodology, tools, and implementation. 
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The grid, composed of distributed and often heterogeneous computing resources, 

is becoming the platform-of-choice for many performance-challenged 

applications. Proof-of-concept implementations have demonstrated that the grid 

environment has the potential to provide great performance benefits to parallel 

and distributed computing applications. The current research into grid computing 

aims to provide access to a multitude of processing systems in a seamless fashion. 

That is, from a user’s perspective, applications may be executed on such a grid 

without the need to know which systems are being used, or where they are 

physically located. The overall aim of resource management is to efficiently 

schedule applications that need to utilise the available resources in the grid 

environment. Such goals within the high performance community will rely on 

accurate performance evaluation, analysis and scheduling. 

2.1 Performance Evaluation 

An increasing number of applications are being developed to run on parallel 

systems. An underlying goal in the use of high performance systems is to apply 

complex systems to achieve rapid application execution times. Whether there will 
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be impressive gains in cost-performance make performance a key issue in parallel 

computing. For decades, the quantitative evaluation of computer performance has 

been applied to the entire life cycle of a system. These methods assist in the 

prediction, analysis, scheduling, and tuning of the performance of computers. 

Numerous methodologies have been developed to evaluate the performance of 

computer systems. These can be organised into four main groups: benchmarking, 

analytical modelling, simulation, and monitoring. In benchmarking pre-defined 

workloads are run on systems to obtain performance measurements, which can be 

used as a basis for performance comparisons. Modelling methodologies require 

the construction of a mathematical or logical relationship that represents the 

behaviour of the system. The evaluation of this representation is performed by 

either analytical based techniques or by simulation. Monitoring tools can also be 

used to measure and analyse the performance of parallel systems. Performance 

studies often use more than one technique simultaneously to validate and verify 

the results of each other. 

The techniques and tools that are being developed for the performance evaluation 

of parallel and distributed computing systems are many-fold, each having their 

own motivation and methodology. The main research projects currently in 

progress in this area are summarised in Table 2.1. A more detailed overview of 

previous performance evaluation methods and tools can be found in 

[Papaefstathiou1995b]. 

Name Unit Description 

AppLeS 
[Berma
n1996] 

Grid Computing 
Lab., 
Dept. of Computer 
Science and 
Engineering, 
Univ. of California, 
San Diego 

This is an application-level scheduler using expected 
performance as an aid. Performance predictions are 
generated from structural models, consisting of 
components that represent the performance activities 
of the application. 

CHAOS 
[Uysal1
998] 

High Performance 
Systems Software 
Lab., 
Dept. of Computer 
Science, 

A part of this work is concerned with the 
performance prediction of large-scale data intensive 
applications on large-scale parallel machines. It 
includes a simulation-based framework to predict the 
performance of these applications on existing and 
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Univ. of Maryland future parallel machines. 
PACE 
[Nudd2
000] 

High Performance 
Systems Lab., 
Dept. of Computer 
Science, 
Univ. of Warwick, 
UK 

PACE is a performance prediction toolkit suitable for 
a non-performance expert. PACE supports the 
development of performance prediction models for 
sequential and parallel applications running on high 
performance systems. It is based on a layered 
characterisation methodology, and is an analytical 
approach that organises a performance model into 
three separate layers: application, parallelisation, and 
hardware. 

Paradyn 
[Miller1
995] 

Paradyn Group, 
Dept. of Computer 
Science, Univ. of 
Wisconsin-
Madison 

Paradyn is a performance measurement tool for 
parallel and distributed programs. Paradyn scales to 
long running programs (hours or days) and large 
(thousand node) systems, and automates much of the 
search for performance bottlenecks. It can provide 
precise performance data down to the procedure and 
statement level. Paradyn is based on a dynamic 
notion of performance instrumentation and 
measurement. Unmodified executable files are placed 
into execution and then performance instrumentation 
is inserted into the application program and modified 
during execution.  

Parsec 
[Bagrod
ia1998] 

Parallel Computing 
Lab., 
Dept. of Computer 
Science, 
Univ. of California, 
Los Angeles 

This is a parallel simulation environment for complex 
systems, which includes a C-based simulation 
language, a GUI (Pave), and a portable run-time 
system that implements the simulation operations. 

POEMS 
[Deelm
an1998] 

Parallel Computing 
Lab., 
Dept. of Computer 
Science, 
Univ. of California, 
Los Angeles, 
etc. 

The aim of this work is to create a problem-solving 
environment for end-to-end performance modelling 
of complex parallel and distributed systems. This 
spans application software, run-time and operating 
system software, and hardware architecture. The 
project supports evaluation of component 
functionality through the use of analytical models 
and discrete-event simulation at multiple levels of 
detail. The analytical models include deterministic 
task graph analysis, and LogP, LoPC models 
[Frank1997]. 

GMA 
[Tierne
y2001] 

Performance 
Working Group, 
Global Grid Forum 

The goal of the development of a Grid Monitoring 
Architecture is to describe a common architecture 
with all the major components and their essential 
interactions in just enough detail that Grid 
Monitoring systems that follow the architecture can 
easily devise common APIs and wire protocols. 

Table 2.1 Overview of Performance Evaluation Tools 
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The motivation behind the development of the Performance Analysis and 

Characterization Environment (PACE) at the University of Warwick was to 

provide quantitative data concerning the performance of sophisticated applications 

running on high performance systems [Cao2000]. The framework of PACE is a 

methodology based on a layered approach that separates software and hardware 

system components through the use of a parallelisation template. This is a 

modular approach that leads to readily reusable models, which can be 

interchanged for experimental analysis.  

Each of the modules in PACE can be described at multiple levels of detail in a 

similar way to POEMS, thus providing a range of result accuracies but at varying 

costs in terms of prediction evaluation time. PACE is aimed to be used for pre-

implementation analysis, such as design or code porting activities as well as for 

on-the-fly use in scheduling systems in similar manner to that of AppLeS. 

AppLeS is not originally motivated for grid computing but being improved to be 

utilised in a grid environment. In this work, PACE is integrated into an agent-

based architecture to evaluate performance of grid applications. GMA is the only 

project that is developed in context of grid computing, however, it focuses more 

on performance monitoring than evaluation. The PACE methodology and toolkit 

are described in greater detail below. 

2.2 PACE Methodology 

The main concepts behind PACE include a layered framework and the use of 

associative objects as a basis for representing system components. An initial 

implementation of PACE supports performance modelling of parallel and 

distributed applications from object definition, through to model creation and 

result generation. These factors are described further below. 

2.2.1 Layered Framework 

Many existing techniques, particularly for the analysis of serial machines, use 

Software Performance Engineering (SPE) methodologies [Smith1990], to provide 
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a representation of the whole system in terms of two modular components, 

namely a software execution model and a system model. However, for high 

performance computing systems, which involve concurrency and parallelism, the 

model must be enhanced. The PACE layered framework is an extension of SPE 

for the characterisation of parallel and distributed systems. It supports the 

development of three types of models: software model, parallelisation model and 

system (hardware) model. It allows the separation of the software and hardware 

model by the addition of the intermediate parallelisation model. 

The framework and layers can be used to represent entire systems, including: the 

application, parallelisation and hardware aspects, as illustrated in Figure 2.1.  

 Application Domain 

Application Layer 

Subtask Layer 

Parallel Template Layer 

Hardware Layer 
 

Figure 2.1 The PACE Layered Framework 

The functions of the layers are: 

• Application Layer – describes the application in terms of a sequence of 

parallel kernels or subtasks. It acts as the entry point to the performance 

study and includes an interface that can be used to modify parameters of a 

performance study. 

• Application Subtask Layer – describes the sequential part of every subtask 

within an application that can be executed in parallel. 

• Parallel Template Layer – describes the parallel characteristics of subtasks 

in terms of expected computation-communication interactions between 

processors. 

• Hardware Layer – collects system specification parameters, micro-

benchmark results, statistical models, analytical models, and heuristics to 
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characterise the communication and computation abilities of a particular 

system. 

According to the layered framework, a performance model is built up from a 

number of separate objects. Each object is of one of the following types: 

application, subtask, parallel template, and hardware. A key feature of the object 

organisation is the independent representation of computation, parallelisation, and 

hardware. This is possible due to strict object interaction rules. 

All objects have a similar structure, and a hierarchical set of objects representing 

the layers of the framework is built up into the complete performance model. An 

example of a complete performance model, represented by a Hierarchical Layered 

Framework Diagram (HLFD), is shown in Figure 4.2. 

2.2.2 Object Definition 

Each software object (application, subtask, or parallel template) is comprised of 

an internal structure, options, and an interface that can be used by other objects to 

modify its behaviour. A schematic representation of a software object is shown in 

Figure 2.2. 

Identity Type 
Include 

External Var. 
Link 

Options 
Procedures 

Object 2 (lower) 
Object 3 (higher) 
Object 1 (lower) 
Object 2 (lower) 

Object 1 (lower) 

 
 

Figure 2.2 Software Object Structure 

Each hardware object is subdivided into many smaller component hardware 

models, each describing the behaviour of individual parts of the hardware system. 

An example is shown in Figure 2.3 illustrating the main subdivision currently 

considered involving a distinction between computation, communication, memory 

[Harper1999] and I/O models. 
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 Hardware Object 
 
 
 
 
 
 

CPU 

Memory 

Network 

clc 

Cache Main Cache 

Sockets MPI PVM 

flc suif ct 

 

Figure 2.3 Hardware Object Structure 

2.2.3 Model Creation 

The creation of a software object in the PACE system is achieved through an 

application characterisation tool. It aids the conversion of sequential or parallel 

source code into a Performance Specification Language (PSL) [Papaefstathiou 

1995] via the Stanford University Intermediate Format (SUIF) [Hall1996]. It 

performs a static analysis of the code to produce the control flow of the 

application, operation counts in terms of high-level language operations 

[Qin1991], and also the communication structure. This process is illustrated in 

Figure 2.4. 

 
Source 
Code 

SUIF 
Front End 

SUIF 
Format 

User Profiler 

A 
C 
T 

Application 
Layer 

Parallelisation 
Layer 

 

Figure 2.4 Model Creation Process 

In PACE a Hardware Model Configuration Language (HMCL) allows users to 

create new hardware objects by specifying system-dependent parameters. On 

evaluation, the relevant sets of parameters are used, and supplied to the evaluation 

methods for each of the component models. An example HMCL fragment is 

illustrated in Figure 4.4. 
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2.2.4 Mapping Relations 

There are strict mapping relations between source code of the application and its 

performance model. Figure 2.5 illustrates the way in which independent objects 

are abstracted directly from the source code and built up into a complete 

performance model, which can be used to produce performance prediction results. 

The source code of the parallel application is firstly divided into several serial 

parts and an abstracted parallel part. Serial parts can be automatically converted 

into performance scripts using the PACE application characterisation tool. The 

parallel part can be converted into the corresponding parallel template line by line. 

The strict mapping relations make the model creation processes fast and 

straightforward. The user does not even need to understand the detailed 

parallelisation of the application. 

The mapping relations are controlled by the PSL compiler and the PACE 

evaluation engine, which is described further in Chapter 4 through the use of the 

example application – Sweep3D. 

 Application 
Source Code 

Model Scripts 

Parallel 
Template 

Subtask 

H
ar

dw
ar

e 
O

bj
ec

t 
(H

M
C

L
) Abstracted 

Parallel 
Part 
   ... 

 

Serial 
Part Serial 

Part Serial 
Part 

 

Figure 2.5 Mapping Relations 

2.2.5 Evaluation Engine 

Once all the necessary objects have been defined for a performance study, they 

can be combined and evaluated within the PACE evaluation engine. This involves 
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the evaluation of the single application object, and all subtask objects, which in 

turn require the evaluation of associated parallel template objects and hardware 

objects. The sequence of steps performed during the evaluation of one subtask 

object is shown in Figure 2.6. 

The init procedure of the subtask object is the entry point, which may call other 

procedures within the object. Parameters are linked to the currently active parallel 

template object (specified by the option command). The parallel template object is 

similarly evaluated and uses the hardware object. The result of the evaluation of 

the parallel template object is the execution time, which is returned to the 

application object. Further details can be found in [Papaefstathiou1998]. 

 

Application 
Object 

Subtask Object ParTmp Object 

Init 

Proc 1 Proc 1 Proc n Proc n 

Link Init 

… … 

Execution Time 

Hardware Object 
 

Figure 2.6 Evaluation Process of PACE Models 

2.2.6 PACE Toolkit 

The PACE methodology described above is implemented as a toolkit, which is 

summarised in Figure 2.7. The main components in the PACE toolkit include: 

application tools (AT), resource tools (RT), and an evaluation engine (EE). 

• Application Tools:  The Source Code Analyser can be used to convert 

sequential source code components into performance descriptions. Users 

can also edit these descriptions using the object editor or retrieve existing 

objects from a library. These performance descriptions are organised 

together into the PSL scripts of the application, which can be compiled 

into the application model. The application model is one of the inputs into 
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the evaluation engine, which contains all of the application-level 

performance information. 

• Resource Tools: The RTs provide several benchmarking programs to 

measure the performance of CPU, network interfaces (e.g. MPI and PVM), 

and memory aspects of hardware platforms respectively. The measurement 

results are represented in HMCL scripts and added to the system. The 

resource model is another input into the evaluation engine, which contains 

all of the system-level performance information. 

• Evaluation Engine: The EE is the kernel part of the PACE toolkit, which 

executes completed performance models and produces evaluation results 

on time estimates, or trace information of the expected application 

behaviour. Important applications of prediction data include those of on-

the-fly performance analysis [Kerbyson1998] and dynamic multi-

processor scheduling [Perry2000], which can be applied for efficient 

resource management. 

 

Evaluation Engine (EE) 

Application Tools (AT) 

Source 
Code 

Analysis 

Object 
Editor 

Object 
Library 

PSL Scripts 

Compiler 

 
Application Model 

Resource Tools (RT) 

CPU Network 
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Cache 
(L1, L2) 

HMCL Scripts 

Compiler 

 
Resource Model 

 
Performance 
Prediction 

On-the-fly 
analysis 

Multi-processor 
scheduling 

 

Figure 2.7 The PACE Toolkit 

Some assumptions are made to simplify the PACE implementation. For example, 

the PACE application performance modelling is based on the source code 

analysis. The source code of the application is assumed to be available for 

performance modelling. A resource model in PACE can only include static 
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performance information of a resource. The dynamic situation of the network 

traffic or CPU workload is not considered. The PACE toolkit is relatively smaller 

than many other performance evaluation tools, and some of its unique features 

(e.g. rapid evaluation time, reasonable accuracy, etc.) allow it to be applied to 

performance-driven resource management in a grid computing environment. 

2.3 Grid Resource Management 

The resource management is central to the operation of a grid. The basic function 

of resource management is to accept requests for resources from machines within 

the grid and assign specific machine resources to a request from the overall pool 

of grid resources for which the user has access permission. A resource 

management system matches requests to resources, schedules the matched 

resources, and executes the requests using the scheduled resources. 

Several solutions have been offered that address to some extent the issues of 

resource management and scheduling for grid computing. Our work is different 

from these in a number of ways. Some of the principal existing grid projects and 

their resource management are described in Table 2.2. A good overview of grid 

resource management technologies can be found in [Krauter2000]. 

Name Unit Project Description Resource Management 

Condor 
[Litzko
w1988] 
[Raman
1998] 

Condor 
team, 
Dept. of 
Computer 
Science, 
Univ. of 
Wisconsin-
Madison 

The goal of the Condor 
project is to develop, 
implement, deploy and 
evaluate mechanisms and 
policies that support High 
Throughput Computing 
(HTC) on large collections 
of distributively owned 
computing resources. 

Condor uses a classified 
advertisement (classad) 
matchmaking framework for 
flexible resource management 
in distributed environments 
with decentralised ownership 
of resources, which uses the 
matchmaker/entity (which can 
be both provider and 
requestor) structure. 
Features: extensible schema 
model; no QoS; network 
directory store; centralised 
queries discovery; periodic 
push advertisement. 

DPSS Data The DPSS is a data block DPSS uses a broker/agent 



CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING 

- 22 - 

[Tierney
2000] 
[Brooks
1997] 
 

Intensive 
Distributed 
Computing 
Group, 
Lawrence 
Berkeley 
National 
Laboratory 

server, which provides 
high-performance data 
handling and architecture 
for building high-
performance storage 
systems from low-cost 
commodity hardware 
components. This 
technology has been quite 
successful in providing an 
economical, high-
performance, widely 
distributed, and highly 
scalable architecture for 
caching large amounts of 
data that can potentially be 
used by many different 
users. 

architecture: agents are 
processes that monitors the 
state of the system; broker 
agent (or broker) is an agent 
that manages the information, 
filters information for clients, 
or performs some action on 
behalf of a client. Agents 
model their environment using 
an extensible set of Facts and 
act on their environment using 
a set of Tasks. 
Features: object model; no 
QoS; agent-based store; 
centralised queries discovery; 
periodic push advertisement. 

Globus 
[Foster1
997] 
[Czajko
wski199
8] 

Mathemati
cs and 
Computer 
Science 
Division, 
Argonne 
National 
Laboratory 

The Globus system is 
intended to achieve a 
vertically integrated 
treatment of application, 
middleware, and network. 
A low-level toolkit provides 
basic mechanisms such as 
communication, 
authentication, network 
information, and data 
access. These mechanisms 
are used to construct 
various higher-level 
metacomputing services, 
such as parallel 
programming tools and 
schedulers. The long-term 
goal is to build a grid 
infrastructure, an integrated 
set of higher-level services 
that enable applications to 
adapt to heterogeneous and 
dynamically changing 
metacomputing 
environments. 

The architecture distributes the 
resource management problem 
among distinct local manager, 
resource broker, and resource 
co-allocator components, and 
defines an extensible resource 
specification language (RSL) 
to exchange information about 
requirements. The information 
service within the architecture 
uses a Metacomputing 
Directory Service (MDS) 
[Fitzgerald1997], which 
adopts the data representations 
and API defined by the LDAP 
service [Yeong1995]. 
Features: extensible schema 
model; soft QoS; network 
directory store; distributed 
queries discovery; periodic 
push advertisement. 

GRACE 
[Buyya2
000] 

School of 
Computer 
Science 
and 
Software 
Engineerin

GRACE (Grid Architecture 
for 
Computational Economy) is 
a new framework that uses 
economic theories in grid 
resource management and 

Nimrod/G is a grid resource 
broker that allows managing 
and steering task farming 
applications (parameter 
studies) on computational 
grids. It follows an economic 



CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING 

- 23 - 

g, 
Monash 
University, 
Australia 

scheduling. The 
components that make up 
GRACE include global 
scheduler (broker), bid-
manager, directory server, 
and bid-server working 
closely with grid 
middleware and fabrics. 
The GRACE infrastructure 
also offers generic 
interfaces (APIs) that the 
grid tools and applications 
programmers can use to 
develop software 
supporting the 
computational economy. 

(computational market) model 
for resource management and 
scheduling. It allows the study 
of the behaviour of output 
variables against a range of 
different input scenarios. 
Features: extensible schema 
model; hard QoS; relational 
resource info store; distributed 
queries discovery; periodic 
push/pull advertisement. 

Legion 
[Grimsh
aw1999] 
[Chapin
1999] 

Dept. of 
Computer 
Science, 
Univ. of 
Virginia 

Legion is an object-oriented 
metacomputing 
environment, intended to 
connect many millions of 
hosts ranging from PCs to 
massively parallel 
supercomputers. It manages 
billions of objects and 
allows users to write and 
run applications in an easy-
to-use, transparent fashion. 
It unites machines from 
thousands of administrative 
domains into a single 
coherent system. 

Legion uses a resource 
management infrastructure. 
The philosophy of scheduling 
is that it is a negotiation of 
service between autonomous 
agents, one acting on the part 
of the application (consumer) 
and one on behalf of the 
resource or system (provider). 
The components of the model 
are the basic resources (hosts 
and vaults), the information 
database, the schedule 
implementer, and an execution 
monitor. 
Features: extensible object 
model; soft QoS; object model 
store; distributed queries 
discovery; periodic pull 
advertisement. 

NetSolv
e 
[Casano
va1998] 

Dept. of 
Computer 
Science, 
Univ. of 
Tennessee 

NetSolve is a client-server 
system that enables users to 
solve complex scientific 
problem remotely. The 
system allows users to 
access both hardware and 
software computational 
resources distributed across 
a network. NetSolve 
searches for computational 
resources on a network, 
chooses the best one 
available, and using retry 

The NetSolve agent operates 
both as a database and as a 
resource broker. The agent 
keeps track of information 
about all the servers in its 
resource pool, including their 
availability, load, network 
accessibility, and the range of 
computational tasks that they 
can perform. The agent then 
selects a server to perform the 
task, and the server responds 
to the client’s request. 
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for fault-tolerance solves a 
problem, and returns the 
answers to the user. 

Features: extensible schema 
model; soft QoS; distributed 
queries discovery; periodic 
push advertisement. 

Ninf 
[Sato19
98] 
[Nakada
1998] 

Computer 
Science 
Division, 
Electrotech
nical 
Laboratory, 
Japan 

Ninf is an ongoing global 
network-wide computing 
infrastructure project which 
allows users to access 
computational resources 
including hardware, 
software and scientific data 
distributed across a wide 
area network with an easy-
to-use interface. Ninf is 
intended not only to exploit 
high performance in 
network parallel computing, 
but also to provide high 
quality numerical 
computation services and 
accesses to scientific 
databases published by 
other researchers. 
Computational resources 
are shared as Ninf remote 
libraries executable at a 
remote Ninf server. 

In order to facilitate location 
transparency and network-
wide parallelism, the Ninf 
metaserver maintains global 
resource information regarding 
computational server and 
databases, allocating and 
scheduling coarse-grained 
computation to achieve good 
global load balancing. The 
Ninf metaserver is a JAVA 
agent, a set of which gathers 
network information regarding 
the Ninf servers, and also 
helps the client to choose an 
appropriate Ninf server, either 
automatically or semi-
automatically. 
Features: fixed schema model; 
no QoS; centralised queries 
discovery; periodic push 
advertisement. 

Table 2.2 Overview of Grid Projects and their Resource Management 

Grid resources are the entities such as processors or hosts that are managed by the 

resource management system. A local resource in the grid is usually a multi-

processor or a cluster of machines, which are distributed geographically in a small 

scope, connected with high-speed networks, and administrated within the same 

organisation. These local resources may be far away from each other, connected 

via the Internet with irregular communications, and cross administrative domains. 

All these resources compose a global metacomputing environment, such as that 

illustrated in Figure 2.8. 

The grid resource management functions are performed at both a meta and a local 

level. Each local high performance resource is managed by a local resource 

manager. A mechanism is also needed at a meta-level to coordinate the 
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behaviours of multiple local resource managers so as to achieve high performance 

in the overall grid system. 

 A local resource 
can be a multi-
processor or 

cluster of 
machines. 

A processor 
or host 

High-speed 
networks 

Low-speed 
networks 

Metacomputing Environment 

Local 

Local 

Local 
Local 

 

Figure 2.8 Grid Resources 

The basic issues relating to metacomputing resource management include data 

representation and management, communication protocols, resource discovery 

and quality of service (QoS) support. The main issues related to local resource 

management are multi-processor scheduling, resource allocation and monitoring. 

These are introduced in detail below. 

2.3.1 Data Management 

The main data used in a resource management system is that used to describe the 

attributes and operations of a resource. Data management related issues include 

data representation and data storage. 

A grid resource can be described by a corresponding resource model. The 

resource model determines how to describe and manage the grid resource. There 

are two basic approaches for data representation. 
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• Schema based approach.  The data that comprises a resource is described 

in a description language along with some integrity constraints. The 

schema languages are further characterised by the ability to extend the 

schemas. In a fixed schema all elements of resource description are 

defined and cannot be extended. In an extensible scheme new schema 

types for resource descriptions can be added. Predefined attribute-value 

based resource models are in the fixed schema category. The resource 

specification language (RSL) used in Globus resource management is an 

extensible schema model. The Condor ClassAd approach using semi-

structured data approach is also in the extensible schema category. 

• Object based approach. In an object model scheme the operations on the 

resources are defined as part of the resource model. The object model can 

be predetermined and fixed as part of the definition of the resource 

management system. Also the resource model can provide a mechanism to 

extend the definition of the object model managed by the system. Legion 

uses extensible object models to describe resources in the system. 

The resource information should be stored in the resource management system in 

proper organisation. It helps characterise the overall performance of the resource 

management system and determine the cost of implementing the resource 

management protocols since a resource discovery capability may be provided by 

the data storage implementation. There are two basic approaches to the storage of 

resource information in the system. 

• Network directories. Network directory data storage is based on IETF 

standards, such as LDAP [Yeong1995] and SNMP [Case1988], or utilise 

specialised distributed database implementation. The information service 

in Globus resource management system uses a Metacomputing Directory 

Service (MDS), which adopts the data representations and API defined by 

the LDAP service. 

• Distributed objects. This data storage approach utilise persistent object 

services that can be provided by a language-based model such as that 



CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING 

- 27 - 

provided by persistent Java object implementations. Legion uses object 

model data storage. 

The important difference between the distributed object and network directory 

approaches is that in network directories the schema and operations are separated 

with the operations defined externally to the data store schema. In an object 

oriented approach the schema defines the data and the operations. 

The applications submitted from the grid users should also be attached to a 

corresponding application model, including the information on the requirements 

from the user on the application execution. The representation, storage, and 

transference of these application models are also very important and have impacts 

on the overall performance of the resource management system. Most of above 

issues on resource models can also be applied to application models, which will 

not therefore be discussed again in detail here. 

2.3.2 Communication Protocols 

Communication is a central issue for building distributed software systems. In a 

grid resource management system, different local resource managers need to 

communicate with each other to perform meta-level resource management 

functions. Communication protocols are needed as the basis of communication 

implementation. The implementation of communication enables different entities 

in a distributed system to communicate with each other. However, some common 

protocols are needed for them to understand each other. 

Communication can be implemented by low-level Internet protocols, such as 

TCP/IP, FTP, and HTTP. The communication protocols can be pre-defined in the 

system using simple data structures. Many existing enterprise distributed system 

infrastructures, languages and platforms can also provide powerful support for 

data representation and communication. In the work described in this thesis, data 

representation and communication protocols have not been the key consideration. 

The resource management system focuses more on resource discovery, QoS 

support, and related performance issues. 
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2.3.3 Resource Advertisement and Discovery 

A major function of a grid resource management system is to provide a 

mechanism for resources in the grid to be discovered and utilised by grid 

applications. Resource advertisement and discovery provide complementary 

functions. Discovery is initiated by a grid application to find suitable resources 

within the grid. Advertisement is initiated by a resource trying to find a suitable 

application that can utilise it. The overhead of matching resources and 

applications determines the efficiency of the system and determines the maximum 

resource utilisation that a resource management system can achieve in the grid 

computing environment. There are two approaches to resource advertisement and 

discovery in a grid resource management system: query based and agent based. 

• Query-based: Network directory based mechanisms such as Globus MDS 

use parameterised queries that are sent across the network to the nearest 

directory, which then uses a query engine to execute the query against the 

database contents. Query based systems are further characterized 

depending on whether the query is executed against a distributed database 

or a centralized database. Legion also uses distributed query-based 

resource discovery, while centralised query-based resource discovery is 

adopted in most current computational grid projects, such as Condor, 

DPSS, NetSolve and Ninf. 

• Agent-based: Agent based approaches send active code fragments across 

machines in the grid that are interpreted locally on each machine. Agents 

can also passively monitor and either periodically distribute resource 

information or respond to another agent. Thus agents can mimic a query 

based resource discovery scheme. Currently agent-based approaches can 

only be found in some service discovery projects (which will also be 

discussed in detail in the next chapter), such as 2K [Kon2000] and Bond 

[Boloni1999]. The agent-based resource management system described in 

this work aims to apply agent technologies in resource management for 

computational grids. 
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The major difference between a query based approach and an agent based 

approach is that agent based systems allow the agent to control the query process 

and make resource discovery decisions based on its own internal logic rather than 

rely on a fixed function query engine. Agent based resource discovery is 

inherently distributed. 

2.3.4 QoS Support 

In metacomputing resource management, resources should be discovered and 

corresponding resource information should be returned to the grid user according 

to QoS principles. As also described in [Krauter2000], our notion of QoS is not 

limited to network bandwidth but extends to the processing capabilities of the 

resources in the grid. Thus we focus on the degree that a grid can provide end-to-

end QoS across all components rather than QoS only on the network. 

There are two parts to QoS, admission control and policing. Admission control 

determines if the requested level of service can be given and policing ensures that 

the application does not violate its service level agreement (SLA). A resource 

management system that does not allow applications to specify QoS requirements 

in resource requests does not support QoS. Otherwise the QoS support can be 

classified into soft and hard support. 

• Soft QoS support. An RMS that provides explicit QoS attributes for 

resource requests but cannot enforce service levels via policing provides 

soft QoS support. Most current grid systems (e.g. Globus, Legion, and 

NetSolve) provide soft QoS since most non real-time operating systems do 

not allow the specification of service levels for running applications and 

thus cannot enforce non-network QoS guarantees. 

• Hard QoS support is provided when all nodes in the grid can police the 

service levels guaranteed by the resource management system. Nimrod/G 

in GRACE supports hard QoS through computational economy services of 

GRACE infrastructure. 
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The resource management system described in this thesis can also provide hard 

QoS support. The users need to define their requirements explicitly when they 

submit a resource request, which is similar to Nimrod/G. Unlike Nimrod/G, in 

which the grid resource estimation is performed through heuristics and historical 

information (load profiling), the performance prediction capability of grid 

resources is achieved via integrating PACE functions into the system. 

There are some other functions that can be provided in meta-level grid resource 

management. For example, co-allocation problems arise when applications have 

resource requirements that can be satisfied only by using resources simultaneously 

at several sites. As described in [Foster1999], Globus resource management 

supports resource co-allocation, which, however, is not the key consideration in 

our implementation. In the sections below, brief introductions are given to two 

important issues related to local resource management. 

2.3.5 Resource Scheduling 

The scheduling on a local grid resource is a “multiple applications on multiple 

processors”  problem. Applications arrive at the resource at different times with 

different requirements. Resource scheduling in a local resource manager is 

responsible for deciding when to start running an application, and how many 

processors should be dispatched to an application. There are two kinds of 

scheduling policies and corresponding metrics. 

• Resource-oriented - maximising the utilisation of the resource. In a 

previous work done at Warwick [Perry1999], scheduling a number of 

parallel applications on a homogenous multi-processor machine is studied. 

It is achieved through just-in-time performance prediction (provided by 

PACE) coupled with iterative heuristic algorithms for optimisation of the 

utilisation of the resource. 

• Application-oriented - meeting requirements from the applications. In the 

system described in this work, each application submitted from a grid user 

should be attached with explicit performance requirements. Local resource 
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scheduling focuses on meeting these requirements from the user point of 

view. 

These two aspects of scheduling are related, but sometimes may conflict. There 

must be a balance in order to achieve both resource-oriented and application-

oriented optimisation. Rescheduling is also a part of resource scheduling problem. 

The rescheduling characteristic of a resource management system determines 

when the current schedule is re-examined and the application executions 

reordered. There are two rescheduling approaches. 

• Periodic or batch rescheduling approaches group resource requests and 

system events and process them at intervals. This interval may be periodic 

or may be triggered by certain system events. The key point is that 

rescheduling is done in batches instead of individual requests or events. 

• Event driven online rescheduling performs rescheduling as soon the 

resource management system receives the resource request or system 

event. 

The local resource scheduling is not the main focus of the work described in this 

thesis. However, in the following chapters, the related problems will be mentioned 

and discussed. An algorithm will also be given for an initial implementation to be 

used by meta-level resource management. 

2.3.6 Resource Allocation and Monitoring 

After applications are scheduled on a grid resource, resource allocation is 

responsible for running the application and returning the results. The local 

resource manger should be wrapped with parallel application execution 

environments like MPI and PVM. When the application begins running, the 

resource should be monitored and corresponding information can be used by 

local-level rescheduling or meta-level resource discovery. These will not be 

discussed in detail here. 
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2.4 Summary 

A grid infrastructure is a large-scale distributed system with highly dynamic 

behaviours. This chapter introduces the research background to performance 

evaluation techniques and grid resource management issues. Previous work on the 

PACE toolkit at Warwick has been described in detail. In summary, the 

development of computational grids introduces two key challenges: 

• Scalability: The grid may potentially encompass all high performance 

computing resources. A given component of the grid will have it’s own 

functions, resources and environment. These are not necessarily geared to 

work together in the overall grid. They may be physically located in 

different organisations and may not be aware of each other. 

• Adaptability: A grid is a dynamic environment where the location, type, 

and performance of the components are constantly changing. For example, 

a component resource may be added to, or removed from, the grid at any 

time. These resources may not be entirely dedicated to the grid; hence 

their computational capabilities will vary over time. 

New software development technologies are needed for the implementation of the 

grid software infrastructure. Several new grid projects are utilising existing 

distributed computing technologies, such as CORBA (Common Object Request 

Broker Architecture) [Slama1999] and Jini [Amold1999]. 

CORBA is OMG’s (Object Management Groups) open, vendor-independent 

architecture and infrastructure that computer applications use to work together 

over networks. CORBA was not originally designed for developing high 

performance computing applications. Some work provides CORBA based tools 

that enable to use CORBA in different contexts. For example, in the work 

described in [Denis2001], portable parallel CORBA objects are provided as a new 

programming approach for grid computing, which can interconnect two MPI 

codes by CORBA without modifying MPI or CORBA. The work described in 

[Sevilla2001] makes use of the CORBA-LC (CORBA Lightweight Components) 

to provide a new network-centred reflective component model, which allows 
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building distributed applications assembling binary independent components 

spread on the network. However, as mentioned in [Foster2001], such technologies 

only enable resource sharing within a single organization, and can not be used to 

address the concerns and requirements listed above. 

A Jini system is a distributed system federating groups of users and resources, 

which is based on the Java platform. The work described in [Furmento2001] is a 

computational community that supports the federation of resources from different 

organisations, designed and implemented in Java and Jini. The service discovery 

technique in Jini is introduced in the next chapter. 

Agent technologies have been used for the development of distributed software 

systems for several years. Multi-agent systems provide a clear high-level 

abstraction and a more flexible implementation of distributed infrastructures and 

applications. Multi-agent systems coupled with service discovery approaches are 

introduced in the following chapter. 
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SSEERRVVIICCEE  DDIISSCCOOVVEERRYY  IINN  

MMUULLTTII--AAGGEENNTT  SSYYSSTTEEMMSS  

 

The software infrastructure of the grid is an open, complex software system. 

Multi-agent technology is one of the ways to overcome the challenges in the 

development of the grid. Service has been accepted as the most important concept 

in this distributed system development, and service discovery is therefore 

considered an essential part in many distributed system infrastructures. In this 

chapter, we introduce in detail background research on service discovery in multi-

agent systems, the technique of which will be used in our grid resource 

management system. 

3.1  Multi-Agent Systems 

Agent technologies have been developed for over ten years. Numerous theories, 

languages, tools, and applications have emerged in different fields [Cao1998]. 

Giving a short survey of multi-agent systems is a difficult task. However, there is 

an easy and direct way to obtain an impression on what a multi-agent system is by 

looking into several representative and successful multi-agent projects. Table 3.1 

gives a list of 6 agent projects, including 3 multi-agent applications, 1 mobile 

agent project, 1 agent development tool and 1 agent communication language. 
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Name Unit Description 

AARIA 
[Parunak
2001] 

Michigan 
Manufacturi
ng 
Technology 
Centre, 
etc. 

AARIA is an industrial-strength agent-based factory 
scheduling and simulation system. Three persistent agents 
are Parts, Resources, and Unit Process. Interactions among 
these three persistent agents are modelled as transient 
agents, such as Engagements, Materials, Products, and 
Operations. Each transient agent has a six-phase life cycle: 
Inquiring, Committing, Committed, Available, Active, and 
Achieved. 

ADEPT 
[Jenning
s2000b] 

DAI 
Research 
Unit, 
Queen Mary 
and 
Westfield 
College, 
Univ. of 
London, 
UK 

A business process is composed of a number of primitive 
functional activities or tasks. In any reasonably complex 
process, dependencies exist between the tasks and so they 
have to be executed in a controlled and ordered way. This 
execution invariably involves the consumption of 
resources. In most organisations, these resources are 
grouped into business units that control the way in which 
they are deployed. Within ADEPT, these business units are 
represented by autonomous software agents. The agents 
communicate with one another over a network and 
negotiate over how they can collaborate to manage the 
overall business process. To be consistent with the service-
oriented philosophy, negotiation and collaboration are at 
the level of the services that agents offer to one another. In 
this case, a service is a packaging of tasks and other (sub-) 
services that allows an agent to offer or to receive from 
another agent some functional operation. A service can be 
reused as a component of another service and agents can 
take the role of provider (server) or customer (client) for 
services. 

D’Agent
s 
[Brewing
ton1999] 
 

Dept. of 
Computer 
Science, 
Dartmouth 
College 

A mobile agent is an executing program that can migrate 
during execution from machine to machine in a 
heterogeneous network. On each machine, the agent 
interacts with stationary service agents and other resources 
to accomplish its task. Mobile agents are particularly 
attractive in distributed information-retrieval applications. 
By moving to the location of an information resource, the 
agent can search the resource locally, eliminating the 
transfer of intermediate results across the network and 
reducing end-to-end latency. 

JATLite 
[Jeon200
0] 

Agent Based 
Engineering 
Group, 
Centre for 
Design 
Research, 
Stanford 
Univ. 

JATLite (Java Agent Template, Lite) is a package of 
programs written in the Java language that allow users to 
quickly create new software agents that communicate 
robustly over the Internet. JATLite provides a basic 
infrastructure in which agents register with an Agent 
Message Router facilitator using a name and password, 
connect/disconnect from the Internet, send and receive 
messages, transfer files, and invoke other programs or 
actions on the various computers where they are running. 
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JATLite especially facilitates the construction of agents 
that send and receive messages using the emerging 
standard communications language, KQML. 

KQML 
[Labrou1
999] 

Laboratory 
for 
Advanced 
Information 
Technology, 
Computer 
Science and 
Electrical 
Engineering, 
University 
of Maryland, 
Baltimore 
County 

KQML, the Knowledge Query and Manipulation 
Language, is a language and protocol for exchanging 
information and knowledge. KQML is both a message 
format and a message-handling protocol to support run-
time knowledge sharing among agents. KQML can be used 
as a language for an application program to interact with an 
intelligent system or for two or more intelligent systems to 
share knowledge in support of cooperative problem 
solving. 

MACIP 
[Fan199
9] 
[Cao199
9b] 
[Cao199
9] 

National 
CIMS 
Research 
and 
Engineering 
Centre, 
Tsinghua 
Univ., 
P. R. China 

CIMS Application Integration Platform (MACIP) is 
developed to offer manufacturing enterprises with a 
complete solution for the CIMS implementation through 
integrating a set of application software products. 
Operational Administration System (OAS) is the kernel of 
the MACIP to implement integration functions. Multi-agent 
technology is used in OAS to implement the integration of 
different software applications. Each agent is wrapped with 
one or more applications and takes these applications as 
services that can be provided to other agents. The 
communication and cooperation among these applications 
are implemented via service discovery among the agents. 
Applications may be added to or removed from the system 
at run time. Agents must be flexible enough to adapt to 
these dynamic behaviours of the system. 

Table 3.1 Overview of Multi-Agent Systems: Applications and Tools 

In the sections below, a coarse division of research topics that arise from the 

implementation of multi-agent systems is given. Each agent in the system is an 

autonomous entity with its own functions, data, resource, and environment. The 

basic characteristic of an agent is to manage its internal data at a knowledge level. 

In MACIP, an agent has knowledge about services provided by other agents and 

stores them in different tables. On the basis of knowledge representation, agents 

may also communicate with each other at a knowledge level. KQML can be used 

as an ACL for agents to exchange information and knowledge. Two agents may 

communicate on the same subject a number of times. Agent negotiation is 

discussed in detail in the ADEPT project and has been used successfully for 
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business process management. Further relations among multiple agents can be 

characterised as agent coordination issues. JATLite provides one coordination 

model for multi-agent systems. These are also illustrated in Figure 3.1 and 

discussed further below. 

 

Knowledge 
Representation 

Agent 
Communication 

Agent 
Negotiation 

Agent 
Coordination 

 

Figure 3.1 Research Topics in Multi-Agent Systems 

3.1.1 Knowledge Representation 

The knowledge representation of an agent is a correspondence between the 

external application domain and an internal symbolic reasoning system. The 

symbolic reasoning system is the agent’s model of the external world and consists 

of data structures for storing information and procedures for manipulating these 

data structures. The mapping between the elements of the application domain and 

those of the domain model allows the agent to reason about the application 

domain by performing reasoning processes in the domain model, and transferring 

the conclusions back into the application domain. 

As illustrated in Figure 3.2, in order to find a solution to a problem P in the 

application domain, this problem is first represented as Pm in the agent’s domain 

model. Next the agent looks for a solution Sm of Pm in its domain model. Then the 

obtained solution Sm is reverse-mapped into S, which is the solution of the 

problem P. 
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Figure 3.2 Knowledge Representation 

The general features of a knowledge representation include representational 

adequacy, inferential adequacy, problem-solving efficiency, and learning 

efficiency. Good knowledge representation can lead to efficient knowledge 

reasoning, acquisition, and learning. More information on building knowledge-

based agents can be found in [Tecuci1998]. 

3.1.2 Agent Communication 

Agents usually interact by exchanging complex symbolic information and 

possibly have to agree on complex interaction protocols. In addition, agents are 

autonomous, possibly designed separately at different times by different people, 

and including heterogeneous software components. These issues led to the 

development of ACLs, such as KQML. A good summary on the many years of 

research into ACLs can be found in [Singh1998]. 

3.1.3 Agent Negotiation 

Negotiation is the process by which two agents come to a mutually acceptable 

agreement on some matter. For an agent to influence an acquaintance, the 

acquaintance needs to be convinced that it should act in a particular way. The 

means of achieving this state are to make proposals, trade options, offer 

concessions, and (hopefully) come to a mutually acceptable agreement. More 

information on agent negotiation can be found in [Jennings2001, Kraus1998]. 
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Though knowledge representation, agent communication and negotiation are 

important issues in the implementation of multi-agent systems, they are not the 

key consideration in the work described in this thesis. Our agent-based 

methodology designed for grid resource management system development focus 

more on agent coordination in a large scale. 

3.1.4 Agent Coordination 

Although ACLs and middleware systems, notably CORBA, are important to 

achieve interoperability, they mainly focus on peer-to-peer communications and 

do not account for a more comprehensive view of the interaction as a primary 

component of agents’  societies. Therefore, both ACLs and middleware systems 

have to somehow be extended in order to include not only language and protocol 

specifications but also the definition of coordination laws, to allow for a global 

understanding and the management of interactions. 

When a multi-agent system is made up of a large number of independently 

designed components, it may be very difficult to correctly design and manage the 

system as a whole. An approach that simply puts components together and lets 

them interact is likely to degenerate into chaos. Instead, models and tools are 

needed to put components together in a structured way. As already recognised in 

the area of software engineering, the design and management of a large software 

project requires the definition and analysis of its software architecture 

[Garlan1993, Perry1992]. This includes defining the role of each component, the 

mechanisms on which composition can be based, and their composition laws. A 

similar approach would be also helpful in the context of multi-agent systems. 

However, in this case, a more dynamic and flexible definition of the software 

architecture, that is interaction-oriented rather than composition-oriented, is 

needed. 

Coordination is the art of managing interactions and dependencies among 

activities [Malone1994], that is, in the context of multi-agent systems, among 

agents. A coordination model provides a formal framework in which the 

interaction of software agents can be expressed [Gelernter1992]. A coordination 
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model consists of three elements: the coordinables, the coordination media, and 

the coordination laws [Ciancarini1996]. Coordination models can be classified as 

control-driven or data-driven [Papadopoulos1998], which are also illustrated in 

Figure 3.3 and explained in detail below. 

Coordinables 

 
 

Event-Dispatching Rules 

 
  Event Catcher 

Events to/from 
Coordinables 

   
 

  

Coordinables 

 
 

Data-Access Rules 

 
Shared Data Spaces 

Data to/from 
Coordinables 

 

Figure 3.3 Coordination Models: Control-driven vs. Data-driven 

• Control-driven. Coordinables (agents) typically open themselves to the 

external world and interact with it through events occurring on well-

defined input/output ports. Manifold [Arbab1993] is a typical language 

that implements a control-driven coordination model. 

• Data-driven. Coordinables interact with the external world by exchanging 

data structures through the coordination media, which especially acts as a 

shared data space. The research on data-driven coordination models 

originates from the parallel programming language Linda [Carriero1989]. 
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Different application contexts exhibit different needs with respect to coordination, 

and the choice of a coordination model is likely to have a great impact in the 

design of multi-agent systems. In general, control-driven coordination models 

better suit those systems made up of a well-defined number of entities in which 

the flow of control and the dependencies between the components have to be 

regulated, and in which data exchange is not so important. The data-driven model 

on the other hand seems to better suit open applications, where a number of 

possibly pre-unknown and autonomous entities have to cooperate. In this case, the 

control driven model would somehow clash with the autonomy of the components 

and the dynamics of the open environment. Focusing on data preserves autonomy 

and dynamics of the components, which are usually designed to acquire 

information rather than control. 

The grid environment is open and highly dynamic. The methodology developed to 

implement grid resource management adopts an extended data-driven mechanism 

for agents to exchange service information and cooperate with each other for 

service discovery. 

In this section, we provide a brief introduction to multi-agent technologies. There 

is more than ten years of development of agent technologies. Agent-oriented 

software engineering [Wooldridge1999, Ciancarini2001] is emerging as another 

important approach complementing the structural method [Cao1996] and object-

oriented method [Fan2000], especially in the case when more and more 

distributed software applications are emerging with increasing complexity and 

flexibility [Cao1999c]. A more detail introduction to theories, applications, 

methods, and tools of multi-agent systems can also be found in [Fan2001]. 

3.2 Service Advertisement and Discovery 

As already stated, resource advertisement and discovery is an important issue in 

the implementation of grid resource management. In this section we will introduce 

service advertisement and discovery technologies for mobile computing. Many 

ideas described in this section can be applied directly to problems of resource 
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discovery for grid computing. Table 3.2 gives an overview of six distributed 

system infrastructures with service discovery capabilities. A good survey can also 

be found in [Richard2000]. 

Name Unit Description Service Discovery 

Blueto
oth 
[Bray2
000] 
[Miller
1999] 

IBM, 
Intel, 
Nokia, 
Ericsson, 
Toshiba 

The Bluetooth protocols 
allow for the development 
of interactive services and 
applications over 
interoperable radio 
modules and data 
communication protocols. 

The Bluetooth Service Discovery 
Protocol (SDP) provides a means 
for client applications to discover 
the existence of services provided 
by server applications as well as the 
attributes of those services. The 
attributes of a service include the 
type or class of service offered and 
the mechanism or protocol 
information needed to utilise the 
service. 
Features: 
     Registry 
     Advertisement 

  Discovery 
  Interoperability 
  Security 

HAVi 
[Lea20
01] 

Grundig, 
Hitachi, 
Panasonic, 
Philips, 
Sharp, 
Sony, 
Thomson, 
Toshiba 

Home Audio-Video 
interoperability is a 
specification for home 
networks of consumer 
electronics devices. 
Typical HAVi devices are 
digital audio and video 
products such as cable 
modems, set-top boxes, 
digital and Internet-
enabled TVs, and storage 
devices such as DVD 
drives for audio and video 
content. As technology 
advances and becomes 
more affordable, other 
kinds of HAVi devices 
may appear, such as 
videophones and Internet 
phones, which will plug 
into home networks and 
should be able to 
communicate without the 
user having to program 
them. 

The approach the HAVi 
Architecture has adopted is to 
utilise Self Device Describing 
(SDD) data, required on all 
devices. SDD data contains 
information about the device, 
which can be accessed by other 
devices. The SDD data contains, as 
a minimum, enough information to 
allow instantiation of an embedded 
Device Control Module. This 
results in registration of device 
capabilities with the HAVi 
Registry, allowing applications to 
infer the basic set of command 
messages that can be sent to the 
device. 
Features: 

  Registry 
     Advertisement 
     Discovery 

  Interoperability 
     Security 
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Jini 
[Amol
d1999] 
[Jini19
99] 

Sun 
Microsyste
ms 

A Jini system is a 
distributed system based 
on the idea of federating 
groups of users and the 
resources required by 
those users. The overall 
goal is to turn the network 
into a flexible, easily 
administered tool on 
which resources can be 
found by human and 
computational clients. The 
focus of the system is to 
make the network a more 
dynamic entity that better 
reflects the dynamic nature 
of the workgroup by 
enabling the ability to add 
and delete services 
flexibly. 

The heart of the Jini system is a trio 
of protocols called discovery, join, 
and lookup. A pair of these 
protocols, discovery/join, occurs 
when a device is plugged in. 
Discovery occurs when a service is 
looking for a lookup service with 
which to register. Join occurs when 
a service has located a lookup 
service and wishes to join it. 
Lookup occurs when a client or 
user needs to locate and invoke a 
service described by its interface 
type (written in the Java 
programming language) and 
possibly, other attributes. 
Features: 

  Registry 
  Advertisement 
  Discovery 
  Interoperability 
  Security 

Salutati
on 
[Pasco
e2001] 

The 
Salutation 
Consortium 

The Salutation architecture 
is created to solve the 
problems of service 
discovery and utilisation 
among a broad set of 
appliances and equipment 
and in an environment of 
widespread connectivity 
and mobility. 

The architecture provides a 
standard method for applications, 
services and devices to describe 
and to advertise their capabilities to 
other applications, services and 
devices and to find out their 
capabilities. The architecture also 
enables applications, services and 
devices to search other 
applications, services or devices for 
a particular capability, and to 
request and establish interoperable 
sessions with them to utilize their 
capabilities. 
Features: 

  Registry 
  Advertisement 
  Discovery 
  Interoperability 

     Security 
SLP 
[Guttm
an1999
] 

The IETF The Service Location 
Protocol provides a 
scalable framework for the 
discovery and selection of 
network services.  Using 
this protocol, computers 
using the Internet need 

SLP supports a framework by 
which client applications are 
modelled as User Agents and 
services are advertised by Service 
Agents. A third entity, called a 
Directory Agent provides 
scalability to the protocol. 
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little or no static 
configuration of network 
services for network based 
applications.  This is   
especially important as 
computers become more 
portable, and users less 
tolerant or able to fulfil the 
demands of network 
system   administration. 

Features: 
  Registry 
  Advertisement 
  Discovery 
  Interoperability 
  Security 

UPnP 
[UPnP
200] 
[Golan
d1999] 

Microsoft Universal Plug and Play 
(UPnP) is architecture for 
pervasive peer-to-peer 
network connectivity of 
PCs of all form factors, 
intelligent appliances, and 
wireless devices. UPnP is 
a distributed, open 
networking architecture 
that leverages TCP/IP and 
the Web to enable 
seamless proximity 
networking in addition to 
control and data transfer 
among networked devices 
in the home, office, and 
everywhere in between. 

Simple Service Discovery Protocol 
(SSDP), as the name implies, 
defines how network services can 
be discovered on the network. 
SSDP defines methods both for a 
control point to locate resources of 
interest on the network, and for 
devices to announce their 
availability on the network. SSDP 
eliminates the overhead that would 
be necessary if only one of these 
mechanisms is used. 
Features: 
     Registry 

  Advertisement 
  Discovery 

     Interoperability 
     Security 

Table 3.2 Overview of Distributed System Infrastructures with Service 
Discovery Capabilities 

Service advertisement and discovery technologies enable device cooperation and 

reduce configuration problems, which is a necessity in increasingly mobile 

computing environment. The main features of the service discovery suites 

include: service registry, service advertisement, service discovery, and 

interoperability. These are introduced in the sections below. 

3.2.1 Service Registry 

When a new component enters into a distributed system, there is usually a 

registration procedure for it to contact other existing components in the system. 

This process can be described by service registry. 
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In Jini, to register service availability or to discover services, a service or client 

must first locate one or more lookup servers by using a multicast request protocol. 

This request protocol terminates with the invocation of a unicast discovery 

protocol, in which clients and services are used to communicate with a specific 

lookup service. 

Unlike Jini, SLP can operate without directory servers. The presence of one or 

more directory agents can substantially improve performance, however, this is 

done by reducing the number of multicast messages and the amount of network 

bandwidth used. In active discovery, service agents and user agents multicast SLP 

requests or use DHCP to discover directory agents. When a directory agent is 

present, service agents and user agents use unicast communication to register their 

services and find appropriate services respectively. In the absence of directory 

agents, user agents multicast requests for services and receive unicast responses 

directly from the service agents that control the matching services. This tends to 

increase bandwidth consumption, but provides a simpler model, appropriate for 

small networks. 

In the A4 methodology introduced in this work, there is no distinction between 

clients, servers, and go-betweens as seen in Jini and SLP. Each agent in the 

system functions as a client, a server, or a directory, which provides a simpler 

model as well as resulting in a high performance implementation. 

3.2.2 Service Advertisement 

After joining the system, the components in the system operating as service 

providers must advertise their services to other components, which is referred to 

as service advertisement. 

In UPnP, there is no service registry process. However, when devices are 

introduced into a network, they directly multicast “alive”  messages to control 

points. When they want to cancel the availability of their services, they send 

“byebye” messages. In SSDP, each service has three associated IDs – service 
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type, service name, and location – which are multicast when services are 

advertised. 

Jini uses Java’s Remote Method Invocation (RMI) facility for all interactions 

between either a client or a service and the lookup server after initial discovery of 

the lookup server. Jini associates a proxy, or remote control object, with each 

service instance. A service advertises its availability by registering its object in 

one or more lookup servers. 

In the A4 methodology, service advertisement only happens between nearby 

agents so that the system is scalable, the details of which will be introduced in 

Chapter 5. 

3.2.3 Service Discovery 

The components acting as service requestors will search for available services in 

the system. This is the kernel process, which is defined as service discovery. 

Bluetooth is a wireless radio system, so there is no service registry or 

advertisement in Bluetooth. The Bluetooth SDP provides a simple API for 

enumerating the devices in range, and browsing available services. It also 

supports “stop” rules that limit the duration of searches or the number of devices 

returned. Client applications use the API to search for available services either by 

service class that uniquely identify types of devices, or by matching attributes. 

Salutation managers function as service brokers; they help clients find needed 

services and let services register their availability. A client can use the 

slmSearchCapability() call to determine if Salutation managers have registered 

specific functional units. Once a functional unit is discovered, 

slmQueryCapability() can be used to verify that a functional unit has certain 

capabilities. 

In the A4 methodology, many agents can take part in a service discovery process. 

A service discovery process can traverse the system for many steps until the 
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discovery succeeds or is forced to stop. This mechanism has a scalable 

implementation, which is different from all of the above methods. 

3.2.4 Interoperability 

When a client component in the system finds an available server component, 

whether these two components can cooperate with each other directly is described 

as the problem of interoperability. 

In Jini, to use a service, a device must first secure an instance of the proxy object 

for it. From a client point of view, the location of the service provided by this 

remote control object is unimportant, because the object encapsulates the location 

of the service and the protocol necessary to operate it. 

Salutation managers fill a role similar to lookup servers in Jini, but they can also 

manage the connections between clients and services. After the connection is 

established, a Salutation manager can operate in several “personalities” , with or 

without further operations in the data stream. 

Unlike higher level service discovery technologies such as Jini, Bluetooth’s SDP 

does not provide a mechanism for using discovered services – specific actions 

required to use a service must be provided by a higher level protocol. However, it 

does define a standard attribute ProtocolDescriptionList, which enumerates 

appropriate protocols for communicating with a service. 

In the initial implementation of A4 systems, the protocols for communication 

among agents are pre-defined using simple data structures. Interoperability is 

supported in a simple way, which may need further extensions for practical large-

scale applications. 

Another important issue, which is not a key consideration in the A4 methodology, 

is the feature of security. For example, Jini depends on Java’s security model, 

which provides tools like digital certificates, encryption, and control over mobile 

code activities. The security issues will not be discussed in detail here. The A4 
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methodology focuses on simulation based quantitative performance evaluation 

and optimisation of service discovery in large-scale multi-agent systems, which 

cannot be found in other work.  

3.3 Use of Agent Technologies in Grid Development 

The use of service discovery in multi-agent systems provides a suitable high-level 

abstraction for grid resource management, which will be described in detail in 

Chapter 5 as the so-called A4 methodology. In this section, we give a brief 

introduction to the state-of-the-art in the use of agent technologies in grid 

development. 

Software agents have been used in several grid projects, such as AppLeS, DPSS, 

and NetSolve. In these projects, agents are high-level abstractions of software 

entities, which usually act as resource or data brokers or representatives of grid 

users in the grid software infrastructure. An agent-based grid computing project 

can be found in [Rana2001]. In this work, an “Agent Grid”  is described that 

integrates services and resources for establishing multi-disciplinary PSEs 

(Problem Solving Environments). Specialised agents contain behavioural rules, 

and can modify these rules based on their interaction with other agents, and with 

the environment in which they operate. The A4 methodology can also be applied 

for integrating multiple services and resources. Rather than using a collection of 

many predefined specialised agents, a hierarchy of homogenous agents is used in 

the A4 methodology, where agents can be reconfigured with special roles at 

running time. 

As mentioned, agents can achieve autonomy through intelligence and social 

ability. Both of these features can be used in grid development. For example, a 

resource scheduler is an important entity in a grid resource management system. 

Due to the large search space, AI technologies will most likely be used to solve 

large-scale resource scheduling issues. The powerful high-level abstraction of 

multi-agent systems can also be used to solve some architectural problems arising 

in grid development. In this work, we use agents for grid resource management. 
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As summarised in [Buyya2000b], there are three different models for grid 

resource management architecture: hierarchical model, abstract owner model, and 

computational market/economy model. In the methodology provided by A4, the 

agent system is organised in a hierarchical manner, which is used to address 

scalability. Meanwhile, each agent also acts as an abstract owner of the grid 

resources, and the service discovery process is performed in a market based way. 

Making full use of capabilities that agents provide, our architectural model for 

grid resource management can capture the essence of all three of the existing 

models. 

During the past two years, the research into agents and the grid have begun to 

converge. A key sign of this trend can be seen clearly at CCGrid 2001. At this 

conference on cluster computing and the grid, two keynote speeches, one main 

conference section, and one workshop focused on research into agent 

technologies. It is clear that more agent applications on grid computing will 

emerge during the next few years. 

However, agents cannot do everything, and there is also a long way to go to put 

grid computing into practice. In this work, we provide a framework (including 

methodology, functionality, and corresponding tools) for agent-based resource 

management for grid computing. There are many gaps that remain and require 

further work for a full grid resource management system. For example, an agent-

based grid resource management system should be able to cooperate with other 

grid services (e.g. those provided by the Globus toolkit). These are not discussed 

in detail here. 

3.4 Summary 

Multi-agent and service discovery technologies have been introduced in detail in 

this chapter, which provides the background of the A4 methodology presented in 

Chapter 5. There is little research into the performance of large-scale multi-agent 

systems, because there are seldom such kinds of agent applications. This research 
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is motivated by the development of a grid resource management system, which is 

large-scale with highly dynamic behaviours. 

By the use of advanced agent technology the development of the software 

infrastructure in the grid is sure to accelerate. At the same time, new applications 

with new requirements will also stimulate the emergence of new technologies for 

software agents. 

From a view of software engineering, agents provide high-level abstractions to the 

system. To implement an agent, different techniques must be applied according to 

requirements from different agent applications. In the work described in the 

thesis, performance prediction capabilities are one of the key features for the 

agent implementation, which can be provided by PACE. In the following four 

chapters, the main parts of the work are introduced, beginning with a case study of 

the performance evaluation using the PACE toolkit. 
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The grid resource management system is introduced, beginning with previous 

work at Warwick, that is the PACE toolkit. In this chapter, we validate the PACE 

performance prediction capabilities using a new parallel application [Cao1999d] 

called Sweep3D - a complex benchmark for evaluating wavefront application 

techniques on high performance parallel and distributed architectures [Koch1992]. 

This benchmark is also being analysed by other performance prediction 

approaches including POEMS. The sections below contain a brief overview of 

Sweep3D, the model description of the application, and validation results on two 

high performance systems. 

4.1 Overview of Sweep3D 

The benchmark code Sweep3D represents the heart of a real Accelerated Strategic 

Computing Initiative (ASCI) application [Nowak1997]. It solves a 1-group time-

independent discrete ordinates (Sn) 3D cartesian (XYZ) geometry neutron 

transport problem. The XYZ geometry is represented by a 3D rectangular grid of 

cells indexed as IJK. The angular dependence is handled by discrete angles with a 

spherical harmonics treatment for the scattering source. The solution involves two 
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main steps: the streaming operator is solved by sweeps for each angle, and the 

scattering operator is solved iteratively. 

A sweep (Sn) proceeds as follows. For one of eight given angles, each grid cell 

has 4 equations with 7 unknowns (6 faces plus 1 central); boundary conditions 

complete the system of equations. The solution is by a direct ordered solve known 

as a sweep from one corner of the data cube to the opposite corner. Three known 

inflows allow the cell centre to be solved producing three outflows. Each cell’ s 

solution then provides inflows to 3 adjoining cells (1 in each of the I, J, & K 

directions). This represents a wavefront evaluation in all 3 grid directions. For 

XYZ geometries, each octant of angles has a different sweep direction through the 

mesh, but all angles in a given octant sweep the same way. 

Sweep3D exploits parallelism through the wavefront process. The data cube 

undergoes a decomposition so that a set of processors, indexed in a 2D array, hold 

part of the data in the I and J dimensions, and all of the data in the K dimension. 

The sweep processing consists of pipelining the data flow from each cube vertex 

in turn to its opposite vertex. It is possible for different sweeps to be in operation 

at the same time but on different processors.  

 

K 

I J 

A 

B 

C 

 

Figure 4.1 Data Decomposition of the Sweep3D Cube 

For example, Figure 4.1 depicts a wavefront (shaded in Grey) that originated from 

the unseen vertex in the cube, and is about to finish at vertex A. At the same time, 

a further wavefront is starting at vertex B and will finish at vertex C. Note that the 
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example shows the use of a 5x5 grid of processors, and in this case each processor 

holds a total of 2x2x10 data elements (data set of 10x10x10). 

The version of Sweep3D that can be downloaded from the ASCI website is 

written entirely in Fortran77 except that it requires automatic arrays and a C timer 

routine is used. This version of Sweep3D supports both PVM [Geist1994] and 

MPI [Dongarra1994] message passing libraries as well as a single processor 

version. In this case study, we convert the Sweep3D programmes into a pure C 

version with only MPI functions, which can be used more conveniently for 

validation experiments of PACE performance modelling and prediction 

capabilities. 

4.2 Sweep3D Models 

In this section, we introduce the Sweep3D performance models in detail. The 

application model is composed of 9 objects written in the PACE PSL. The 

creation of resource models for two platforms is also introduced. The relations 

between the source code, application model, and resource model help a better 

understanding of the PACE methodology. The contents in this section correspond 

to those shown schematically in Section 2.2. 

4.2.1 Model Description 

We define the application object of the model as sweep3d, and divide each 

iteration of the application into four subtasks according to their different functions 

and different parallelisations. The object hierarchy is shown in Figure 4.2, each 

object is a separate rectangle and is labelled with the object name. The functions 

of each object are: 

• sweep3d – the entry of the whole performance model. It initialises all 

parameters used in the model and calls the subtasks iteratively according 

to the convergence control parameter (epsi) as input by the user. 
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• source – subtask for getting the source moments, which is actually a 

sequential process. 

• sweep – subtask for sweeper, which is the core component of the 

application.  

• fixed – subtask to compute the total flux fixup number during each 

iteration. 

• flux_err – subtask to compute the maximum relative flux error. 

• async – a sequential “parallel”  template. 

• pipeline – parallel template specially made for  the sweeper function. 

• globalsum – parallel template which represents the parallel pattern for 

getting the sum value of a given parameter from all the processors. 

• globalmax – parallel template which represents the parallel pattern for 

getting the maximum value of a given parameter from all the processors. 

• SgiOrigin2000 – contains all the hardware configurations for SGI 

Origin2000, which is comprised of smaller component hardware models 

already in existence within PACE. This can be interchanged with a 

hardware model of a different system, e.g. a cluster of Sun workstations. 

 
Application 
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sweep source flux_err fixed 
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SgiOrigin2000 

 

Figure 4.2 Sweep3D Object Hierarchy (HLFD Diagram) 
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4.2.2 Application Model Creation 

The objects of application, subtask, and parallel template in the Sweep3D model 

introduced above can be expressed using the PACE PSL. The PSL code for 

Sweep3D is fully listed in Appendix A. Figure 4.3 describes different parts of the 

sweep3d object clearly in PSL scripts, the sections of which correspond to those 

schematically shown in Figure 2.2. 

 application sweep3d {  
    include har dwar e;  
    include sour ce;  
    include sweep;  
    include f i xed;  
    include f l ux_er r ;  
    var numer i c :  
        npe_i  = 2,  
        npe_j  = 3,  
        mk = 10,  
        mmi  = 3,  
        i t _g = 50,  
        j t _g = 50,  
        k t  = 50,  
        epsi  = - 12,  
        · · · · · ·  
    link {  
    har dwar e:   
        Npr oc = npe_i  *  npe_j ;  
    sour ce:  
        i t  = i t ,  
        · · · · · ·  
    sweep:  
        i t  = i t ,  
    · · · · · ·  
    }  
    option {  
        hr duse = " Sgi Or i gi n2000" ;  
    }  
    proc exec i ni t  {  
        · · · · · ·  
        f or ( i  = 1; i  <= - epsi ; i  = i  + 1)  {  
            call sour ce;  
            call sweep;  
            call f i xed;  
            call f l ux_er r ;  
 }  
    }  
}   

Figure 4.3 Sweep3D Application Object 

Each object follows the same syntax and requires the following parts: 

• Include statement – declares other objects that are referenced. 
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• External variable definition – defines variables that form the interface to 

other objects as well as the PSL run-time system. The variables can be 

either numeric or strings. 

• Linking statement – enables external variables and options defined in other 

objects to be modified. 

• Option – sets the default options of the object. 

• Procedures – describe the relationships between objects in order to predict 

performance. These relationships can either be described as control flow 

graphs (cflow) or execution statements (exec), which are analytical 

formulas. Each object also has a procedure init, which is the entry point 

for evaluation. 

Some of the main statements used in the PSL to represent the performance aspects 

of the source code are as follows: 

• compute – a processing part of the application, its argument is a resource 

usage vector. This vector is evaluated through the hardware object. 

• loop – the body of which includes a list of the control flow statements that 

will be repeated.  

• call - used to execute another procedure.  

• case – the body of which includes a list of expressions and corresponding 

control flow statements which might be evaluated. 

• step – corresponds to the use of one of the hardware resources of the 

system. Its argument is used to configure the device specified in the 

current step. This is used in parallel templates only. 

• confdev – configures a device. The meaning of its arguments depend on 

the device. For example, the device mpirecv (MPI receive communication 

operation) accepts three arguments: source processor ID, destination 

processor ID and message size. 
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As mentioned before, application model creation can be processed almost 

automatically with the assistance of PACE application characterisation tool, 

which makes the performance modelling very easy and fast. However, during the 

performance modelling of Sweep3D, we still meet some difficulties. 

Firstly, there are some aspects of the program that can be only processed by the 

PACE tools under guidance by the user. For example, the loop numbers in the 

program those are not explicit must be estimated by input from the user directly. 

PACE tools do not analyse data dependencies in the program. In Sweep3D, if a 

loop number is not a constant, we calculate an average value as an approximate 

estimation and input it to the model. The execution probabilities of each branch of 

if statements must also be estimated by the user, which make the implementation 

of PACE source code analysis tools much more efficient. 

Secondly, there are some non-structural C statements like goto statement in the 

Sweep3D source code, which are not supported by PACE tools. We must give a 

reasonable estimation about these parts. Fortunately, those parts contain only a 

small number of instructions and have little impact on the overall execution time 

of the program. 

Thirdly, pipeline is a parallel template specially made for the sweeper function, 

which is the kernel part of the Sweep3D model. Though, as mentioned before, a 

line by line mapping relation exists between the source code and corresponding 

parallel template, we must define the arguments of device configurations by 

ourselves, which need a deeper understanding of the parallelisation of Sweep3D. 

For example, the processors used by Sweep3D are logically organised into a 2D 

array, so the arguments for mpirecv, such as the source processor ID and the 

destination processor ID, must be calculated in advance. That is why pipeline 

looks much more complex than the other parallel template objects. 

Though there are several approximate processes in the Sweep3D model, we can 

still get fairly reasonable performance prediction results given in the following 

sections. The accuracy of the performance prediction lies on not only the 
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application model but also the hardware configurations described in the resource 

models. 

4.2.3 Resource Model Creation 

The resource models are embedded in the PACE tools ready for application 

performance evaluation. For ordinary usage, the PACE resource tools are not 

provided to the user. There are only a limited number of hardware platforms, so 

these models can be pre-installed into the PACE system, and be used directly for 

performance evaluation, which is convenient especially to those users who are not 

professional performance engineers. Figure 4.4 gives an illustration of part of the 

resource model for the multi-processor machine, the SGI Origin 2000. 

 config Sgi Or i gi n2000 {  
 
  har dwar e {  
    . . . . . .  
  }  
  pvm {  
    . . . . . .  
  }  
  mpi  {  
    . . . . . .  
    DD_COMM_A = 512,  
    DD_COMM_B = 33. 228,  
    DD_COMM_C = 0. 02260,  
    DD_COMM_D = - 5. 9776,  
    DD_COMM_E = 0. 10690,  
    DD_TRECV_A = 512,  
    DD_TRECV_B = 22. 065,  
    DD_TRECV_C = 0. 06438,  
    DD_TRECV_D = - 1. 7891,  
    DD_TRECV_E = 0. 09145,  
    DD_TSEND_A = 512,  
    DD_TSEND_B = 14. 2672,  
    DD_TSEND_C = 0. 05225,  
    DD_TSEND_D = - 12. 327,  
    DD_TSEND_E = 0. 07646,  
    . . . . . .  
  }  
  c l c {  
    . . . . . .  
  }  
}  
 

 

Figure 4.4 SGI Origin2000 Hardware Object 

However, when a new hardware platform emerges, a new resource model should 

be produced for performance evaluation of applications running on this new 
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resource. Also, if a new network API like MPI and PVM is developed, the 

corresponding configuration should also be added into each resource model. 

When we begin to evaluate the Sweep3D model on the SGI Origin2000, the MPI 

configurations shown in Figure 4.4 are actually not ready in the SGI Origin2000 

model. In this section, we give a brief introduction to how this data is produced 

using PACE tools, which can lead to a deeper understanding of the working 

mechanisms of PACE. 

We notice that each MPI function is configured using five parameters, A to E. 

These parameters provide a simple description of MPI communications between 

processors of SGI Origin2000. They are used to calculate the consuming time of 

corresponding communication operation according to the follow equation: 

T
B Cx

D Ex

if

if

x A

x Ax =
+
+

�� � ≤
>

,

,
 

where x is the number of double floats during one communication process (to 

make the evaluation of the Sweep3D model easy, we use the number of double 

floats directly as the variable. For general use of the model, x should be the 

number of communicating bytes). 

A benchmark program with an MPI communication interface is run on two 

processors in a Ping-Pong style. For a given length of contents, the processors 

send it back and forth many times. Timers are added into the beginning and end 

points of the communication and measure the communication time consumed. 

Average values are calculated and recorded into the data files. In each data file, 

there are a number of data items. Each data item is a pair of data length and 

communication time. 

Figure 4.5 gives a simple linear regression program written in Mathematica 

[Wolfram1991]. Given a data file, the function described in the program can 

calculate the five parameters and create corresponding hardware communication 

models. The results it produces from three data files are those parameters shown 

in Figure 4.4. 
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Figure 4.5 Creating Hardware Communication Models Using 
Mathematica 

PACE processor resource model creation will not be described here and can be 

found in [Papaefstathiou1994]. It is clear that the data included in the PACE 

resource models are static, which ignores the impact of the dynamic factors on the 

system performance, such as the changing of computing workload and 
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communication bandwidth. For most of the tightly coupled parallel systems that 

are not overloaded, PACE resource models can still give good approximate and 

provide reasonable accuracy. 

4.2.4 Mapping Relations 

This section corresponds to those introduced in Section 2.2.4. The example model 

objects and their correspondence with the C source code are shown in Figure 4.6, 

which is a detailed example of Figure 2.5. 

 Sweep3D Source Code 

voi d l ast ( )  {  
  #pragma capp I f  do_dsa 
  i f  (do_dsa)  {  
    i  = i 0 - i 2;  
    #pragma capp Loop mmi  
    f or (  mi  = 1;  mi  <= mmi ;  mi ++)  {  
      m = mi  + mi o;  
      #pragma capp Loop nk 
      f or (  l k = 1;  l k <= nk;  l k++)  {  
        k = k0 + si gn( l k-1, k2) ;  
        #pragma capp Loop j t  
        f or ( j  = 1;  j  <= j t ;  j ++ )  {  
          Face[ i +i 3] [ j ] [ k] [ 1]  = 
            Face[ i +i 3] [ j ] [ k] [ 1]  + 
            wmu[ m]*Phi i b[ j ] [ l k] [ mi ] ;  
        }  
      }  
    }  
  }  
}  
 

voi d work( )  { 
  #pragma capp I f  do_dsa 
  i f  (do_dsa) {  
    i  = i 0 -  i 2;  
    #pragma capp Loop mmi  
    f or(  mi  = 1;  mi  <= mmi ;  mi ++)  {  
      m = mi  + mi o;  
      #pragma capp Loop nk 
      for (  l k = 1;  l k <= nk;  l k++)  {  
        k = k0 + si gn( l k-1, k2) ;  
        #pragma capp Loop j t  
        f or (  j  = 1;  j  <= j t ;  j ++ )  {  
          Face[ i +i 3] [ j ] [ k] [ 1]  = 
            Face[ i +i 3] [ j ] [ k] [ 1]  + 
            wmu[ m] *Phi i b[ j ] [ l k] [mi ] ;  
        }  
      } 
    }  
  }  
}  
 

Sweep3D Performance Model Scripts 

voi d compu_f ace()  {  
  #pragma capp I f  do_dsa 
  i f  (do_dsa)  {  
    i  = i 0 -  i 2;  
    #pragma capp Loop mmi  
    f or ( mi  = 1;  mi  <= mmi ;  mi ++) {  
      m = mi  + mi o;  
      #pragma capp Loop nk 
      f or (  l k = 1;  l k <= nk;  l k++)  {  
        k = k0 + si gn( l k-1, k2) ;  
        #pragma capp Loop j t  
        f or (  j  = 1;  j  <= j t ;  j ++ )  {  
          Face[ i +i 3] [ j ] [ k] [1]  = 
            Face[ i +i 3] [ j ] [ k] [ 1]  + 
            wmu[ m] *Phi i b[ j ] [ l k] [ mi ] ;  
        }  
      }  
    }  
  }  
} 
 

subtask sweep {  
  . . . . . .  
  proc cflow comp_f ace {( * Cal l s:  si gn *)  
    compute <i s cl c,  FCAL>;  
    case (<i s cl c,  I FBR>)  {  
    do_dsa:  
      compute <i s cl c,  AI LL,  TI LL,  SI LL>;  
      loop (<i s cl c,  LFOR>,  mmi )  {  
        compute <i s cl c,  CMLL,  AI LL,  TI LL,  SI LL>;  
        loop (<i s cl c,  LFOR>,  nk)  {  
          compute <i s cl c,  CMLL,  AI LL>;  
          compute <i s cl c,  AI LL>;  
          call cf l ow si gn;  
          compute <i s cl c,  TI LL,  SI LL>;  
          loop (<i s cl c,  LFOR>,  j t )  {  
            compute <i s cl c,  CMLL,  2*ARD4,  ARD3,   
              ARD1,  MFDL,  AFDL,  TFDL,  I NLL>;  
          } 
          compute <i s cl c,  I NLL>;  
        }  
        compute <i s cl c,  I NLL>;  
      }  
    } 
  }  (* End of  comp_f ace *)  
  proc cflow work {  . . . . . .  }  
  proc cflow l ast  {  . . . . . .  }  
  . . . . . .  
} 

partmp pi pel i ne { 
  . . . . . .  
  proc exec i ni t  {  
    . . . . . .  
    step cpu {  confdev Tx_sweep_i ni t ;  }  
    for (  phase = 1;  phase <= 8;  phase = phase + 1) {  
      step cpu {  confdev Tx_oct ant ;  }  
      step cpu {  confdev Tx_get _di rect ;  }  
      f or (  i  = 1;  i  <= mmo;  i  = i  + 1 )  {  
        step cpu {  confdev Tx_pi pel i ne_i ni t ;  }  
        f or(  j  = 1;  j  <= kb;  j  = j  + 1 )  {  
          step cpu {  confdev Tx_kk_l oop_i ni t ;  }  
          for (  x = 1;  x <= npe_i ;  x = x + 1 )  
          for (  y = 1;  y <= npe_j ;  y = y + 1 )  {  
            myi d = Get _myi d(  x,  y ) ;  
            ew_rcv = Get_ew_rcv(  phase,  x,  y ) ;  
            i f (  ew_rcv != 0 )  
              step mpi recv {  confdev ew_rcv,  myi d,  ni b;  }  
            el se  
              step cpu on myi d {  confdev Tx_el se_ew_rcv;  }  
          } 
          step cpu {  confdev Tx_comp_f ace;  }  
          for (  x = 1;  x <= npe_i ;  x = x + 1 )  
          for (  y = 1;  y <= npe_j ;  y = y + 1 )  {  
            myi d = Get _myi d(  x,  y ) ;  
            ns_rcv = Get_ns_rcv(  phase,  x,  y ) ;  
            i f (  ns_rcv != 0 )  
              step mpi recv {  confdev ns_rcv,  myi d,  nj b;  }  
   el se 
              step cpu on myi d {  confdev Tx_el se_ns_rcv;  }  
          } 
          step cpu {  confdev Tx_work;  }  
          . . . . . .  
        }  
        step cpu {  confdev Tx_l ast ;  }  
      }  
    } 
  }  
}  

 
 
voi d sweep()  { 
  . . . . . .  
  sweep_init(); 
  f or (  i q = 1;  i q <= 8;  i q++ )  {  
    octant(); 
    get_direct(); 
    f or ( mo = 1;  mo <=mmo;  mo++)  {  
      pipeline_init(); 
      f or (  kk = 1;  kk <= kb;  kk++)  {  
        kk_loop_init(); 
 
        i f  (ew_rcv != 0)  
          i nf o = MPI_Recv(Phi i b,  ni b,  
            MPI _DOUBLE,  t i ds[ ew_rcv] ,  
            ew_t ag,  MPI _COMM_WORLD,  
            &st at us);  
        el se 
          else_ew_rcv(); 
 
        comp_face(); 
 
        i f  (ns_rcv != 0)  
          i nf o = MPI_Recv(Phi j b,  nj b,  
            MPI _DOUBLE,  t i ds[ ns_rcv] ,  
            ns_t ag,  MPI _COMM_WORLD,  
            &st at us);  
        el se 
          else_ns_rcv(); 
 
        work(); 
        . . . . . .  
      }  
      last(); 
    }  
  }  
} 
 

config Sgi Or i gi n2000 {  
 
  hardware {  
    . . . . . .  
  }  
  pvm {  
    . . . . . .  
  }  
  mpi  {  
    . . . . . .  
    DD_COMM_A = 512,  
    DD_COMM_B = 33. 228,  
    DD_COMM_C = 0. 02260,  
    DD_COMM_D = -5. 9776,  
    DD_COMM_E = 0. 10690,  
    DD_TRECV_A = 512,  
    DD_TRECV_B = 22. 065,  
    DD_TRECV_C = 0. 06438,  
    DD_TRECV_D = -1. 7891,  
    DD_TRECV_E = 0. 09145,  
    DD_TSEND_A = 512,  
    DD_TSEND_B = 14. 2672,  
    DD_TSEND_C = 0. 05225,  
    DD_TSEND_D = -12.327,  
    DD_TSEND_E = 0. 07646,  
    . . . . . .  
  }  
  cl c {  
    . . . . . .  
    MFSL = 0. 00602936,  
    MFSG = 0. 025046,  
    MFDL = 0. 0068927,  
    MFDG = 0. 011226,  
    . . . . . .  
    ARDN = 0. 000612696,  
    ARD1 = 0. 0094727,  
    ARD2 = 0. 0234027,  
    ARD3 = 0. 0438327,  
    ARD4 = 0. 0672354 
    . . . .  
    CMLL = 0. 0098327,  
    CMLG = 0. 0203127,  
    CMSL = 0. 0096327,  
    CMSG = 0. 0305927,  
    CMCL = 0. 0100327,  
    CMCG = 0. 0223627,  
    CMFL = 0. 0107527,  
    CMFG = 0. 0229227,  
    CMDL = 0. 0106327,  
    CMDG = 0. 0227327,  
    I FBR = 0. 0020327,  
    . . . . . .  
    FCAL = 0. 030494,  
    LFOR = 0. 011834,  
    . . . .  
  }  
}  
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Figure 4.6 Mapping between Sweep3D Model Objects and C Source 
Code 
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Figure 4.6A is the C source code showing part of the main function sweep, whose 

serial parts have been abstracted into a number of sub-functions in bold font. 

Figure 4.6C shows how the same source code structure is used to provide the 

parallel template description. Figure 4.6B is an example sub-function source code, 

which can be converted automatically to the control flow procedure in the subtask 

object as shown in Figure 4.6D. 

Figure 4.6 also shows the inner mapping between the software objects and 

hardware object of the performance model. All of the performance specification 

components in PSL can find their corresponding configurations from the hardware 

object, shown in Figure 4.6E. The abundant off-line configuration information 

included by the hardware object is the basis to implement a rapid evaluation time 

to produce the performance predictions. 

It can be seen from the part of the Sweep3D model that there is a lot of 

information extracted from the source code that is used for the performance 

prediction. The accuracy of the resulting model is of importance, and in Section 

4.3 below, detailed results are shown to validate the model with measurements on 

the two systems considered. 

4.3 Validation Experiments 

In this section validation results on execution time for Sweep3D are given to 

illustrate the accuracy of the PACE modelling capabilities for performance 

evaluation. The procedures in the PACE evaluation engine to achieve these results 

have been introduced in Section 2.5.  

4.3.1 Validation Results on SGI Origin2000 

Table 4.1 shows the validation results of the PACE model against the code 

running on an SGI Origin2000 shared memory system. Note that the result for 

single processor input are not included because there are many special 

configurations, which are not included in the current performance model for the 
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sequential code. The accuracy of the performance prediction results were 

evaluated as follows: 

Error =
Prediction - Measurement

Measurement
× 100%  

The errors between measurements and predictions are also shown in Table 4.1. It 

can be seen that the maximum error is 11.44%, but the average error is 

approximately 5%. 

Total Time Data 

Size 

2D 
Proc. 
Array Prediction (s) Measurement (s) Err (%) 

1x2 4.73037 4.440255 6.53 
2x2 2.59659 2.584936 0.45 
2x3 1.8373 1.812252 1.38 
2x4 1.51869 1.609818 -5.66 
3x3 1.3399 1.343736 -0.29 
3x4 1.10918 1.164072 -4.72 

15x15x15 

4x4 0.907100 1.002728 -9.54 
1x2 22.9501 20.780170 10.44 
2x2 12.1537 11.619632 4.60 
2x3 7.83574 7.893481 -0.73 
2x4 6.02865 5.979522 0.82 
3x3 5.52498 5.532116 -0.13 
3x4 4.24959 4.469564 -4.92 

25x25x25 

4x4 3.36453 3.537966 -4.90 
1x2 69.3858 64.832165 7.02 
2x2 36.1978 33.097098 9.37 
2x3 22.1074 21.160975 4.47 
2x4 16.3181 16.137180 1.12 
3x3 15.3466 15.272606 0.48 
3x4 11.3211 11.451001 -1.13 

35x35x35 

4x4 8.84226 9.984213 -11.44 
1x2 217.398 228.893311 -5.02 
2x2 112.307 102.285787 9.80 
2x3 65.6201 67.278086 -2.46 
2x4 46.7591 49.534483 -5.60 
3x3 45.1373 47.289627 -4.55 
3x4 32.1438 34.796392 -7.62 

50x50x50 

4x4 24.8468 24.800020 0.20 

Table 4.1 PACE Model Validation on an SGI Origin2000 
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The validation results are also illustrated in Figure 4.7. As shown in the figure, 

run time decreases when the number of processors increases. At the same time the 

parallel efficiency decreases too. In fact when the number of processors is more 

than 16, the run time does not improve any further. 
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Figure 4.7 PACE Model Validation on an SGI Origin2000 

4.3.2 Validation Results on Sun Clusters 

By only changing the hardware object to the SunUltra1 predictions on this new 

system can be obtained as shown in Table 4.2. A cluster of 9 SunUltra1 

workstations was used to obtain the measurements assuming no background 

loading. 

Total Time Data 

Size 

2D Proc. 
Array 

Prediction (s) Measurement (s) Err (%) 

1x2 11.597 12.442062 -6.79 
2x2 7.42898 6.938457 7.07 
2x3 5.88532 5.659182 4.00 
2x4 5.29021 5.445188 2.85 

15x15x15 

3x3 4.84622 5.101984 5.01 
25x25x25 1x2 51.4059 51.326475 0.15 
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2x2 29.6231 27.409842 8.07 
2x3 20.5203 20.188288 1.64 
2x4 16.7535 17.007142 -1.49 

 

3x3 15.5563 15.041854 3.42 
1x2 149.708 145.008424 3.24 
2x2 82.8056 78.401377 5.62 
2x3 53.097 53.201457 -0.20 
2x4 40.9785 42.817732 -4.30 

35x35x35 

3x3 38.4032 37.551111 2.27 
1x2 456.928 462.103560 -1.12 
2x2 244.501 232.202359 5.30 
2x3 147.7 147.227193 0.32 
2x4 108.571 120.719472 -10.06 

50x50x50 

3x3 103.838 104.700557 0.82 

Table 4.2 PACE Model Validation on a Cluster of SunUltra1 
Workstations 

It can be seen that the maximum error is 10.06%, but the average error is also 

approximately 5%. As shown in Figure 4.8, the run time spent is much more than 

that on SGI Origin2000 with the same workload. But the trend of the curve is 

almost the same. 
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Figure 4.8 PACE Model Validation on a Cluster of SunUltra1 
Workstations 
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Besides the reasonable accuracy, the performance model can be used to obtain the 

evaluation results in a rapid time period, typically less than 2s. This is a key 

feature of PACE that enables the performance models to be used to steer the 

application execution onto an available system at run-time in an efficient manner 

[Kerbyson1998, Alkindi2001]. 

4.4 PACE as a Local Resource Manager 

In this chapter, we use Sweep3D as a case study to validate the performance 

prediction capabilities of the PACE toolkit. The key features of PACE 

performance prediction capabilities include: 

• a reasonable prediction accuracy (the maximum error between 

measurements and predictions is 15%); 

• a rapid evaluation time (typically seconds of CPU use) for a given system 

and problem size; 

• and easy performance comparison across different computational systems. 

It has been shown that the PACE system can produce reliable performance 

information which may be used for investigating application and system 

performance in many different ways. As mentioned in [Kerbyson2000], 

performance data produced by PACE can be used for the management of parallel 

and distributed systems. However, the PACE toolkit is initially not developed in 

the context of grid computing. In this section, we will discuss whether PACE 

functions can be used to produce performance related data for resource 

management in a grid environment. 

As we have mentioned in Section 2.4, a grid environment brings two key 

challenges, which are scalability and adaptability.  For the grid resource 

management system to be scalable, it is obviously not possible to provide the 

whole grid resources with one PACE manager. In this case, it will definitely 

become the bottleneck of the system. It is practical that one PACE resource 
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manager may be able to manage and schedule applications running on a local 

resource.   

PACE models contain only static information on the application and system. 

PACE application model is retrieved directly from the source code of the parallel 

application. The hardware information contained in PACE resource models is 

measured off-line on computing and communication capabilities of the resource. 

When a parallel application is executed on a grid resource, there are many 

dynamic factors that have an impact on the resource performance. For example, 

the grid resource may not be entirely dedicated to the grid users. Especially the 

communication between the grid resources is provided by low speed networks, 

which may result in irregular communication latency when parallel applications 

are running. PACE prediction will not provide the same reasonable accuracy 

under such kind of highly dynamic situation. 

In summary, while extremely well suited for managing a locally distributed multi-

computer, the PACE functions do not map well onto wide-area grid computing 

environments, where heterogeneity, multiple administrative domains, and 

communication irregularities dramatically complicate the job of resource 

management. 

As illustrated in Figure 2.8, grid resource management functions should be 

performed at both local and meta levels. Our method for grid resource 

management is to use PACE as local resource manager. At the meta level, an 

additional mechanism, summarised as the A4 methodology in the following 

chapter, are introduced to coordinate different local resource managers to achieve 

the overall management of grid resources. 
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AAGGIILLEE  AARRCCHHIITTEECCTTUURREE  AANNDD  

AAUUTTOONNOOMMOOUUSS  AAGGEENNTTSS  

 

A4 (Agile Architecture and Autonomous Agents) is a methodology for building 

large-scale distributed software systems with highly dynamic behaviours 

[Cao2001c]. The methodology is developed in order to be used for meta-level grid 

resource management, which is an extension of work described in [Cao2000b]. 

A4’s emphasis is on dealing with architectural level dynamics and using 

simulation based analysis to provide quantitative performance evaluation and 

optimisation of system behaviours, which differentiate A4 from other distributed 

system infrastructures described in Section 3.2. 

• An agent is the main component in the system. Each has its own 

motivation, resource and environment. They are not predetermined to 

work together. The number of agents will dramatically increase when a 

wide-area software environment is considered. Together they form a large-

scale multi-agent system. 

• Autonomy is used to describe the character of the agent. The autonomy is 

mainly achieved by the intelligence and the social ability of the agents. An 

agent can fulfil high-level tasks by its own intelligence or by cooperating 

with other agents continuously with little human interference. 
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• Architecture is used to provide a glue for the interactions between the 

agents. For example, large-scale multiple agents can be organized into a 

hierarchy.  

• Agility is used to describe the character of the architecture. Agility means 

quick adaptation to environmental change. Autonomy provides the system 

with component-level adaptability, while agility provides the architecture-

level adaptability of the system. 

5.1 Agent Hierarchy 

The hierarchical model is illustrated in Figure 5.1. There is a single type of 

component, the agent, which is used to compose the whole system. Each agent has 

the same set of functions. Agents are organised into a hierarchy. In Figure 5.1 

different terms are used to differentiate the level of the agent in the hierarchy. The 

broker is an agent that heads the whole hierarchy, maintaining all service 

information of the system. A coordinator is an agent that heads a sub-hierarchy. A 

leaf-node is actually termed an agent in this description. 

B

C

A

A
C

A A
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Figure 5.1 Agent Hierarchy 

The broker and coordinators are also agents except that they are in a special 

position in the hierarchy. All the agents have the same function despite their 

different positions. The broker does not have any more priorities than coordinators 

or agents. The hierarchy of homogenous agents gives a high-level abstraction of a 

distributed system. 
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The agent hierarchy can also represent an open and dynamic system. New agents 

can join the hierarchy or existing agents can leave the hierarchy at any time. 

When a new agent wants to join the system, in the hierarchical model, it will 

broadcast to find its nearest existing agent. An agent can only have one 

connection to an agent higher in the hierarchy to register with, but be registered 

with many lower level agents. Each agent records related registration information. 

After registration, agents can communicate with each other using unicast instead 

of multicast. When an agent wants to leave the system, it must contact its upper 

agent to cancel the registration, and also inform its lower agents to re-register in 

the hierarchy. 

The hierarchy model can address partly the problem of scalability. When the 

number of agents increases, the hierarchy may lead to many system activities 

being processed in a local domain. In this way the system may scale well and does 

not need to rely on one or a few central agents, which may otherwise become a 

system bottleneck. 

Service is another important concept in the A4 methodology. Request is a 

complementary concept to service. In other methodologies, a client is abstracted 

into a request sender; a server is abstracted into a service provider; and a 

matchmaker is an abstraction of a router between a client and corresponding 

server. In the A4 methodology, an agent contains all of the above abstractions. An 

agent can send requests and provide services. Every agent can act as a router 

between a request and a service. This gives a simple and uniform abstraction of 

the functions in the system. 

A resource can be a program, a device or a human in the system, where a service 

is originally provided, while a user is a human, where a request is originally sent 

out. An agent can be a manager of one or more resources. When a resource is 

available to provide a service, the corresponding agent is responsible for 

distributing the service information to many other agents. When a user wants to 

send a request, it usually finds and contacts its nearest agent, and a request may 

pass by many agents to reach the required resource. These processes that happen 
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in the agent hierarchy are defined as service advertisement and discovery, which 

will be discussed in detail in the following sections. 

5.2 Agent Structure 

The agent hierarchy gives an overall architectural description of the system. In 

this section, a layered agent structure is considered, which can provide functions 

both for local management and global coordination. The structure is illustrated in 

Figure 5.2 and explained in detail below. 
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Figure 5.2 Layered Agent Structure 

• Communication Layer – Agents in the system must be able to 

communicate with each other using common data models and 

communication protocols. ACL can be used to address these problems. 

However, an initial system implementation can use some simple pre-

defined data structures instead of a language. The communication layer 

provides an agent with an interface to heterogenous networks and 

operating systems.  

• Coordination Layer – The request an agent receives from the 

communication layer should be explained and submitted to the 

coordination layer, which decides how the agent should act on the request 

according to its own knowledge. For example, if an agent receives a 

service discovery request, it must decide whether it has related service 
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information. Our methodology focuses on the implementation of this 

layer. 

• Local Management Layer – This layer encapsulates the functions needed 

for local system management. For example, if an agent finds that the 

required service is within its own capabilities, the request will be 

submitted to this layer from the coordination layer to access the resource. 

This local manager can also provide service information to the 

coordination layer. Different agents can include different functions for 

local system management. 

How the agents in the system cooperate with each other is up to the functions 

implemented in the coordination layer in each agent. In the A4 methodology, 

these functions are described as two complementary processes, service 

advertisement and discovery, which will be described in detail below. 

5.3 Service Advertisement 

An agent in the system can have many local resources that can provide services. 

The agent can take them as its own capabilities. Local management in an agent is 

responsible for collecting this service information and provide it to the 

coordination layer, where this information is stored. An agent must decide how 

and when to advertise this service information to other nearby agents. 

An agent can also receive many service advertisements from nearby agents and 

also store this information in its coordination layer as its own knowledge. All of 

the service information are organised into Agent Capability Tables (ACTs). 

5.3.1 Agent Capability Tables 

An ACT item is composed of three constituent parts: 

• Agent ID. This ID includes the contact information of an agent. During the 

registration process described before, an agent can only get ID information 
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and contact its upper or lower agents. With the agent IDs stored in ACTs, 

an agent can also contact more agents and cooperate with them for service 

discovery. 

• Service Information. Service information should contain all performance 

related information about a resource. This information will be used by the 

agent to evaluate the performance of corresponding resources, estimate the 

capability of corresponding agents, and make service discovery decisions. 

In general, a name should be defined for each service. 

• Options. Additional options can be added into each ACT item to constrain 

agent behaviours for service advertisement and discovery. Concrete 

options will be introduced in detail later. 

When a new resource is available to provide service, its agent should advertise the 

service information to other agents. The performance of services offered by an 

agent can change over time. When this occurs, the corresponding service 

information needs also to be updated. When a service becomes unavailable, it 

needs to advertise to cancel previous information that has been advertised into the 

hierarchy. The dynamics of the system increase the difficulty of system 

management.  

An agent can choose to maintain different kinds of ACTs according to different 

sources of service information. These include: 

• T_ACT (This ACT). In the coordination layer of each agent, T_ACT is 

used to record service information of local resources. The local 

management layer is responsible for collecting this information and 

reporting it to the coordination layer. 

• L_ACT (Local ACT). Each agent can have one L_ACT to record the 

service information received from its lower agents. The services recorded 

in L_ACT are provided by the resources in its local scope. 

• G_ACT (Global ACT). The G_ACT in an agent is actually a record of the 

service information received from its upper agent. The service information 
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recorded in G_ACT are provided by the agents, which have the same 

upper agent as the agent itself. 

• C_ACT (Cached ACT). Cached service information is stored in C_ACT. 

When an agent sends a request for service discovery, the returned result 

can be stored in C_ACT, and hence looked up when next requested. 

5.3.2 ACT Maintenance 

The performance of the resources that provide services may vary over time, which 

may cause the corresponding service information that is stored in the ACTs of 

other agents to become out-of-date. There are basically two ways to maintain the 

contents of ACTs in an agent: data-pull and data-push, each of which have two 

approaches: periodic and event-driven. These are summarised in Table 5.1. 

Type Approach ACT Description 

T_ACT The ACT management can ask local management to 
monitor its own resources and return the service 
information to T_ACT periodically. 

L_ACT An agent can ask its lower agents for the service 
information they have, and update its own L_ACT 
periodically. 

G_ACT An agent can ask its upper agent for the service 
information it has, and update its own G_ACT 
periodically. 

Periodic 

C_ACT An agent can check whether the service information 
in its cache is out-of-date periodically. Any 
unavailable service information will be deleted. 

T_ACT A service discovery process can trigger a T_ACT 
updating. When a request arrives and an agent looks 
up the T_ACT, the ACT management can ask local 
management to monitor its own resources and return 
the service information to T_ACT immediately. 

L_ACT When a request arrives, an agent can ask its lower 
agents for the service information they have, and 
update its own L_ACT immediately. 

G_ACT When a request arrives, an agent can ask its upper 
agent for the service information it has, and update its 
own G_ACT immediately. 

Data-
pull 

Event-
driven 

C_ACT When a request arrives, an agent can check whether 
the service information in its cache is still available. 
Any out-of-date service information will be deleted. 
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T_ACT The local management in an agent can monitor its 
resources and submit the results to the ACT 
management in the coordination layer periodically. 

L_ACT Lower agents can report their service information 
periodically to update the L_ACT of an agent. 

G_ACT The upper agent can multicast its service information 
to its lower agents periodically to update their 
G_ACTs. 

Periodic 

C_ACT N/A 
T_ACT When a resource changes, the local management in 

the agent will inform the change to the T_ACT in the 
coordination layer of the agent immediately. 

L_ACT When one service information changes in a lower 
agent, it will report the change to update the L_ACT 
of an agent immediately. 

G_ACT When one service information changes in the upper 
agent, it will multicast the change to its lower agents 
immediately to update their G_ACTs. 

Data-
push 

Event-
driven 

C_ACT When a service discovery result is retuned to an 
agent, the agent can update its C_ACT immediately. 

Table 5.1 Service Advertisement and ACT Maintenance 

From the methods described above, it is clear that most of the service 

advertisement which occurs in an agent hierarchy happens only between nearby 

agents. An agent can only advertise its service information to its upper agent or 

lower agents. However, service information can also be spread to a large area 

after many steps of advertisement over a period of time. This is an important 

feature to make the system scalable and to avoid any communication bottlenecks. 

The same principles are also applied to the service discovery processes. 

5.4 Service Discovery 

Each agent has different kinds of ACTs maintained by service advertisement. An 

agent takes the contents in ACTs as its own knowledge, which is mainly used for 

service discovery. A service discovery process is triggered by the arrival of a 

request in an agent. A request is usually composed of several parts: 

• Request information. These include details of services the user wants to 

discover. This information may combine with service information in ACTs 
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to produce high-level performance information of corresponding 

resources. 

• Requirement. This includes required performance information from the 

user, which may be used for matchmaking for agents to make decisions on 

whether a resource can provide a capable service or not. 

• Options. Additional options may be attached with each request, which may 

include user control information for the service discovery. For example, 

the user may limit time and scope of a discovery process. 

An agent can act on a request in a number of ways, for instance: 

• Yes. I can provide required service, so the discovery ends successfully. 

• No. I cannot provide the required service. However, I know an agent, 

which may have the capability to provide the required service. I can 

transfer the request to it for further discovery. 

• No. I have no idea of the required service. However, I can transfer the 

request to lower or upper agents for further discovery. 

• No. I have no idea of the required service, and there are also no other 

agents that I can query. I am sorry that the discovery has failed. 

5.4.1 ACT Lookup 

The process of service discovery in an agent is the process of looking up the 

ACTs.  The general order for an agent to check different kinds of ACTs in turn is: 

T_ACT, C_ACT, L_ACT, and finally G_ACT, which will be explained one by 

one below. 

An agent is a representative of its own resources in the large-scale environment. 

When an agent receives a request from a user or another agent, it is natural that it 

will check its own capabilities recorded in the T_ACT firstly. If an agent is aware 

that it can provide the required service itself, the service discovery is successful 

and the service information will be returned to where it came from. 
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If there is no required service information in the T_ACT, an agent may choose to 

look up its C_ACT. Previous service discovery results are cached in the C_ACT, 

which have more possibility to meet the requirements from the following requests. 

If required service information is found in C_ACT, the agent will check whether 

the service is still available. If so, the request will be dispatched to the 

corresponding agent. Otherwise, the agent will update the C_ACT and process 

other service discovery. 

If there is no required service information in the C_ACT either, an agent may then 

choose to look up its L_ACT. L_ACT records service information in local scope. 

Most users prefer to find an available resource located as near as possible. So it is 

reasonable to check L_ACT first instead of the G_ACT. If the required service 

information is found in the L_ACT, the request will be dispatched to the 

corresponding agent. Otherwise, additional service discovery will have to be 

processed. 

An agent can finally looks up its G_ACT. The G_ACT records service 

information in a much wider scope and provides opportunities to find the required 

service. If the required service information is found in G_ACT, the request will be 

dispatched to the corresponding agent. Otherwise, the agent must make decisions 

for the following action. 

An agent may not maintain all of the above ACTs. T_ACT is generally 

maintained in each agent. If an agent does not choose to cache previous discovery 

results, there will be no need to look up the C_ACT. An agent can also choose not 

to maintain L_ACT or G_ACT. If there is no L_ACT information and an agent 

cannot find any information in its ACTs, it may choose to pass the request to one 

of its lower agents. 

If an agent looks up all of the ACTs and still does not get the required service 

information, it may consider submitting the request to its upper agent. The upper 

agent will follow the same procedure, but may maintain service information in a 

larger scope, thus may be more possible to find an available service. 
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If an agent looks up all of the ACTs and does not get the required service 

information, and there is no other agent it can contact for further discovery, the 

service discovery ends as failed. For example, consider a broker that has no upper 

agent. If a request reaches the broker of the agent hierarchy and the broker fails to 

find required service information in its ACTs, the discovery has to end 

unsuccessfully. 

From the above description, a service discovery may end successfully or in a 

failed state. Additional options may be attached with a request, which may 

constrain the time or scope of service discovery. Such kinds of options may stop 

and fail a discovery process even before the broker of the agent hierarchy has 

been reached. 

Each step for service discovery is processed between nearby agents, while many 

agents can take part in one service discovery, which may lead to service discovery 

in a large scope. This principle is the same as that has been applied in service 

advertisement. Thus service advertisement and discovery in large-scale systems 

are supported. It is clear that the cost for this is much more complex behaviours 

for agents. In the next section, a simple example and a formal approach are 

introduced to give a better understanding of the service discovery processes and 

their relationship with service advertisement when the system is highly dynamic. 

5.4.2 Formal Approach 

 B 

A1 A2 A3 … 

User Resource Resource 
 

Figure 5.3 An Example System 

The example shown in Figure 5.3 is a simple agent system with two levels, one 

broker with several agents below. Each agent maintains a T_ACT, a L_ACT, and 
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a G_ACT. The broker only has a T_ACT and a L_ACT. Consider a typical 

process: User sends a request, s, through agent A1, and the service can be provided 

by Resource. But the Resource just moved from agent A2 to A3. 

Each T_ACT and L_ACT is maintained by an event-driven data-push method, 

and the G_ACTs of these agents are updated using a periodic data-pull method. In 

this situation, when the resource is moved, the related T_ACTs and L_ACTs are 

all updated immediately, but when the request is sent out, the G_ACTs of these 

agents have not been updated. How will the service discovery proceed? 

The formal representation of the problem is summarised in Table 5.2, which 

includes the definitions of agents, evaluations, and processes. This is the basis for 

the rule-based reasoning of system dynamic processes. 

Agents Ai, (i=1,……,n), one of the agents 
s, a given service request 

Evaluations t(s), evaluation result of s in T_ACT  
l(s), evaluation result of s in L_ACT  
g(s), evaluation result of s in G_ACT 
t(s), l(s), g(s)∈{Ai (i=1,……,n), null} 
null means no service information is available for the request s 

Processes Ai(s), Ai processes the request s 

Table 5.2 Formal Representation 

We represent the process for an agent to require a service in a logical way. The 

rules show the routes for a request from the original agent to reach the target agent 

though the resource can be moved dynamically. Several basic rules are used, 

which formalise the service discovery process described in the last section. 

• Rule 1: Ai(s) �  Ai → (t(s), l(s), g(s))Ai 

The service discovery process in an agent is the process of looking up the 

T_ACT, L_ACT and G_ACT (C_ACT is not used in this case). 

• Rule 2: (Athis, * , * )this �  ServiceFound 

If an agent is aware that it can provide the required service itself, the 

service discovery is successful. 
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• Rule 3: (null, Alower, *)this �  Alower (s) 

If the required service information cannot be found in the T_ACT but in 

the L_ACT, the request will be dispatched to the lower agent. 

• Rule 4: (null, null, Aanother)this �  Aanother(s) 

If the required service information cannot be found in the T_ACT or 

L_ACT but in the G_ACT, the request will be dispatched to the 

corresponding agent. 

• Rule 5: (null, null, null)this �  Aupper(s) 

If an agent exhausts the ACTs, and does not obtain the required service 

information, it will submit the request to its upper agent. 

• Rule 6: (null, null)broker �  NoService 

If a broker (head of an agent hierarchy) exhausts the ACTs (G_ACT is not 

maintained in a broker), the service discovery ends unsuccessful. 

These rules can be organised together to reason about the route of the service 

discovery process in the example system. The equations are shown below. For 

each step, the evaluation results of all of the ACTs to the request s replace the 

correspondent parts, (t(s), l(s), g(s))Ai, in the process automatically. The number at 

the end of each line indicates the rule used for the transformation. 

  A s A null null A A1 1 2 1
( ) ( , , )� →       (1) 

� →A A s1 2( )        (4) 

� → →A A null null null A1 2 2
( , , )      (1) 

� → →A A B s1 2 ( )        (5) 

� → → →A A B null A B1 2 3( , ,*)      (1) 

� → → →A A B A s1 2 3( )       (3) 

� → → → →A A B A A A1 2 3 3 3
( ,*,*)      (1) 

� → → → →A A B A ServiceFound1 2 3     (2) 

Three connections are needed for the A1 to find the required service in A3. In the 

G_ACT of A1 the service is still recorded to be within the capability of A2. A2 stil l 
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has to take part in the routing process. The routing process can be simplified if A2 

can cache this routing result or the G_ACT of A1 can be updated some time later. 

The system can have more than two levels and the services may be changed many 

times. The system behaviours for service discovery may become much more 

complex. Modelling and simulation tools can be developed to estimate the system 

performance, as introduced in the following sections. 

5.5 Performance Metrics 

Unlike other service discovery infrastructures that focus on data models and 

communication protocols, the A4 methodology focuses on performance issues 

that arise from system dynamics. Two extreme situations can be considered: 

• No service advertisement - results in complex service discovery. In this 

situation no ACTs are maintained in the agents. Each agent has no 

knowledge of the services offered by other agents. When a service is 

requested, a service discovery process is required which may be complex 

and may traverse a large number of agents in the system. 

• Full service advertisement - requires no service discovery. In this situation, 

each agent advertises as much as possible to the other agents. Hence each 

agent has nearly complete knowledge of the available services in the 

system and no discovery process is required. When a request is made, the 

service is found in any agents ACT. 

Different systems can use different optimisation to achieve high performance. For 

example in static systems, where the frequency of change in the service 

information is far less than the frequency of service requests, more service 

advertisement can achieve high performance service discovery. In extremely 

dynamic systems, where the frequency of change in the service information is far 

greater than the request frequency, less service advertisement can achieve high 

performance. Most practical systems will have characteristics in-between these 

two extremes. 
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There are different kinds of performance criteria that can be used to describe the 

service discovery performance part of the system. What is considered as high 

performance depends on the system requirements. However, there are some 

common characteristics of the system that are usually a concern to the system 

developer. These include discovery speed, system efficiency, load balancing, and 

success rate, which will be discussed below. 

5.5.1 Discovery Speed 

Each request from an agent can pass one or more agents in order to find a target 

agent that can provide the required service. Fewer connections have a quick 

discovery process, and higher system performance. In the whole system, there 

may be simultaneous service requests. The average service discovery speed, v is 

defined as: 

d

r
v =  

where r is the total number of requests during a certain period, and d is the total 

number of connections made for the discovery. 

The performance of the discovery process is mainly based on the number of 

routing connections. The communication time for each connection is not 

considered here to simplify the performance modelling and simulation of the 

agent system. 

5.5.2 System Efficiency  

The cost for the service discovery also includes connections made for service 

advertisement and data maintenance. Service advertisement may add additional 

workload to the system. For each request to find a corresponding service, the total 

number of connections, c, between agents includes those for the discovery 

processes, d, and also those for the advertising processes, a.  

adc +=  
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The efficiency of the system can be considered as the ratio of the total number of 

requests, r, during a certain period, to the total number of connections c. 

c

r
e=  

5.5.3 Load Balancing  

In some of the systems when the system resources are critical, load balancing may 

be an important issue. In the A4 methodology, no agents are used only for service 

discovery. There is no reason to have any agent with a higher discovery workload 

than any other. For a system with n agents, the workload, wk, of each agent can be 

described as 

kkk iow +=  )......1( nk =  

where ok and ik are the outgoing and incoming connection times. We can use the 

mean square deviation of the wk to describe the load balancing level of the system, 

b: 

 
( )

n

ww
b kk

2
−Σ=  where 

n

w
w kkΣ

=  

5.5.4 Success Rate  

In some situations the discovery model cannot guarantee to find the target service 

(that may actually exist in the system). However, in a general system a reasonable 

service discovery success rate should always be achieved. The success rate, f, 

describes successful service discovery: 

%100×=
r

r
f f  
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Most of the time, these service discovery metrics may conflict, that is not all 

metrics can be high at the same time. For example, a quick discovery speed does 

not mean high efficiency, as sometimes quick discovery may be achieved through 

the high workload encountered in service advertisement and data maintenance, 

leading to low system efficiency. It is necessary to find the critical factors of a 

practical system, and then to use the different agent configurations to reach high 

performance. 

5.6 A4 Simulator 

Performance evaluation of service discovery in a large-scale multi-agent system is 

a difficult task. Different configurations of agent behaviours on service 

advertisement and discovery can make the overall system behaviours very 

complex. In this section, a modelling and simulation environment, the A4 

simulator, is introduced. 

The A4 simulator has as input all of performance related information of the agent 

system, it composes them into a performance model, simulates the service 

advertisement and discovery processes step by step, and finally outputs all of the 

statistical data on the four performance metrics described above. 
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Figure 5.4 A4 Simulator 

The main structure of the A4 simulator is illustrated in Figure 5.4, which includes 

a kernel and GUIs. The kernel part of the simulator performs the modelling and 
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simulation functions, while users can input related information and get simulation 

outputs from the GUIs. 

5.6.1 Inputs/Outputs 

There are four kinds of information that affect the system performance and must 

be input into the performance model. These include: the agent hierarchy, the 

services, the requests, and the strategies for service advertisement and discovery. 

The A4 simulator supports the modelling activity at both the agent level and the 

system level. The only components that exist in the model are agents, so agent-

level modelling can be used to define all the model attributes for the simulation. 

However, system-level modelling is also necessary to input information on agent 

mobility, service and request distribution, and so on. These will be discussed in 

detail below. 

• Agent hierarchy. When a new agent is added into the model, its upper 

agent should be defined. The upper agent is also configured to add a new 

lower agent. The information is used to organise agents into a hierarchy in 

the system model. No cycles are permitted in the hierarchy, which may 

cause deadlock during the service discovery process. 

• Requests. Each agent is configured to send different requests periodically. 

A request item may include several parts of information: the required 

service name, the relative required performance value, the sending 

frequency, and the discovery scope. 

• Services. Each agent is also configured to provide many services, whose 

performance may vary over time. A service item may include several parts 

of information, the service name, the relative performance value, the 

performance changing frequency, service available time, and service 

advertisement scope. The usage of these attributes will be introduced in 

the simulator kernel section below. 

• Strategies. Different strategies are defined in each agent to control its 

behaviours on service advertisement and discovery. These strategies have 

been discussed in detail in Section 5.3 and 5.4 respectively. 
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• Agent mobility. The agent mobility can be defined at the system level 

only. An agent mobility item may include information on: the agent ID, 

the new agent ID after the movement, the upper agent ID of the new agent, 

and the step number when the movement will happen during the 

simulation. 

• Request distribution. System-level request definitions can ease the 

modelling process. The same request item does not need to be defined in 

different agents one by one. The A4 simulator provides a convenient way 

to distribute a request definition to different agents once it is defined at the 

system level.  

• Service distribution. The same service with the same attributes can also be 

provided by different agents. System-level service definitions allow many 

agents to be configured with the same service at the time. 

• Global strategies. A system-level strategy definition can affect all of the 

agents in the model and ease the modelling process. Both global strategies 

and individual strategies can be defined in each agent. However, agent-

level strategy definitions have a priority over the system-level ones. 

The information above is input into the simulator. The outputs of the simulator are 

all of the simulation results on four performance metrics. All of the details on 

service advertisement and discovery are also recorded in a simulation log file for 

further reference. The use of input information to produce outputs during the 

modelling and simulation processes within the simulator kernel is introduced 

below. 

5.6.2 Simulator Kernel 

The kernel of the simulator is composed of a model composer and a simulation 

engine. The kernel will perform the main modelling and simulation functions and 

transform the raw simulation data to statistical results to support the four 

performance metrics. 



CHAPTER 5 A4 

- 87 - 

The model composer organises the input information into a performance model 

before the simulation process begins. During this phase, the system-level 

information is transferred into an agent-level representation as much as possible. 

For example, system-level requests and services will be used to configure a 

certain percentage of agents. The global strategies are used to define the strategies 

of each agent, except for agents that have already been defined with agent-level 

strategies. After these, a performance model is composed and the simulator is 

ready for evaluation. The information on agent movement can only be stored at 

the system level and will not be used to configure any agent in the system. 

The simulation engine will start a simulation process once a performance model 

and a total number of simulation steps are defined. The whole process is 

illustrated in Figure 5.5, which is divided into seven phases, five of which are 

within the main simulation loop. 

 Initialise simulation 

Set service changes 

Set agent movements 

Advertise services 

Send requests and service discovery 

Calculate and visualise simulation results 

Finalise simulation 

N
ex

t s
te

p 

 

Figure 5.5 Simulation Process of A4 Simulator 

• Initialise simulation. Once a simulation process is started, the A4 simulator 

will set up an environment for simulating service advertisement and 

discovery. All of the GUIs for performance modelling are locked. The 

performance model cannot be modified during the simulation. A copy of 

the model is also made to prevent data loss due to the simulation being 
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irregularly interrupted. The simulation results are also initialised for 

recording the outputs. 

• Set service changes. This is performed at the beginning of each simulation 

step. The availability and performance of a service may change at each 

step. The service available time in each service item records the step 

number when the corresponding service is available. After that, the service 

will be deleted in all ACTs of all agents in the model. There is also the 

frequency of change in performance of each service. The performance of 

each service may or may not be changed at each step according to this 

frequency. 

• Set agent movements. Each agent mobility item contains a step number 

when a movement will happen during the simulation. An agent movement 

indicates not only the change of the agent hierarchy, but also the change of 

related services. Additional service advertisement occurs when an agent is 

moved, for example, old service information is announced for deletion, 

and new service information should be advertised along the new agent 

hierarchy. An agent is moved while its upper agent may or may not be 

changed, which leads to different situation with different service 

advertisement workload. 

• Advertise services. Both event-driven and periodic service advertisement 

are considered during this phase. Each agent acts on its ACTs according to 

its strategy configurations. Each connection between agents for service 

advertisement will be recorded in the simulation log file and will effect 

corresponding simulation results. 

• Send requests and service discovery. A request is decided to be sent 

according to its frequency. Each agent that receives the request will look 

up its ACTs in turn according to its strategy configuration for service 

discovery. Every detail of a service discovery process is recorded in the 

log file and related simulation results, such as agent connection times, are 

recorded. 

• Calculate and visualise simulation results. At the end of each simulation 

step, the raw simulation data should be summarised, and corresponding 
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statistical results on the performance metrics calculated. These results are 

shown on the simulator GUI dynamically to give the user a view of what is 

going on during the simulation. 

• Finalise simulation. After all simulation steps are completed the simulator 

returns back to the modelling mode. All the modelling GUIs are unlocked. 

The performance model is retrieved from the original copy. The GUIs for 

visualising the simulation results will not be refreshed until the next 

simulation begins, and can thus be used for further analysis. 

The A4 simulator also supports the evaluation of multiple models simultaneously. 

The user can use different configurations in different models, simulate them, and 

compare the results. 

5.6.3 User Interfaces 

The A4 simulator is implemented using Java. It provides graphical user interfaces 

for the modelling and simulation respectively. 

 
(a) Main window 
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(b) Agent-level modelling   (c) System-level modelling 

Figure 5.6 A4 Simulator GUIs for Modelling 

The user can add, edit and delete agents from the model via the main GUI window 

shown in Figure 5.6(a). In the left column of the main window, all of the agents 

are listed. A brief description of the selected agent is also shown below the agent 

list. The text field above the agent list can be used to search an agent by its name. 

The model can also be saved and reloaded for reuse later. The windows shown in 

Figure 5.6(b) and Figure 5.6(c) can be used for agent-level and system-level 

modelling respectively. 

Some other GUIs in the A4 simulator are used to visualise simulation results to 

the user, which are shown below in Figure 5.7.  

    
(a) Step-by step view   (b) Accumulative view 
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(c) Agent view 

 
(d) Log view 

Figure 5.7 A4 Simulator GUIs for Simulation 

During each step in the simulation the results will be updated in each of the GUIs. 

The simulator can provide multiple views of the simulation data, which are all 

updated in real time. In the step-by-step view of the Figure 5.7(a), the simulation 

data, r, a, d, rf, and the statistic data, v, e, b, f, in each step are shown. In the 

accumulative view shown in Figure 5.7(b), the statistical data on the accumulative 

steps are shown. In the agent view shown in Figure 5.7(c), the user can view the 

contents of a selected agent, its operation at each step, accumulative and average 

views of the data ok, ik, and wk. In Figure 5.7(d), the log view shows the 

simulation log file, which records the details of all service advertisement and 

discovery processes during simulation. 
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5.6.4 Main Features 

The A4 simulator is developed to provide quantitative information of the 

performance of service advertisement and discovery in large-scale multi-agent 

systems with highly dynamic behaviours using the A4 methodology. The main 

feature of the A4 simulator can be summarised as follows: 

• Support for all of the performance metrics and strategy configurations 

described in the A4 methodology; 

• Support two levels of system modelling for easy and convenient 

performance modelling of multi-agent systems; 

• Support modelling of agent mobility and simulation of additional service 

advertisement processes; 

• Support multi-view and real-time display of simulation results; 

• Support simultaneous simulation of multiple models and comparison of 

results; 

• Support simulation log management. 

The use of the A4 simulator for a performance study is introduced in the next 

section through a case study, and simulation results are included to show the 

impact of agent mobility on the system service discovery performance. 

Meanwhile, the A4 simulator kernel can also be used in practical multi-agent 

systems to analyse and optimise system service discovery performance on-line, 

which will be introduced in Chapter 7. 

5.7 A Case Study 

In Section 5.4.2, a simple example with a formal representation was given. A 

resource in the system was moved, which results in more workload for service 

discovery. In this section, the A4 simulator is used to study the impact of agent 

mobility on system service discovery performance using a much more complex 

example. 
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5.7.1 Performance Model 

A simple multi-agent system model is shown in Figure 5.8, containing 26 agents. 

The whole system is configured to have only one service named Print. The agent 

that can provide the service is Printer now connected to till and later, during the 

simulation, is moved to connect to sun with a new identity NewPrinter (this is not 

shown in Figure 5.8). All the other agents may or may not request the Print 

service with a different frequency (Note that the details of requests are not given 

below). 

 

Figure 5.8 Example Model: Agent Hierarchy 

This experiment is used to show the impact of agent mobility on the service 

discovery performance. Strategies are only defined at the system level, which 

means that all of the agents in the model must use the same strategies for service 

advertisement and discovery. The T_ACT, L_ACT and G_ACT are used in each 

agent. T_ACTs and L_ACTs are maintained by event-driven service 

advertisement. G_ACTs are updated once every 30 steps using a periodical data-

pull. The agent movement mentioned above takes place at the 100th simulation 

step. 



CHAPTER 5 A4 

- 94 - 

5.7.2 Simulation Results 

Figure 5.9 shows the simulation results for 200 steps. A step can be designed as 

an arbitrary number of seconds. The curves for discovery speed (v), and the 

system efficiency (e) in the step-by-step view show the effect of the agent 

mobility most clearly. 

 

 
(a) Step-by-step View         (b) Accumulative View 

Figure 5.9 Simulation Results 
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We assume that the load balancing and discovery success rate are not critical in 

this study. Attention is given to the discovery speed and the system efficiency. 

The whole process can be divided into five phases, which are explained in detail 

below. 

• Learning phase. In the first 40 steps, the G_ACTs of the agents are 

updated gradually, so the discovery speed and system efficiency increase. 

This can be viewed as an agent learning process. 

• Stable phase. After about 40 steps, the curves are flat at a higher level. All 

G_ACTs of the agents have been updated and there are no service 

changes, so the system runs in a steady state mode with high service 

discovery speed and system efficiency. 

• Agent mobility. The defined agent mobility happens at the 100th 

simulation step. When the agent moves it must advertise to delete its 

service information from the old agent hierarchy and to add the new 

service information to the new agent hierarchy. This causes an increase of 

the connections for service advertisements (a). The service information in 

all the agents becomes out-of-date, which results in more workload for the 

service discovery (d). So the average service discovery speed (v) and 

system efficiency (e) decrease suddenly. 

• New learning phase. This phase is the same as the previous learning phase. 

The agents learn about the new identity of the service Print gradually via 

the G_ACT updating. 

• New stable phase. The agent mobility finally results in a stable state mode 

with higher performance. This is because sun is the coordinator of a larger 

sub-hierarchy than till is. When the service is moved, more requests 

become local instead of remote, which reduces the discovery workload of 

the system. 

This is a small example model with only one agent movement. The system model 

is not a large-scale one and the service in the system is static during most of the 

simulation time. However, this simple case study gives an intuitive impression 

that system dynamics has a great impact on the service discovery performance. 
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The A4 simulator enables such kinds of problems to be investigated 

quantitatively. 

5.8 A4 as a Global Framework 

The aim of this work is the development of a grid resource management system. 

In Section 4.4, we have introduced PACE functions that can be used for local 

resource management in a grid environment. In this section, we discuss that the 

A4 methodology can be applied as a global framework to implement meta-level 

grid resource management. 

Agents are the main abstractions in the A4 methodology. An agent can be used as 

a representative of a local high performance resource in a grid environment. The 

high performance computing capability that a local resource can provide is 

modelled as a service. Each agent is a service provider of high performance 

computing. 

Each agent can also be equipped with PACE performance prediction capabilities 

in its local resource management for scheduling parallel applications to available 

local resources. PACE functions are also used in the coordination layer of agents 

to provide QoS support for service discovery. 

Each agent is responsible for local resource monitoring, and corresponding 

service information is collected and stored in the T_ACT. An agent is also 

responsible for advertising the service through the agent hierarchy, according to 

different strategy configurations. 

Grid users can send application execution requests to the grid environment, which 

can be received by a nearby agent. Agents can cooperate with each other and 

perform service discovery functions to find an available service for the requests. 

When a target agent is found that can provide the requested service, the user can 

contact the agent directly for application execution. Hence A4 can provide a 

global framework and be coupled with PACE functions to implement grid 
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resource management. An initial implementation of an agent-based resource 

management system for grid computing, ARMS, will be described in detail in the 

next chapter. 
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Resource management in the grid computing environments will rely on accurate 

application performance prediction capabilities, as discussed in Chapter 4. An 

agent-based methodology is also introduced in the last chapter to address the 

challenges of scalability and adaptability. In this chapter, an initial 

implementation of an agent-based resource management system for grid 

computing, ARMS, is presented [Cao2001d], using a hierarchy of homogenous 

agents [Cao2001b] coupled with the prediction capabilities of the performance 

evaluation toolkit, PACE. 

6.1 ARMS in Context 

The relationship between ARMS and other concepts mentioned in this thesis is 

shown in Figure 6.1. ARMS is a system, which builds a bridge between grid users 

and resources to schedule applications to utilise the available grid resources. 

PACE is used to provide quantitative data concerning the performance of 

sophisticated applications running on local high performance resources. PACE 

application tools (AT) are provided to grid users. A request to execute an 
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application by a user must be attached with a corresponding application model 

developed using the AT. Meanwhile, PACE resource tools (RT) are embedded in 

each grid resource to provide a corresponding resource model, which is an 

important part of the service information of the resource. The PACE evaluation 

engine (EE) is used in each agent in the ARMS for performance evaluation given 

both the application and resource models. 

At a metacomputing level, the A4 methodology is used for grid resource 

management. Agents cooperate with each other and perform service 

advertisement and discovery functions to schedule applications that need to utilise 

the available resources. The behaviours of agents can be configured with different 

strategies and steered with different policies to improve the system performance. 

A performance monitor and advisor, PMA, is a special agent existing in the agent 

system of ARMS. The main part in the PMA is the A4 simulator kernel. PMA 

monitors the state of each agent, configures each agent with modelling and 

simulation results, and steers the agent behaviours to implement the resource 

management more efficiently. PMA will be introduced in detail in the next 

chapter. 
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Figure 6.1 ARMS in Context 
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6.2 ARMS Architecture 

ARMS is an agent-based grid resource management system. An overview of the 

ARMS architecture is illustrated in Figure 6.2. The main components in the 

architecture include: grid users, grid resources, ARMS agents, and the ARMS 

PMA. These will be discussed respectively in the following sections. 
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Figure 6.2 ARMS Architecture 

6.2.1 Grid Users 

There are different kinds of users of a grid computing environment. Grid 

developers are responsible for implementing basic grid services. ARMS provides 

grid resource management, which is a part of these services. 

The developers of the tools, compilers, libraries, and so on implement the 

programming models and services used by application developers. MPI and PVM 

are included in these kinds of tools. Grid service and tool developers are a very 

small group of grid users, which are not of concern in the context of this thesis. 
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Application developers comprise those who construct grid-enabled applications 

using grid tools. There are different kinds of grid applications: distributed 

supercomputing, high throughput, on demand, data intensive, and collaborative 

applications. The applications mentioned in this work mainly refer to scientific 

supercomputing applications, which are very large problems needing lot of CPU, 

memory, etc, especially those written in MPI and PVM. 

Most grid users, like most users of computers or networks today, will not write 

programs. Instead, these end users will use grid-enabled applications that make 

use of grid resources and services. In some situations, application developers are 

also the end users of the applications they develop. The grid users in Figure 6.2 

and mentioned in the following sections are considered to be scientists, who 

develop scientific supercomputing applications and use them to solve large 

problems in the grid environment. 

As shown in Figure 6.2, grid user side software includes the PACE application 

tools. When a parallel application is developed, the corresponding application 

model should also be produced using PACE tools. As described earlier, 

performance modelling using PACE is an easy process that can be used by non-

professional performance engineers. Each request to execute an application that is 

sent to a grid environment should be attached with a corresponding PACE 

application model. 

Another component included in a grid request is the cost model, which describes 

all information on a user’s requirements about the application execution, for 

example, the deadline for the application execution to be finished. Though there 

can be many metrics for application execution, we focus on application execution 

time only here. 

6.2.2 Grid Resources 

A grid resource can provide high performance computing capabilities for grid 

users. A resource can include Massive Parallel Processors (MPP), or a cluster of 
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many workstations, or even PCs. A grid resource can be considered as a service 

provider of high performance computing capabilities. 

PACE resource tools can be used in each grid resource to provide the model of the 

resource. The computational and communication benchmark programs can be 

controlled to execute on the resource to produce performance data for the models 

dynamically. The PACE resource model is a part of service information of the 

resource, which will be advertised across the agent hierarchy. 

6.2.3 ARMS Agents 

Agents are the main components in ARMS. Each agent is a representative of a 

grid resource at the meta-level of resource management. As introduced in the A4 

methodology, agents are organised into a hierarchy. The hierarchy of homogenous 

agents provides a meta-level view of the grid resources. The service information 

of each grid resource can be advertised in the hierarchy (both upwards and 

downwards). Agents can also cooperate with each other to discover an available 

resource for a request of application execution. 

Two important components within each agent are also shown in Figure 6.2. As 

mentioned in the A4 methodology, each agent has ACTs to record service 

information of other agents. The service information contains all performance 

related information of a grid resource, which can be used to estimate its 

performance. 

The PACE evaluation engine is also integrated into each agent. Its performance 

prediction capabilities can be used for local resource management to schedule 

parallel applications to available local processors. The PACE evaluation engine is 

also used in the coordination layer of each agent to provide QoS support for 

service discovery. 

Each agent receives requests from grid users or other agents in the system. How 

does an agent process to make service discovery decisions using the PACE 

evaluation engine? How does an agent collect service information from its local 



CHAPTER 6 ARMS 

- 103 - 

resource management? Such kinds of questions will be answered in Section 6.3, 

where the structure and functions of each agent is described in detail. 

6.2.4 ARMS Performance Monitor and Advisor 

A special agent is introduced into the ARMS agent system. It is an agent acting as 

a performance monitor and advisor (PMA). It contacts each agent in the hierarchy 

as shown in Figure 6.2. The PMA uses the kernel of the A4 simulator, which aims 

to improve ARMS service discovery performance. We will introduce the structure 

and functions of the PMA separately in Chapter 7. 

ARMS is implemented using the A4 methodology coupled with PACE functions. 

All functions developed in ARMS correspond to elements of the A4 methodology. 

However, the detailed implementation of each agent need also be described in the 

next section. 

6.3 ARMS Agent Structure 

The agent structure in ARMS is shown in Figure 6.3, which corresponds to the 

general A4 agent structure shown schematically in Figure 5.2. Each layer has 

several modules, which cooperate with each other to perform service 

advertisement and discovery functions. 

The communication layer of each agent performs communication functions and 

acts as an interface to the external environment. From the communication module, 

an agent can receive both service advertisement and discovery messages. It 

handles the contents in the message and submits them to corresponding modules 

in the coordination layer of the agent. For example, an advertisement message 

from other agents will be directly sent to the ACT manager in the agent 

coordination layer. The communication module is also responsible for sending out 

messages for service advertisement or discovery to other agents. 

There are four components in the coordination layer of an agent: ACT manager, 

PACE evaluation engine, scheduler, and matchmaker. They work together to 
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make decisions on how an agent should act on the received messages from the 

communication layer. For example, the final response to a service discovery 

message includes: application execution on the local resource or dispatching the 

request to another agent. 
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 Figure 6.3 ARMS Agent Structure 

The main functions for local resource management in an agent include application 

management, resource allocation, and resource monitoring. An application 

execution command is sent from the coordination layer to local management in an 

agent, which includes the scheduling information for an application, such as its 

starting time, and allocated processor IDs. Application management is responsible 

for managing the queuing applications that have been scheduled to be executed on 

local resources. When the starting time of an application arrives, it will be 

dispatched to the resource allocation. Resource allocation has wrappers with 

different application execution environments like MPI and PVM, and actually 

implements application execution on scheduled processors. Another important 

module for local resource management in an agent is resource monitoring. It is 

responsible to control PACE benchmark programs to be executed on the local 
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resource and construct the corresponding resource models dynamically. The 

resource monitoring is also responsible for contacting the application management 

and resource allocation modules for other resource and application information. It 

will organise all of the collected information about the local resource into service 

information provided by the local resource and report it to the T_ACT in the 

coordination layer of the agent. 

We describe the agent functions above. As mention before, our work focuses on 

the implementation of functions for the agent coordination layer. The four main 

components will be introduced in detail below, and there will be no further 

introduction to other modules for communication and local management in an 

agent. 

6.3.1 ACT Manager 

The ACT manager controls the agent access to the ACT database, where service 

information of grid resources are recorded. As mentioned in Section 5.3.1, an 

ACT item contains three parts: agent ID, service information, and additional 

options. The specific contents of service information in ARMS are shown in 

Figure 6.4 and explained below. 

 Service Info. Resource Info. 

Application Info. 

Processor 1 ID 

Processor 2 ID 

Type 

PACE resource model 

Type 

PACE resource model 

Processor n ID 

…
 

Application 1 ID 

Application 2 ID 

Start time 

End time 

Start time 

End time 

Application m ID 

…
 

Application-Resource Mapping 

…
 

…
 

 

Figure 6.4 Service Information in ARMS 
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Service information of a grid resource should include all of the information about 

a resource that has an impact on the performance of a resource and can be used to 

evaluate its performance. Service information is basically composed of resource 

information, application information, and the mapping between the applications 

and the resources. 

Consider a grid resource with n processors. Each processor Pi has its own type tyi, 

such as Sun Ultra1 and SGI Origin2000. A PACE resource model can be used to 

describe all the performance information of a processor. PACE resource models 

of some typical processors can also be pre-installed into the evaluation engine in 

each agent, instead of running benchmark programs on resources dynamically to 

produce resource models. In this case, resource models cannot reflect dynamic 

factors of the resource performance. However, if the workloads of grid resources 

are not very heavy, it can still give a good approximation and greatly simplify the 

system implementation. The resource information will also be simpler, and 

referring to the processor type is sufficient. In some situations, the processors of a 

grid resource are homogenous. In this case, there is no need to give a list of 

processors. Just giving the number of processors and corresponding processor 

type is enough. The processors of a grid resource can be expressed as follows: 

{ }P P i ni= =| , ,......,12  

{ }ty ty i ni= =| , ,......,12 . 

Let m be the number of applications that are running, or being queued to be 

executed on a grid resource. Existing applications on a resource will impact the 

resource performance. If there are a lot of applications queued for a resource, the 

resource may have little chance to meet requirements from future requests. The 

application information includes a list of applications that are running or queued 

on a resource. Each application Aj has two attributes: scheduled start time tsj, and 

end time tej. The applications of a grid resource can be expressed as follows: 

{ }A A j mj= =| , ,......,12  

{ }ts ts j mj= =| , ,......,12  

{ }te te j mj= =| , ,......,12 . 
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The application-resource mapping gives a map of how processors of a resource 

are allocated to applications. Let MAj be the set of processors that are allocated to 

application Aj: 

{ }MA MA j mj= =| , ,......,12  

{ }MA P l kj i jl
= =| , ,......,12 , 

where kj is the number of processors that are allocated to application Aj. Let M be 

a 2D array, which describes the mapping relationships between resources and 

applications using Boolean values. 

{ }M M i n j mij= = =| , ,......, ; , ,......,12 12  

M
if

if

P MA

P MAij

i j

i j

=
�� � ∈

∉
1

0
 

The contents of service information are described above. The ACT manager is 

also responsible for maintenance of different kinds of ACTs according to different 

strategies described in Table 5.1. The service advertisement in ARMS is 

performed in the same way as described in the A4 methodology. 

6.3.2 PACE Evaluation Engine 

As mentioned in Section 5.4, a request is composed with request information, 

requirements, and additional options. In ARMS, a request for service discovery is 

to find an available grid resource for an application. 

The request information is basically the PACE application model am, which 

includes all of the performance related information of an application Ar. The 

application model will be one of the inputs to the PACE evaluation engine in an 

agent. 

The requirements in ARMS are specified in a cost model, which can include many 

metrics, for example, the deadline for the execution of an application to be 

finished, treq. The cost model is one of the inputs to the matchmaker in an agent. 
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The PACE evaluation engine has two inputs, the application model from the 

request, am, and the resource information from the ACT manager, ty. Using this 

information, the PACE evaluation engine can produce performance prediction 

information such as application execution time, exet, for the application to be 

executed on the given resource. 

( )exet eval ty am= ,  

Instead of running the application on all of processors of a grid resource P, an 

application can choose to be executed on any subset of processors P  (note that P  

cannot be an empty set Φ), which can also be evaluated and expressed as follows: 

( )∀ ⊆ ≠ ⊆ ≠ =P P P ty ty ty exet eval ty am, , , , ,Φ Φ . 

The output of the PACE evaluation engine, exet, is one of the inputs to the 

scheduler of the agent. Another input to the scheduler is the application 

information from an ACT item. 

6.3.3 Scheduler 

An ACT item acts as a vision of a grid resource that is remote to the agent. 

However, an agent can still schedule the required application execution based on 

this information of a resource. The function of the scheduler is to find the earliest 

time for an application to be finished on the resource described by an ACT item, 

tsched. 

( )t tesched
P P P

r=
∀ ⊆ ≠

min
, Φ

 

The application has the possibility of being allocated to any selection of 

processors of a grid resource. The scheduler should consider all of these 

possibilities and choose the earliest end time of the application execution. In any 

of these situations, the end time is equal to the earliest possible start time plus the 

execution time, which is described as follows: 
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te ts exetr r= + . 

The earliest possible start time for application Ar on a selection of processors is 

the latest free time of all of selected processors if there are still applications 

running on the selected processors. If there is no application currently running on 

the selected processors, application Ar can be executed on these processors 

immediately. These can be expressed as follows: 

( )ts t tdr
i P P

i
i

=
��� ����

∀ ∈
max , max

,
, 

where tdi is the latest free time of processor Pi. This equals to the maximum end 

time of applications that are allocated to process Pi: 

( )td tei j M j
i j

=
∀ =
max

, 1
. 

In summary, tsched can be calculated as follows: 

( )t t te exetsched
P P P i P P j M

j
i ij

=
��	 
�����	 
���

+
��	 
� �

∀ ⊆ ≠ ∀ ∈ ∀ =
min max , max max

, , ,Φ 1
. 

It is not necessarily the case that scheduling all processors to an application will 

achieve higher performance. On the one hand, the start time of application 

execution may be earlier if only a number of processors are selected; on the other 

hand, with some applications, execution time may become longer if too many 

processors are allocated. 

The scheduling algorithm described above is used in the initial implementation of 

ARMS. The complexity of the algorithm is determined by the number of possible 

processor selections, which can be calculated as: 

C C Cn n n
n n1 2 2 1+ + + = −......  
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It is clear that if the number of processors of a grid resource increases, the 

complexity of the local resource scheduling algorithm will increase exponentially. 

Though a local resource in a grid environment can only have limited number of 

processors, this algorithm cannot scale well when the number of processors 

increases. Another factor is that the scheduling policy of this algorithm is to meet 

requirements from the user, instead of maximising the resource utilisation. There 

is no rescheduling process for previously scheduled applications. New algorithms 

need to be developed in a practical implementation of ARMS; this will be 

discussed in Chapter 8. 

We can also see the importance of the efficiency of the PACE evaluation engine. 

During each scheduling process, the evaluation function can be called 2n-1 times. 

Even in the situation where all the processors of a grid resource are of the same 

type, the evaluation function still needs to be called n times. PACE evaluation can 

be performed very quickly to produce prediction results on the fly, which is the 

key feature for PACE to be used in ARMS to provide QoS support for service 

discovery. 

6.3.4 Matchmaker 

The matchmaker in an agent is responsible for comparing the scheduling results 

with the cost model attached to the request. The comparison results lead to 

different decisions on agent behaviours according to service discovery strategies 

described in Section 5.4.1. 

In terms of application execution time, if treq ≥ tsched, the corresponding resource 

can meet the user requirement. If the corresponding ACT item is in the T_ACT, a 

local resource is available for application execution. The application execution 

command will be sent to the local management in the agent. Otherwise, the agent 

ID of the corresponding ACT item is returned, and the agent will dispatch the 

request to that agent via the agent ID. 

If treq < tsched, the corresponding resource cannot meet the requirement from the 

user. The agent continues to look up other items in ACTs until the available 
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service information is found. The agent can look up different ACTs in turn. If 

there is no available service information in ACTs any more, the agent may submit 

or dispatch the request to its upper or lower agents for further discovery according 

to its own strategy configurations for service discovery. 

There may be many other metrics in the cost model from the user. The 

corresponding evaluation mechanisms should also be provided in each agent. 

Their implementation will be the same as the application execution time described 

in this section. These will not be discussed in detail here. 

6.4 ARMS Implementation 

ARMS has been developed to demonstrate how the A4 methodology is coupled 

with PACE functions to achieve grid resource management. Each ARMS agent is 

composed with an agent kernel and some agent information browsers. A case 

study is given and some experimental results are also included to show how 

ARMS schedules applications onto available resources. 

6.4.1 Agent Kernel 

The kernel of each agent is developed in C/C++ and fulfils all of the main 

functions described in the last sections. The agent kernel makes extensive use of 

the file system, and a collection of various database files representing its complete 

state at any particular instant in time. 

The most important file in an agent is the log file. After an application execution 

request is received in an agent, it undergoes a series of state changes, with each 

state representing a particular stage in its lifetime. The various states for a request 

to be processed in an agent include: queuing, discovering, waiting, running, 

submitted, etc. 

The agent hierarchy database file is used to record the contact IDs of the upper 

and lower agents. There are also various database files used as agent ACTs. A 

separate thread in an agent exists for service advertisement and ACT maintenance 
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according to the strategy configurations, which are also stored in a separate 

database file. 

At a local management level, resource and application information are represented 

in different database files. As mentioned before, the system focuses on agent 

coordination and meta-level service advertisement and discovery. Though there is 

related information existing in the local management layer of each agent, 

applications fake executing on corresponding resources, which does not impact on 

the system performance being investigated and simplifies the system 

implementation. 

6.4.2 Agent Browser 

One of the main goals of the initial implementation of ARMS is to make the state 

of the system visible and enable the performance of the system to be investigated. 

Agent browsers are developed using the X windows library and can be used to 

show all contents of the database files within an agent described in the last 

section. These are all illustrated in Figure 6.5. 

Each agent has an operational platform, which includes a menu for activating 

various agent browsers, shown in Figure 6.5(a). Figure 6.5(b) shows an example 

of agent browsers, an application browser, which gives details of applications that 

are running or queuing on the local resource. A Gantt chart is also designed to 

give a graphical interface to visualise the make spans of all the applications shown 

in the application browser, which is illustrated in Figure 6.5(c). 

 
(a) Operational platform 
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(b) Application browser    (c) Gantt chart 

Figure 6.5 ARMS Agent Browsers 

Agent browsers are updated in real time when the system is running. The user can 

also change the strategies to configure the agent with a different behaviour for 

service advertisement and discovery from the strategy browser. The agent 

behaviours can also be configured using the PMA semi-automatically, which will 

be discussed in Chapter 7. 

6.5 A Case Study 

Experiments have been designed using the initial implementation of ARMS. 

There are two main parts in the design of the experiments. ARMS itself includes 

agents, resources, and agent behaviour strategies used in the experiment. The 

automatic users of the system are also designed to send application execution 

requests to ARMS with different frequencies, which add different workloads onto 

the system. 

6.5.1 System Design 

There are 8 agents in the experimental system. The agent hierarchy is shown in 

Figure 6.6. The agent at the head of the hierarchy is gem, which has three lower 

agents: sprite, origin, and tizer. The agent origin has no lower agents, while sprite 

and tizer have two lower agents each. 
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Figure 6.6 ARMS Case Study: Agent Hierarchy 

Each agent is a representative of a local grid resource. The information of the 

resources is shown in Table 6.1. Each resource is composed with 16 processors 

(for SGI) or hosts (for Sun), and each host has the same resource type. The SGI 

multi-processor is the most powerful, followed by the Sun Ultra 10, 5, 1, and 

SparcStation in turn. 

Agent Resource Type #Processors/Hosts 

gem SGI Origin 2000 16 
origin SGI Origin 2000 16 
sprite Sun Ultra 10 16 
tizer Sun Ultra 10 16 
coke Sun Ultra 1 16 
budweiser Sun Ultra 5 16 
burroughs Sun SPARCstation 2 16 
rubbish Sun SPARCstation 2 16 

Table 6.1 ARMS Case Study: Resources 

In the experimental system, the T_ACT, L_ACT and G_ACT are used in each 

agent. T_ACTs are maintained by the event-driven data-push service 

advertisement. L_ACTs are updated once every 10 seconds using periodical data-

pull. G_ACTs are updated once every 30 seconds using periodical data-pull. All 

of the agents use the same strategies except that gem is the head of the agent 

hierarchy and does not maintain a G_ACT. The choice of different strategies 

impacts on the service discovery performance of the overall system, which will be 

discussed in detail in Chapter 7. 
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The agents and resources have been defined and configured above, while another 

important design aspect of the experiment is the requests. To add workloads 

automatically to ARMS, we design virtual users that send application execution 

requests to the agent system. 

6.5.2 Automatic Users 

The applications that are used in the experiment are some typical scientific 

computing programs, including sweep3d, fft, improc, closure, jacobi, memsort, 

and cpi. Each application has been modelled and evaluated using the PACE 

toolkit. The performance evaluation results against the SGI Origin2000 can be 

found in Figure 6.7. The run time spent on other platforms is much more than that 

on the SGI Origin2000, but the trend of the curve is almost the same, which is not 

shown in details. 
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Figure 6.7 ARMS Case Study: Applications 
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Each request chooses one of the 7 applications randomly and is sent to one of 8 

agents randomly. The required execution time for the application is also chosen 

randomly from a given domain, which is described in Table 6.2. 

Application Minimum Requirement (s) Maximum Requirement (s)  

sweep3d 4 200 
fft 10 100 
improc 20 192 
closure 2 36 
jacobi 6 160 
memsort 10 68 
cpi 2 128 

Table 6.2 ARMS Case Study: Requirements 

The automatic users can be configured to send requests with different frequencies. 

As shown in Table 6.3, four experiments are designed with different workloads 

added to ARMS. The interval of requests sent in each experiment is chosen 

randomly from a given domain, which results in a different average frequency. 

For example, experiment No. 2 lasts about 7 minutes. During this period, 149 

requests are sent to ARMS. There is one request sent every 3 seconds on average. 

The experimental results will be discussed in the sections below. 

Experiment No. 1 2 3 4 

Minimum Request Interval (s) 1 1 1 1 
Maximum Request Interval (s) 7 5 3 1 
Average Frequency (s/application) 4 3 2 1 
Experiment Last Time (min) 7 7 7 5 
Total Application Number 109 149 215 293 

Table 6.3 ARMS Case Study: Workloads 

6.5.3 Experiment Results I 

In this section, the detailed results of experiment No. 2 are given. In this 

experiment, there are a total of 149 applications scheduled to be executed on 8 

resources. The detailed results are listed in Appendix B, which can be illustrated 

using both a user’s (global) view and agent (local) views. 
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A request is submitted by the user to ARMS with a requirement of execution time. 

Agents in ARMS cooperate with each other to find an available resource that can 

meet the user requirement. The service discovery process can be completed in 0, 

1, or 2 steps. For example, in a 2-step service discovery, three agents are involved. 

The first agent receives the request from the user, the corresponding resource is 

found at the final agent, and the second acts as a go-between during the process. 

The application execution results are returned, including the time spent on 

discovery, waiting, execution, etc. 

The experimental results shown in Appendix B also give a list of application 

execution data in the local management layer of each agent. An agent schedules 

the accepted application executions onto the local resource. The corresponding 

information includes the start time, the end time, and the mapping between the 

application and the processors/hosts. These can be illustrated clearly using Gantt 

charts. 

The detailed results of this single experiment show how ARMS uses agent-based 

service advertisement and discovery to achieve grid resource management. 

However, the capability and performance for agents to schedule applications onto 

grid resources can be only illustrated by the comparison of the statistical data 

from several experiments. These are discussed below. 

6.5.4 Experiment Results II 

In this section, some statistical data on the results of the four experiments is given. 

Note that the detailed results for the other three experiments are not given and 

only statistical data are included in the tables below. 

The distributions of the application execution against agents for all the 

experiments are summarised in Table 6.4. For example, in the experiment No. 2, 

27 requests of the application execution are scheduled onto the resource of the 

agent gem (this is conformed with the detail results shown in Appendix B.2), 

which are 19 percent of the total 149 requests. 5 requests (3 percent of the total 
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requests) are not scheduled onto any resource and end unsuccessfully (this is 

summarised from the data shown in Appendix B.1). 

Experiment Number 

1 2 3 4 

Agent 

No. % No. % No. % No. % 

gem 13 12 27 19 45 21 45 15 
origin 13 12 15 10 27 13 42 14 
sprite 15 14 20 13 27 13 38 13 
tizer 14 13 27 19 31 14 39 13 
coke 10 9 15 10 20 9 28 10 
budweiser 13 12 17 11 23 11 31 11 
burroughs 14 13 12 8 16 7 26 9 
rubbish 14 13 11 7 17 8 24 8 
failed 3 2 5 3 9 4 20 7 
Total 109 100 149 100 215 100 293 100 

Table 6.4 ARMS Experiment Results: Application Execution 

The distributions of the application execution against service discovery for all the 

experiments are summarised in Table 6.5. For example, in the experiment No. 2, 

the resources for 114 requests of the application execution are discovered 

immediately at the agent they are submitted to, which are 77 percent of the total 

149 requests. This can also be summarised from the data shown in Appendix B.1. 

Experiment Number 

1 2 3 4 

#Step 

No. % No. % No. % No. % 

0-step 106 97 114 77 143 66 199 68 
1-step 3 3 24 16 38 18 29 10 
2-step 0 0 11 7 31 15 53 18 
3-step 0 0 0 0 3 1 12 4 
Total 109 100 149 100 215 100 293 100 

Table 6.5 ARMS Experiment Results: Service Discovery 

The statistical results shown in Tables 6.4 and 6.5 are also illustrated in Figures 

6.8 and 6.9 respectively. The curves in the figures show trends of the application 
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distributions when the system workload increases. These are also discussed in 

detail below. 

0

5

10

15

20

25

1 2 3 4

Experiment Number

A
pp

lic
at

io
n 

D
is

tr
ib

ut
io

n 
ag

ai
ns

t A
ge

nt
s 

(%
)

gem

origin

sprite

tizer

coke

budweiser

burroughs

rubbish

failed

 
Figure 6.8 ARMS Experiment Results: Application Execution 
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Figure 6.9 ARMS Experiment Results: Service Discovery 
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1. There is one request sent every 4 seconds on average in the experiment 

No. 1. Application execution requests are sent to the agents randomly, so 

each agent should receive the same number of requests from users. In this 

experiment, the system workload is rather light in relative to the 

capabilities of the resources (even to the resources of agent burroughs and 

rubbish, which are not so powerful). The 97% 0-step discoveries show that 

almost all the requests are met immediately at the first agent they arrive. 

Almost no service discovery processes occur between agents. This results 

in an average application distribution on the agents and the number of the 

requests that end unsuccessfully is very small. 

2. The local resources of agent burroughs and rubbish are clusters of Sun 

SPARCstation 2, which is not as powerful as the other platforms existing 

in other agents. In the experiment No. 2, when the system workload 

becomes heavier, many requests that they cannot meet are submitted to 

their upper agent, tizer, which leads to a very heavy workload on tizer 

(19% of application executions). The resources of agent coke and 

budweiser are a bit more powerful. However, they still cannot meet all of 

the requests from users. Some of the requests are submitted to their upper 

agent, sprite, which leads to a heavy workload on sprite, though not so 

heavy as tizer. These result in the dramatic increase of the percent of 1-

step service discovery processes. The agent gem is the head of agent 

hierarchy and has the most powerful platform, a multi-processor SGI 

Origin2000. There are some application execution requests that have very 

critical requirements. These requests can only be met using the SGI 

Origin2000, so are submitted from tizer or sprite to gem. This leads to a 

rather heavy application execution workload on gem and also an increase 

of the processes for the 2-step service discovery. However, as shown in the 

Gantt chart of gem in Appendix B.2, gem is so powerful that it is still not 

fully utilised. The resource of another agent, origin, is as powerful as that 

of gem, and can meet all of the requests it receives from users. However, 

origin is a little far from the other agents. This results in the fact that 

origin is far from utilised, which is also illustrated in the Gantt chart of 

origin in Appendix B.3. 
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3. The system workload increases further. The dramatic decrease of the 

percent of application executions on tizer indicates that the local resource 

of tizer is fully utilised in this situation. Many requests submitted from 

burroughs and rubbish have to be passed to gem, which leads to a 

dramatic increase of the number of 2-step discovery processes. The 

number of 1-step discovery processes increases too and a few 3-step 

discovery processes appear. More application executions are scheduled 

onto the agent origin. All of these indicate that service discovery among 

the agents becomes active when the system workload increases. 

4. The system workload becomes very heavy in this situation. The decrease 

of the percent of application executions on gem indicates that the local 

resource of gem also reaches its capability limitation, which results in a 

dramatic increase of the number of the unsuccessful requests. The number 

of 1-step discovery processes decreases, while 2-step and 3-step service 

discovery processes occur more often. All of these indicate that the whole 

system is fully utilised, so more complex service discovery processes 

occur in order to find the available resources for the requests. However, in 

this situation, the application executions show a very reasonable 

distribution against agents. The order of the workload on the agents is the 

same as that of the computing capabilities of their resources. The agent 

gem and origin, which represent the most powerful resources in the 

example system, have more applications executed, followed by sprite, 

tizer, budweiser and coke. And only a small number of requests are met at 

the agent burroughs and rubbish. 

These experimental results show that the performance prediction driven agent-

based service advertisement and discovery is effective for the applications to be 

scheduled at the meta level to utilise the grid resources. As we have mentioned in 

Section 2.4, scalability and adaptability are two key challenges that the 

implementation of grid resource management must address. 

As shown in the experimental results, agents are organised into a hierarchy and 

only process service advertisement and discovery with nearby agents. Once the 

computing power in a scope cannot meet the requirements received, the additional 
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requests will be gradually dispatched to a larger scope, where the workload is not 

so heavy compared with the computing capabilities. Note that the service 

discovery is not processed in one step, but step by step, and may bypass many 

intermediate agents. This key feature makes it possible for the system to scale 

well when the grid environment becomes very large. 

The PACE performance evaluation functions are used in the ARMS 

implementation both locally and remotely. In order for an agent to make 

decisions, the PACE evaluation engine will be called many times. The rapid 

evaluation time of PACE without sacrificing accuracy is a very important feature 

for the ARMS implementation. 

Another important factor for ARMS to achieve high performance is the capability 

for the agents to adjust their behaviours for service advertisement and discovery to 

adapt to the highly dynamic grid environment. Though some of the strategies have 

been introduced in the A4 methodology, and a PMA is also included in the ARMS 

architecture, meta-level performance optimisation of ARMS using PMA is not 

discussed in detail. In the next chapter, the implementation of PMA is described 

to provide ARMS with high adaptability. 
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AADDVVIISSOORR  FFOORR  AARRMMSS  

 

Performance issues arise from the dynamic nature of grid resources [Cao2001]. 

As we have mentioned in the A4 methodology, most practical systems must make 

a balance between service advertisement and discovery. The PMA is a special 

agent, which is capable of performance modelling and simulation about the agent 

system and acts as a performance monitor and advisor in ARMS. In this chapter, 

the structure for the PMA implementation is described along with details on 

performance optimisation strategies and steering policies. A case study is also 

used to show how different strategies and policies are used to improve the 

performance of the ARMS agent system. 

7.1 PMA Structure 

The PMA was illustrated in Figures 6.1 and 6.2 previously. Unlike facilitators or 

brokers in classical agent-based systems it is not central to the rest of the agents. It 

neither controls the agent hierarchy nor serves as a communication centre in the 

physical and symbolic sense. Instead, the PMA observes the communication 

traffic of the agent system and tries to draw corresponding conclusions regarding 

the agents’  behaviour with the intention of improving the performance of ARMS. 
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If the PMA ceases to function, the agent system has no difficulty in surviving and 

it continues with its ordinary life. The efficiency improvement consideration 

would not be provided in ARMS unless some modelling and simulation 

mechanism is built into the PMA. By introducing the PMA, we have tried to avoid 

making ARMS unscalable by relying on a single agent, which otherwise becomes 

a system bottleneck. 

In this section, we will introduce the structure of the PMA and its relation with 

other agents in ARMS, which is shown in Figure 7.1.  The kernel of the A4 

simulator is used in the PMA, including the model composer and simulation 

engine. However, the PMA has a different way of input and output. 

 

Monitoring 

Reconfiguration 

Model Composer 

Simulation Engine 

Statistical Data 

Performance Model Strategies 

Strategies 

ARMS Agents PMA 

 

Figure 7.1 PMA vs. ARMS 

Statistical data is monitored from each of the ARMS agents and input to the PMA 

for performance modelling. As introduced in Section 5.6.1, the statistical data that 

are input into the model composer mainly concern the requests and services in the 

system. These include: 

• Relative request performance value. In ARMS, this value is the required 

application execution time.  

• Request sending frequency. An agent may receive the same request from a 

user very frequently. The PMA sensors in the ARMS agents can analyse 

the request information in the log file and calculate the average time a 

request is received. 

• Relative service performance value. In ARMS, the resource performance 

is evaluated using the PACE toolkit and scheduling algorithms, which 

makes the modelling and simulation very difficult. Some estimation on 
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average application waiting and execution time can be used as a relative 

service performance value. 

• Service performance changing frequency. The grid resources are dynamic 

and their performance varies over time. The PMA sensor in the ARMS 

agents can monitor the updating frequency of T_ACT and estimate an 

average performance changing frequency. 

The statistical data and other relative information are composed into a 

performance model. The performance model is put through the simulation engine 

in the PMA. The optimisation strategies used in ARMS to improve service 

discovery will be discussed in Section 7.2. New optimisation strategies can be 

chosen to improve the performance metrics according to some steering policies, 

which will be discussed in Section 7.3. The simulation can be performed many 

times until a better solution is selected. The selected optimisation strategies are 

returned and used to reconfigure the agents in ARMS. 

7.2 Performance Optimisation Strategies 

When the A4 methodology and the ARMS implementation were introduced 

earlier, some strategies for ACT maintenance were discussed. However, the 

impact of the choice of these strategies on the overall system performance is not 

discussed in detail. There are also further performance optimisation strategies that 

can be considered, which will be discussed in detail below. 

7.2.1 Use of ACTs 

T_ACT is always used in each agent and cannot be used for service discovery 

performance optimisation, because the connections made between the local 

resource and the T_ACT in the agent take place within an agent and have no 

effect on communications between agents. 

Caching previous service discovery results is a good strategy for performance 

optimisation that assumes a request may be required more than once. Many 
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current network applications use caches to optimise performance. Using cached 

service information may result in direct service discovery in one step. However, if 

the service information changes frequently compared to the request frequency, 

using the cache may decrease the service discovery speed. So the efficiency of 

using cache depends on the characteristics of the actual system. 

Adding some local knowledge to an agent is also a performance optimisation that 

assumes that services are often required by local agents. If an agent has the 

service information of its lower agents, it need not traverse all of them for service 

discovery and dispatch the request to the available lower agent directly. However, 

additional data maintenance workload is needed for the L_ACT. 

Adding some global knowledge to an agent is also a performance optimisation. A 

request may need less connections to find the available service as the higher-level 

agents need not take part in the discovery process. The system load can also be 

reduced. Additional data maintenance workload is also needed for the G_ACT. 

The efficiency of using L_ACT and G_ACT also depends on the characteristics of 

the actual system. Balance must be made between service advertisement and 

discovery when L_ACT and G_ACT are used in agents. How to steer the 

performance optimisation process will be discussed in Section 7.3 and illustrated 

using a case study in Section 7.4. 

7.2.2 Limited Service Lifetime  

Another performance optimisation strategy is to add a service lifetime limitation 

to the attributes of the service information. This lifetime should be pre-estimated 

before the service is advertised. The agent can check the ACTs frequently and 

delete out-of-date service information. This can avoid unnecessary routing 

processes and increase the speed of service discovery. There is also no additional 

data maintenance workload. However, the lifetime of some services in the system 

may be unpredictable. 
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7.2.3 Limited Scope  

The scope in which a service can be advertised and discovered can also be pre-

defined by attributes to the service information. The service need only be 

advertised within a certain scope of the system, which can reduce the 

advertisement and data maintenance workload. The search for a service can also 

be limited to a certain scope, avoiding unnecessary discovery processes. However, 

a prior knowledge about the service and its requests are needed to achieve 

optimisation. Mismatches between the scope limitation of a service and of a 

request may result in the low success rate of the service discovery. 

7.2.4 Agent Mobility and Service Distribution 

A good match between the requests and services in the system may lead to higher 

performance service discovery. For example, in the grid environment, if a scope 

with many requests has also many high performance computing resources, these 

requests need not be routed far away to find an available resource, which 

decreases the service discovery workload. However, request distribution is up to 

the users and cannot be changed by the system. So agent mobility and service re-

distribution can be used to give a better match with the requests. 

The case study in Section 5.7 provides a good illustration that agent movement 

and service re-distribution can lead to a higher performance. When the service is 

moved to a coordinator of a larger sub-hierarchy, more requests become local 

instead of remote, which reduces the discovery workload of the system. 

It is clear whether the strategies described above can be used to improve 

performance is determined by the characteristics of the system. The performance 

of the system may vary when the grid resources change. So the process for the 

PMA to monitor and reconfigure the ARMS agent exists during the lifetime of the 

system. When the system states change, the PMA is responsible for changing the 

performance optimisation strategies and configuring the relative agent behaviours 

to adapt to the new situation. Some performance steering policies can be used to 

guide the changing of strategies and configure the agent behaviours to achieve 
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higher service discovery performance gradually. These will be discussed in the 

following sections. 

7.3 Performance Steering Policies 

There are four metrics that are used to characterise the performance of the system, 

which were given in Section 5.5. The processes for the PMA to steer the 

performance of the ARMS agents are driven by improving these metrics. 

Different systems have different critical aspects and have different criteria of high 

performance. In this section, we focus on load balance between the service 

advertisement and discovery, which is commonly needed in most of the systems. 

Discovery speed (v) and system efficiency (e) are two metrics that are used for 

load balancing between the service advertisement and discovery. The system is in 

very low performance mode when both discovery speed and system efficiency are 

very low. In this situation, agents can be steered and configured with more service 

advertisement. Reasonable service advertisement can lead to less workload on 

service discovery and improve both discovery speed and system efficiency 

simultaneously. However, too much service advertisement may decrease system 

efficiency though increase discovery speed. Let’s consider each kind of ACT 

maintenance approach. 

Each agent maintains a T_ACT in its coordination layer, which includes the 

service information of the local resource. Periodically updating T_ACT may save 

update workload but cause delay on updating and unnecessary trouble for service 

discovery. Maintenance of T_ACT does not add workload on agent 

communication, so event-driven updating can be used to keep T_ACT in line with 

resource changes in real time. Because event-driven data-pull updating of T_ACT 

may increase service discovery time, it is better to use an event-driven data-push 

approach to keep the T_ACT updated in real time. However, if the resource 

changes very frequently and the number of requests is very small, an event-driven 

data-pull approach can also be used. 
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In most situations, cached information can improve the system performance to 

some extent. Especially when system performance is very low and there is no 

cached information maintained in each agent, adding C_ACT in each agent of the 

system could result in obvious performance improvement. In general, C_ACT is 

maintained using both event-driven data-pull and data-push approaches, which is 

the same as other kinds of use of cache. 

Keeping some service information of lower agents can always improve service 

discovery performance if the system is not extremely dynamic. However, in 

general only one of the four approaches can be chosen for L_ACT maintenance. 

Two or more approaches applied at the same time may cause redundancy of 

service advertisement. The service discovery may not benefit from the redundant 

service information enough so that the system efficiency may decrease. 

Use of G_ACT has the same policies as L_ACT. Note that data-push updating of 

G_ACTs should be applied to the system carefully. Because the updating takes 

place in all of the lower agents of an agent, the service advertisement workload 

could increase greatly. However, the lower agents may not make good use of this 

updated service information for service discovery, which leads to a low system 

efficiency. 

Another advantage of using G_ACT, is to avoid adding too much service 

discovery workload to the coordinators or the broker in the agent hierarchy and 

improve load balance of the agents. The success rate of the system can also be 

improved using available limit service lifetime and scope configurations. This is 

not discussed in detail here. 

In fact, it is difficult to define obvious and efficient policies to guide the 

performance optimisation processes used in PMA. There are too many factors that 

have an impact on system performance and whether a strategy can be chosen to 

improve performance depends heavily on the real situation of the system. The 

system can be steered at a global level, which means that all of the agents are 

configured with the same strategies. However, each agent can also be configured 

with a different strategy. In this section, we only discuss the problem of 
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performance steering initially. Further research is needed to give a deeper analysis 

of the performance optimisation issues. 

7.4 A Case Study 

In this section, an example model is given and experiment results are included to 

show how to steer the performance optimisation process using the PMA. Note that 

the simulation results included in this section are actually produced using the A4 

simulator. 

7.4.1 Example Model 

The attributes of an example model are shown in several tables. This is composed 

of about 250 agents, each representing a high performance computing resource 

that may provide a computing capability with a different performance. These 

agents are organised in a hierarchy, which has three layers. The identity of the 

root agent is gem. There are 50 agents registered to gem, four of which each also 

have 50 lower agents. The hierarchy is illustrated in Table 7.1. 

Agents Upper Agent 

gem - 
sprite~0……sprite~49 gem 

tup~0……tup~49 sprite~9 
cola~0……cola~49 sprite~19 

tango~0……tango~49 sprite~29 
pepsi~0……pepsi~49 sprite~39 

Table 7.1 Example Model: Agents 

To simplify the modelling processes, we define the services and requests in the 

agents at the system level, which is shown in Table 7.2 and 7.3 respectively. The 

name of the services and requests are all HPC, but with different relative 

performance values. The frequency value of the service, 5, for example, means the 

service performance will change between 0 and the performance value once every 

5 steps during the simulation. The frequency value of the request, 5, for example, 
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means a request will be sent once every 5 steps during the simulation. A step can 

be designed as an arbitrary number of seconds. In ARMS, these values must be 

monitored by the PMA while the system is operational. The performance 

optimisation strategies of the lifetime and scope limitations are not used in the 

model. The distribution value is used to define how many agents will be 

configured with the corresponding service or request. 

Name Relative 
Performance 

Freq Lifetime Scope Dist (%) 

HPC 1000 5 Unlimited Top 20 
HPC 600 10 Unlimited Top 40 
HPC 200 20 Unlimited Top 60 

Table 7.2 Example Model: Services 

Name Relative 
Performance 

Freq. Scope Dist. (%) 

HPC 100 5 Top 80 
HPC 300 10 Top 60 
HPC 500 20 Top 40 
HPC 800 40 Top 20 
HPC 1000 60 Top 10 

Table 7.3 Example Model: Requests 

Finally, the model must define how each agent uses the ACTs to optimise the 

performance. In this case study six experiments have been considered, each of 

which has the same configurations as described in Table 7.1 – 7.3, but has 

different optimisation strategies as described in Table 7.4. 

Experiment Number Performance Optimisation Strategies 

1 2 3 4 5 6 

T_ACT: event-driven data-push       
C_ACT: event-driven data-push and data-pull       

L_ACT: event-driven data-push       
G_ACT: periodic data-pull every 10 steps       
L_ACT: periodic data-pull every 10 steps       

G_ACT: event-driven data-push       

Table 7.4 Example Model: Strategies 
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To simplify the experiments, we only define the strategies at the system level, 

which means all of the agents in the model must use the same performance 

optimisation strategies. A mixture of optimisation strategies is possible but is not 

considered in these experiments. In the simulation results included in Section 

7.4.2, a comparison of the different strategies is given by considering their impact 

on the system performance. 

7.4.2 Simulation Results 

The simulation results for all of the experiments are summarised in Table 7.5. 

Note that all values are accumulative results after 200 simulation steps. Each of 

the six situations are described in detail below.  

Experiment Number Metrics 

1 2 3 4 5 6 

r 12296 12355 12576 12560 12645 11715 
a 0 0 5604 8051 10172 285148 
d 65595 51113 7435 6901 6910 7056 
v 0.18 0.24 1.69 1.82 1.82 1.84 
e 0.18 0.24 0.96 0.84 0.74 0.04 

Table 7.5 Simulation Results 

1. Only T_ACTs are used in each agent. Each time the request arrives, a lot 

of connections must be made and traversed in order to find the satisfied 

service. In this situation, the discovery speed and system efficiency are 

both rather low. 

2. The cache is used in each agent, which needs no extra data maintenance 

and improves the discovery speed and system efficiency a little. This is 

because the dynamics of the services reduce the effects of the cached 

information and so becomes unreliable. 

3. L_ACT is added in each agent. Each time the service performance 

changes, the corresponding agent will advertise the change upward in the 

hierarchy. This adds additional data maintenance workload to the system, 
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which decreases the discovery workload extremely. So the discovery 

speed and the system efficiency are all improved. 

4. G_ACT is also added. Each agent will get global service information from 

its upper agent once every 10 simulation steps, which will add additional 

data maintenance workload. From the simulation results, we can see this 

improves the discovery speed further. But the system efficiency decreases 

a little because of the additional data maintenance. 

5. Another maintenance of the L_ACT is added. Each agent asks for service 

information from its lower agents once every 10 steps. This doesn’t 

improve the discovery speed any more and only adds more data 

maintenance workload, which decreases the system efficiency further. 

6. Another maintenance of the G_ACT is added. This improves the discovery 

speed only a little, but adds further data maintenance workload, which 

decreases the system efficiency extremely. 

 

Figure 7.2 Choice of Optimisation Strategies 

The impact of the choice of the optimisation strategies on the discovery speed and 

the system efficiency is shown clearly in Figure 7.2. It can be seen that the fourth 

experiment has a good balance between the discovery speed and the system 

efficiency for this example model. It has a higher discovery speed in comparison 

to the third, with only slight lower system efficiency.  

Changing the G_ACT update frequency will also change the performance of the 

model. Figure 7.3 shows the relation between the G_ACT update frequency and 

the system performance. In these experiments, the strategies that are used are all 

the same as described in the fourth experiment of Table 7.4. The only difference is 
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the G_ACTs in the agents are updated with different frequencies, which may lead 

to differences in the amount of system workload for service advertisement. The 

best trade-off between discovery speed and system efficiency is once every 20 

simulation steps in this example model. 
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Figure 7.3 Choice of G_ACT Update Frequency 

In summary, the example model should use all of the ACTs. L_ACT should be 

maintained by the real-time service advertisement. The G_ACT should be 

maintained by updating once every 20 steps. In fact, the performance of the 

example model can be improved further using agent level modelling. Different 

agents can use a mixture of different strategies to achieve higher performance of 

the whole system. This is not discussed in detail here. 

The techniques of performance modelling and simulation are useful especially for 

the current phase of research into grid computing. As mentioned, a practical grid 

environment does not yet exist. In fact, there is not even a grid testbed that can be 

used for research. In the last chapter, the example system is composed of only 8 

resources, which is far from a grid size. The performance data cannot be produced 
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in such a system for analysis, which makes a simulation environment very 

valuable for this kind of research. The A4 simulator is such an attempt. 

The PMA agent is used for online performance optimisation and steering for 

ARMS, which is a further usage of the simulation techniques. The simulation 

results are not only used for traditional performance analysis, but also feedback to 

the system for performance improvement in real time. However, the research into 

performance issues on service discovery in large-scale multi-agent system is just 

beginning. More performance optimisation strategies and steering policies need to 

be investigated further. A practical implementation of the ARMS and the PMA is 

ongoing, and is summarised in the conclusion part of the thesis. 
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The grid is an emerging infrastructure for high performance computing. Resource 

management is the most important service for grid implementation. In this thesis, 

the methodology, tools, and applications of agent-based resource management for 

grid computing are presented. In this chapter, the main contents of the thesis are 

summarised and future work is suggested. 

8.1 Thesis Summary 

The work in this thesis is based on previous work on a performance evaluation 

toolkit, known as PACE. In this thesis, a new parallel application, Sweep3D, is 

used to validate the capabilities of performance modelling, evaluation, and 

prediction of the PACE system. The key features of PACE include rapid 

evaluation time, reasonable accuracy, and easy comparison across different 

platforms. The utilisation of PACE provides QoS support for grid resource 

management. 

While extremely well suited for managing a locally distributed resource, the 

PACE functions do not map well onto a wide-area grid computing environment. 
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A new methodology for building large-scale distributed software systems with 

highly dynamic behaviours, A4 (Agile Architecture and Autonomous Agents), is 

presented in this thesis. The main component in an A4 system is the agent. Agents 

are both service requestors and providers. Services can be advertised and 

discovered within the hierarchy among different agents. There are four 

performance metrics for service discovery: discovery speed, system efficiency, 

load balancing, and success rate. A simulator for A4 has been developed that can 

be used for modelling and simulation to evaluate an A4 system performance. 

The coupling of the A4 methodology with PACE functions leads to an initial 

implementation of an agent-based resource management system for grid 

computing, called ARMS. PACE is used to provide quantitative data concerning 

the performance of sophisticated applications running on a local resource. At a 

metacomputing level, agents cooperate with each other and perform resource 

advertisement and discovery functions to schedule applications that need to utilise 

the available resources. An ARMS agent includes: an ACT manager, the PACE 

evaluation engine, a multi-processor scheduler, and a matchmaker. 

A special agent, a PMA, is also developed as a performance monitor and advisor 

in ARMS, which is capable of performance modelling and simulation of agent 

service discovery. Some performance steering policies can be used to guide the 

agents to choose different kinds of performance optimisation strategies, including 

the use of ACTs, limited service lifetime, and limited scope of service 

advertisement and discovery, etc, to improve system performance gradually. 

The main contribution of this work includes: performance prediction driven QoS 

support for grid resource management and scheduling, an agent-based hierarchical 

model for service advertisement and discovery, and simulation-based performance 

optimisation and steering of agent resource discovery. 

The performance prediction capability provided by the PACE toolkit was used for 

multi-processor scheduling, on-the-fly application steering, and traditional 

performance analysis. In the work described in this thesis, it is first used for QoS 

support of grid resource management. Most of the previous solutions to grid 
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resource management include only soft QoS support. The key features of PACE 

make it a more suitable toolkit than any other evaluation tools to provide detail 

performance data rapidly without sacrificing the accuracy. This can be used to 

provide the hard QoS support for grid resource management at a meta level. The 

introduction of the PACE performance prediction technique to grid resource 

management differentiates this work from any other existing solutions. 

Agent technologies have been developing for more than ten years and are 

becoming a mainstream software development technology. The development of 

the grid software infrastructure can benefit from the trend of agent-based software 

engineering in different ways. In this work, a hierarchy of homogenous agents is 

used with capabilities of service advertisement and discovery to provide grid 

resource management and scheduling at a meta level. Agents can be configured 

with different behaviours, which provides a flexible way for the system to adapt to 

the highly dynamic grid environment. The agent-based architecture not only 

provides a clean and powerful high-level abstraction of the grid resource 

management system described in this work, but can also be used as a framework 

for new components or functions to be added into the system. ARMS is the first 

prototype implementation of an agent-based resource management system for grid 

computing with important features that do not exist in other solutions. 

Unlike many other agent-based system implementations that focus mainly on data 

representation and communication protocols, performance issues are the key 

consideration in the development of ARMS described in this thesis. The high-

level performance evaluation and optimisation of service advertisement and 

discovery in large-scale MAS are attempted in this work using performance 

modelling and simulation techniques. Some performance metrics are defined and 

some performance optimisation strategies and steering policies are explored. 

Though performance issues on service discovery have been discussed in some 

other work, to the authors’  knowledge, a quantitative analysis, that enables a MAS 

performance of service discovery to be investigated, can be only found in the 

work described in this thesis. 
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In summary, all of above go together to provides an available methodology and 

prototype implementation of an agent-based resource management system for grid 

computing, which can be used as a fundamental framework for further 

improvement and refinement. 

8.2 Future Work 

The main suggestion for future work is centred on the enhancement of ARMS. 

The framework and methodology have been demonstrated using an initial 

implementation of ARMS as described in this thesis. Many features can be added 

to the new implementation. 

8.2.1 Performance Evaluation 

The PACE toolkit is used to supply performance evaluation data in ARMS. There 

are still several aspects that can be improved for PACE to provide better QoS 

support of grid resource management. 

Current PACE models include too much detail of an application or a resource, 

which need to be lightened for remote performance evaluation without sacrificing 

accuracy. A new project is to focus on transaction-level performance evaluation of 

Java applications [Spooner2001]. The detail of the operations in an application 

can be encapsulated into transactions, and the performance specification can be 

processed at a higher level. PACE models with lightweight application 

characterisations will reduce the communication workload between agents when 

service advertisement and discovery are processed, and hence improve the system 

performance. 

PACE resource models are currently static without consideration of dynamic CPU 

workload and network traffic. The benchmark programs are executed off-line to 

produce these models on different platforms. In future, Dynamic Performance 

Measurement (DPM) can be applied to the ARMS implementation. The agents in 
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ARMS can control the benchmark programs to be executed on the local resource 

in real time and produce the corresponding resource models dynamically. 

In the work described in this thesis, we focus on the evaluation of the application 

execution time, which is the only cost metrics that is included in the cost model of 

a request. In fact, more metrics (e.g. memory usage, execution environment, etc.) 

can be added into the cost model and the corresponding evaluation engines can 

also be added into each ARMS agent. This will provide a wider QoS support of 

the grid resource management. 

8.2.2 Multi-processor Scheduling 

An advanced multi-processor scheduling algorithm should be developed to 

include more consideration of dynamic information on resources and applications 

and aim to both meet requirements from users and maximise the resource 

utilisation. 

A multi-processor scheduler, called TITAN, is under development at Warwick. A 

Genetic Algorithm (GA) is used as the kernel of TITAN. A monitoring module is 

also developed to collect dynamic information of the local processors. TITAN 

also takes advantage of the performance prediction capability of PACE. The GA 

in TITAN is an iterative heuristic process that can absorb slight changes of both 

resources and applications. TITAN aims to maximise the resource utilisation via 

calculating the penalty of the weighted idle time of the local processors and 

minimising the global make span of the application executions. An extension of 

the GA will aim to meet requirements from users as well. 

TITAN will be an ideal local resource manager in the grid computing 

environment. The new implementation of ARMS can integrate multiple TITANs 

with agents to achieve grid resource management. TITAN can also be developed 

using the APIs provided by standard grid toolkits like Globus so as to cooperate 

with other kinds of local resource managers (e.g. Condor and AppLeS) in the grid 

environment. 
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8.2.3 Agent-based Resource Management 

The A4 methodology and the ARMS agents can also be improved in a number of 

ways. These are listed in detail below. 

• An agent in the hierarchy may be permitted to register with multiple upper 

agents, which will result in a more flexible and robust system architecture. 

Once an agent leaves the system, its lower agents are still able to contact 

the rest of the system via other upper agents. The cost of this would be 

more complex system management. 

• New performance metrics for the agent-based service discovery can be 

developed concerning the communication time spent on the service 

discovery, instead of just the number of connections made for the service 

discovery. Benchmark programs can be developed to measure the 

communication time between two agents, and measurement results can be 

used for modelling the time spent in agent communication. 

• New performance optimisation strategies and steering policies should be 

developed for efficient implementation of service advertisement and 

discovery in ARMS. The modelling and simulation techniques can be used 

to evaluate different strategies and their impact on the system performance 

• New protocols for service advertisement and discovery can be developed 

to provide stronger QoS support. For example, multiple service support 

will provide users and system management tools with a wider base of QoS 

support. The agent-based grid resource discovery can also be designed to 

be a negotiation process between the users and the ARMS agents. 

• Current agent behaviours in ARMS can only be configured by the system 

manager or the PMA. Further implementation of the ARMS agents should 

be able to change the behaviours themselves according to the changing 

requests and resources. The agent needs more capabilities to learn over 

time and get useful knowledge from its historic information. 



CHAPTER 8 CONCLUSIONS 

- 142 - 

8.2.4 Enhanced Implementation 

The ARMS implementation can be enhanced using some existing standards, 

languages, tools and protocols. For example, the ARMS agents and the PMA can 

be developed using Java and an XML format for data representation. An agent 

communication language (ACL) can be used to allow agents to communicate with 

each other at a higher-abstracted knowledge level. A resource specification 

language (RSL) can be used to give a formal representation of service information 

in ARMS. Some network and database management protocols like LDAP and 

SNMP can also be used in the implementation of ARMS. 

The new implementation of ARMS is to be tested on a grid infrastructure that is 

being built at Warwick. This includes clusters of Sun workstations, an SGI 

Origin2000 and an IBM S/390, etc. All of the work introduced above will enhance 

the applicability and usefulness of the implementation of ARMS towards a 

practical system. 
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AAppppeennddiixx  AA  

PPSSLL  CCOODDEE  FFOORR  SSWWEEEEPP33DD  

 

This section gives a list of all the PSL source code for Sweep3D. Each software 

object is included in a separate section. There are totally 9 objects: 1 application 

object, 4 subtask objects, and 4 parallel template objects. 

A.1  Application Object: sweep3d 

(* 
 * SWEEP3D model 
 *) 
 
application sweep3d { 
 
 include hardware; 
  
 include source; 
 include sweep; 
 include fixed; 
 include flux_err; 
  
 var numeric: 
  Nproc = 6, 
  npe_i = 2, 
  npe_j = 3, 
  mk = 10, 
  mmi = 3, 
  it_g = 50, 
  jt_g = 50, 
  kt = 50, 
  mm = 6, 
  isct = 1, 
  epsi = -12, 
  ibc = 0, 
  jbc = 0, 
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  kbc = 0, 
  do_dsa = 1, 
  ifixups = -7, 
  it, 
  jt, 
  it_dsa, 
  jt_dsa, 
  kt_dsa, 
  jt_ibc, 
  kt_ibc, 
  mm_ibc, 
  it_jbc, 
  kt_jbc, 
  mm_jbc, 
  it_kbc, 
  jt_kbc, 
  mm_kbc, 
  nk, 
  ndiag, 
  nm; 
   
   
 link { 
 hardware:  
  Nproc = Nproc; 
 source: 
  it = it, 
  jt = jt, 
  kt = kt, 
  isct = isct, 
  ifixups = ifixups, 
  epsi = epsi; 
 sweep: 
  it = it, 
  jt = jt, 
  kt = kt, 
  do_dsa = do_dsa, 
  it_dsa = it_dsa, 
  jt_dsa = jt_dsa, 
  kt_dsa = kt_dsa, 
  ibc = ibc, 
  jbc = jbc, 
  kbc = kbc, 
  mm = mm, 
  mmi = mmi, 
  nk = nk, 
  mk = mk, 
  ndiag = ndiag, 
  nm = nm, 
  epsi = epsi, 
  ifixups = ifixups, 
  npe_i = npe_i, 
  npe_j = npe_j; 
   
 flux_err: 
  it = it, 
  jt = jt, 
  kt = kt; 
 } 
  
 option { 
  hrduse = "SunUltra1"; 
 } 
  
 proc exec init { 
  var numeric: 
   i,tmp; 
   
  if (Nproc == 1) 
  { 
   npe_i = 1; 
   npe_j = 1; 
  } 
  else if (Nproc == 2) 
  { 
   npe_i = 1; 
   npe_j = 2; 
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  } 
  else if (Nproc == 3) 
  { 
   npe_i = 1; 
   npe_j = 3; 
  } 
  else if (Nproc == 4) 
  { 
   npe_i = 2; 
   npe_j = 2; 
  } 
  else if (Nproc == 5) 
  { 
   npe_i = 1; 
   npe_j = 5; 
  } 
  else if (Nproc == 6) 
  { 
   npe_i = 2; 
   npe_j = 3; 
  } 
  else if (Nproc == 7) 
  { 
   npe_i = 1; 
   npe_j = 7; 
  } 
  else if (Nproc == 8) 
  { 
   npe_i = 2; 
   npe_j = 4; 
  } 
  else if (Nproc == 9) 
  { 
   npe_i = 3; 
   npe_j = 3; 
  } 
  else if (Nproc == 10) 
  { 
   npe_i = 2; 
   npe_j = 5; 
  } 
  else if (Nproc == 11) 
  { 
   npe_i = 1; 
   npe_j = 11; 
  } 
  else if (Nproc == 12) 
  { 
   npe_i = 3; 
   npe_j = 4; 
  } 
  else if (Nproc == 13) 
  { 
   npe_i = 1; 
   npe_j = 13; 
  } 
  else if (Nproc == 14) 
  { 
   npe_i = 2; 
   npe_j = 7; 
  } 
  else if (Nproc == 15) 
  { 
   npe_i = 3; 
   npe_j = 5; 
  } 
  else if (Nproc == 16) 
  { 
   npe_i = 4; 
   npe_j = 4; 
  } 
 
  if (isct == 0) nm=1; 
  else if (isct == 1) nm=4; 
   
  it = it_g / npe_i ; 
  jt = jt_g / npe_j + 1 ; 



APPENDIX A  PSL CODE FOR SWEEP3D 

- 159 - 

  if( mk > kt ) mk = kt; 
 
  if (do_dsa == 1) 
  { 
   it_dsa = it + 1; 
   jt_dsa = jt + 1; 
   kt_dsa = kt + 1; 
  } 
  else 
  { 
   it_dsa = 1; 
   jt_dsa = 1; 
   kt_dsa = 1; 
  } 
 
  if (ibc != 0) 
  { 
   jt_ibc = jt; 
   kt_ibc = kt; 
   mm_ibc = mm; 
  } 
  else 
  { 
   jt_ibc = 1; 
   kt_ibc = 1; 
   mm_ibc = 1; 
  } 
 
  if (jbc!=0) 
  { 
   it_jbc = it; 
   kt_jbc = kt; 
   mm_jbc = mm; 
  } 
  else 
  { 
   it_jbc = 1; 
   kt_jbc = 1; 
   mm_jbc = 1; 
  } 
 
  if (kbc != 0) 
  { 
   it_kbc = it; 
   jt_kbc = jt; 
   mm_kbc = mm; 
  } 
  else 
  { 
   it_kbc = 1; 
   jt_kbc = 1; 
   mm_kbc = 1; 
  } 
   
  tmp = kt; 
  i = 1; 
  while ( tmp > mk ) 
  { 
   tmp = tmp - mk; 
   i = i + 1; 
  } 
    
  nk = kt / i; 
  ndiag = (nk+jt+i+mmi)*jt / (nk+jt); 
   
  for( i = 1; i <= -epsi; i = i + 1 ) 
  { 
   call source; 
   call sweep; 
   call fixed; 
   call flux_err; 
  } 
 } 
} 
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A.2  Subtask Object: source

subt ask sour ce {  
 i nc l ude async;  
 i nc l ude har dwar e;  
     
 var  numer i c :  
  i t  = 25,  
  j t  = 17,  
  k t  = 50,  
  i sct  = 1,  
  i f i xups = - 7,  
  epsi  = - 12,  
  p1,  
  p2;  
   
 l i nk {  
  async:  Tx = sour ce_comp( ) ;  
 }  
  
 pr oc exec i ni t  {  
  i f (  i f i xups > 0 )  
  {  
   p1 = 1;  
   p2 = 0;  
  }  
  i f (  i f i xups == 0 )  
  {  
   p1 = 0;  
   p2 = 1;  
  }  
  i f (  i f i xups < 0 )  
  {  
   p1 = 0;  
   p2 = 0;  
  }  
   
 }  
  
( *  
 *  CHI P3S 
 *  Appl i cat i on Char act er i sat i on Tool  
 *  Sour ce  :  sour ce. c 
 *  RUV Type:  c l c  
 * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow sour ce_comp {  ( *  Def i ned at  sour ce. c: 1 * )  
        comput e <i s  c l c ,  FCAL,  2* POL1,  AI LL,  TI LL,  CMLL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        1- i sct :  
            comput e <i s  c l c ,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  kt )  {  
                comput e <i s  c l c ,  CMLL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  7* ARD3,  MFDL,  AFDL,  2* TFDL,  SFDL 
                            ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
        1- ( 1- i sct ) :  
            comput e <i s  c l c ,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  kt )  {  
                comput e <i s  c l c ,  CMLL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  19* ARD3,  4* MFDL,  AFDL,  5* TFDL 
                            ,  4* SFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
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                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
        }  
        comput e <i s  c l c ,  SI LL,  CMLL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        p1:  
            comput e <i s  c l c ,  SI LL>;  
        1- ( p1) :  
            comput e <i s  c l c ,  CMLL>;  
            case ( <i s  c l c ,  I FBR>)  {  
            p2:  
                comput e <i s  c l c ,  SI LL>;  
            1- ( p2) :  
                comput e <i s  c l c ,  SI LL,  POL1,  CMLL>;  
                case ( <i s  c l c ,  I FBR>)  {  
                ( - epsi +i f i xups) / ( - epsi ) :  
                    comput e <i s  c l c ,  SI LL>;  
                }  
            }  
        }  
    }  ( *  End of  sour ce_comp * )  
 
}    

A.3  Subtask Object: sweep 

subt ask sweep {  
 i nc l ude har dwar e;  
 i nc l ude pi pel i ne;  
     
 var  numer i c :  
  i t  = 26,  
  j t  = 18,  
  k t  = 50,  
  do_dsa = 1,  
  mm = 6,  
  mk = 10,  
  mmi  = 3,  
  i t _dsa = 26,  
  j t _dsa = 18,  
  k t _dsa = 51,  
  i bc = 0,  
  j bc = 0,  
  kbc = 0,  
  nk = 9,  
  ndi ag = 17,  
  nm = 4,  
  npe_i  = 2,  
  npe_j  = 3,  
  epsi  = - 12,  
  i f i xups = - 7,  
  p1,  
  p2,  
  p3;  
         
 l i nk {  
 pi pel i ne:  
  Tx_sweep_i ni t  = sweep_i ni t ( ) ,  
  Tx_oct ant  = oct ant ( ) ,  
  Tx_get _di r ect  = get _di r ect ( ) ,  
  Tx_pi pel i ne_i ni t  = pi pel i ne_i ni t ( ) ,  
  Tx_kk_l oop_i ni t  = kk_l oop_i ni t ( ) ,  
  Tx_el se_ew_r cv = el se_ew_r cv( ) ,  
  Tx_comp_f ace = comp_f ace( ) ,  
  Tx_el se_ns_r cv = el se_ns_r cv( ) ,  
  Tx_wor k = wor k( ) ,  
  Tx_el se_ew_snd = el se_ew_snd( ) ,  
  Tx_el se_ns_snd = el se_ns_snd( ) ,  
  Tx_l ast  = l ast ( ) ,  
  mm = mm,  
  mmi  = mmi ,  
  i t  = i t ,  
  j t  = j t ,  
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  k t  = kt ,  
  mk = mk,  
  npe_i  = npe_i ,  
  npe_j  = npe_j ;  
 }  
  
 pr oc exec i ni t  {  
  i f ( kbc == 0)  
   p1 = 1;  
  el se 
   p1 = 0. 5;  
  i f ( i bc == 0)  
   p2 = 1;  
  el se 
   p2 = 0. 5;  
  i f ( j bc == 0)  
   p3 = 1;  
  el se 
   p3 = 0. 5;  
 }  
 
( *  
 *  CHI P3S 
 *  Appl i cat i on Char act er i sat i on Tool  
 *  Sour ce  :  sweep. c 
 *  RUV Type:  c l c  
 * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow sweep_i ni t  {  ( *  Def i ned at  sweep. c: 2 * )  
        comput e <i s  c l c ,  FCAL,  6* ARD1,  6* SFDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        do_dsa:  
            comput e <i s  c l c ,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  3)  {  
                comput e <i s  c l c ,  CMLL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  kt _dsa)  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  j t _dsa)  {  
                        comput e <i s  c l c ,  CMLL,  SI LL>;  
                        l oop ( <i s  c l c ,  LFOR>,  i t _dsa)  {  
                            comput e <i s  c l c ,  CMLL,  ARD3,  SFDL,  I NLL>;  
                        }  
                        comput e <i s  c l c ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
        }  
        comput e <i s  c l c ,  POL1,  SI LL>;  
    }  ( *  End of  sweep_i ni t  * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow oct ant  {  ( *  Def i ned at  sweep. c: 74 * )  
        comput e <i s  c l c ,  FCAL,  CMLL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        1/ 8:  
            comput e <i s  c l c ,  9* POL1,  6* TI LL,  3* SI LL>;  
        1- ( 1/ 8) :  
            comput e <i s  c l c ,  CMLL>;  
            case ( <i s  c l c ,  I FBR>)  {  
            1/ 7:  
                comput e <i s  c l c ,  9* POL1,  5* TI LL,  4* SI LL>;  
            1- ( 1/ 7) :  
                comput e <i s  c l c ,  CMLL>;  
                case ( <i s  c l c ,  I FBR>)  {  
                1/ 6:  
                    comput e <i s  c l c ,  9* POL1,  5* TI LL,  4* SI LL>;  
                1- ( 1/ 6) :  
                    comput e <i s  c l c ,  CMLL>;  
                    case ( <i s  c l c ,  I FBR>)  {  
                    1/ 5:  
                        comput e <i s  c l c ,  9* POL1,  4* TI LL,  5* SI LL>;  
                    1- ( 1/ 5) :  
                        comput e <i s  c l c ,  CMLL>;  
                        case ( <i s  c l c ,  I FBR>)  {  
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                        1/ 4:  
                            comput e <i s  c l c ,  9* POL1,  4* SI LL,  5* TI LL>;  
                        1- ( 1/ 4) :  
                            comput e <i s  c l c ,  CMLL>;  
                            case ( <i s  c l c ,  I FBR>)  {  
                            1/ 3:  
                                comput e <i s  c l c ,  9* POL1,  5* SI LL,  4* TI LL>;  
                            1- ( 1/ 3) :  
                                comput e <i s  c l c ,  CMLL>;  
                                case ( <i s  c l c ,  I FBR>)  {  
                                1/ 2:  
                                    comput e <i s  c l c ,  9* POL1,  5* SI LL,  4* TI LL>;  
                                1- ( 1/ 2) :  
                                    comput e <i s  c l c ,  9* POL1,  6* SI LL,  3* TI LL>;  
                                }  
                            }  
                        }  
                    }  
                }  
            }  
        }  
        comput e <i s  c l c ,  POL1,  CMLL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <i s  c l c ,  POL1,  SI LL>;  
        1- ( 0. 5) :  
            comput e <i s  c l c ,  POL1,  SI LL>;  
        }  
        comput e <i s  c l c ,  POL1,  CMLL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <i s  c l c ,  POL1,  SI LL>;  
        1- ( 0. 5) :  
            comput e <i s  c l c ,  POL1,  SI LL>;  
        }  
        comput e <i s  c l c ,  POL1,  CMLL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <i s  c l c ,  POL1,  SI LL>;  
        1- ( 0. 5) :  
            comput e <i s  c l c ,  POL1,  SI LL>;  
        }  
    }  ( *  End of  oct ant  * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow get _di r ect  {  ( *  Def i ned at  sweep. c: 202 * )  
        comput e <i s  c l c ,  FCAL,  CMLL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <i s  c l c ,  3* TI LL,  MI LL>;  
        1- ( 0. 5) :  
            comput e <i s  c l c ,  3* TI LL,  MI LL>;  
        }  
        comput e <i s  c l c ,  CMLL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <i s  c l c ,  3* TI LL,  MI LL>;  
        1- ( 0. 5) :  
            comput e <i s  c l c ,  3* TI LL,  MI LL>;  
        }  
        comput e <i s  c l c ,  SI LL>;  
        l oop ( <i s  c l c ,  LFOR>,  mm)  {  
            comput e <i s  c l c ,  CMLL,  9* ARD1,  6* MI LL,  3* TFDL,  I NLL>;  
        }  
    }  ( *  End of  get _di r ect  * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow pi pel i ne_i ni t  {  ( *  Def i ned at  sweep. c: 296 * )  
        comput e <i s  c l c ,  FCAL,  AI LL,  MI LL,  TI LL,  2* CMLL,  ANDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        p1:  
            comput e <i s  c l c ,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
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                        comput e <i s  c l c ,  CMLL,  ARD3,  SFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
        1- ( p1) :  
            case ( <i s  c l c ,  I FBR>)  {  
            do_dsa:  
                comput e <i s  c l c ,  SFDL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                    comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                        comput e <i s  c l c ,  CMLL,  SI LL>;  
                        l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                            comput e <i s  c l c ,  CMLL,  6* ARD3,  3* TFDL,  4* ARD1 
                                ,  4* MFDL,  2* AFDL,  I NLL>;  
                        }  
                        comput e <i s  c l c ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
            1- ( do_dsa) :  
                comput e <i s  c l c ,  SFDL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                    comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                        comput e <i s  c l c ,  CMLL,  SI LL>;  
                        l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                            comput e <i s  c l c ,  CMLL,  3* ARD3,  2* TFDL,  3* ARD1 
                                ,  3* MFDL,  AFDL,  I NLL>;  
                        }  
                        comput e <i s  c l c ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
            }  
        }  
        comput e <i s  c l c ,  2* AI LL,  DI LL,  TI LL>;  
    }  ( *  End of  pi pel i ne_i ni t  * )  
 
    ( *  Cal l s :  mi n max * )  
    pr oc cf l ow kk_l oop_i ni t  {  ( *  Def i ned at  sweep. c: 410 * )  
        comput e <i s  c l c ,  FCAL,  CMLL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <i s  c l c ,  4* AI LL,  MI LL,  TI LL>;  
            cal l  c f l ow mi n;  
            comput e <i s  c l c ,  2* TI LL,  2* AI LL>;  
        1- ( 0. 5) :  
            comput e <i s  c l c ,  4* AI LL,  MI LL,  TI LL>;  
            cal l  c f l ow max;  
            comput e <i s  c l c ,  2* TI LL,  2* AI LL>;  
        }  
        comput e <i s  c l c ,  6* AI LL,  4* MI LL,  2* TI LL>;  
    }  ( *  End of  kk_l oop_i ni t  * )  
 
    ( *  Cal l s :  s i gn * )  
    pr oc cf l ow el se_ew_r cv {  ( *  Def i ned at  sweep. c: 471 * )  
        comput e <i s  c l c ,  FCAL,  2* CMLL,  ANDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        p2:  
            comput e <i s  c l c ,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                        comput e <i s  c l c ,  CMLL,  ARD3,  SFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
        1- ( p2) :  
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            comput e <i s  c l c ,  SFDL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  AI LL>;  
                    comput e <i s  c l c ,  AI LL>;  
                    cal l  c f l ow s i gn;  
                    comput e <i s  c l c ,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD3,  2* TFDL,  3* ARD1,  3* MFDL 
                            ,  AFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
            comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
        }  
    }  ( *  End of  el se_ew_r cv * )  
 
    ( *  Cal l s :  s i gn * )  
    pr oc cf l ow comp_f ace {  ( *  Def i ned at  sweep. c: 550 * )  
        comput e <i s  c l c ,  FCAL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        do_dsa:  
            comput e <i s  c l c ,  AI LL,  TI LL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  AI LL>;  
                    comput e <i s  c l c ,  AI LL>;  
                    cal l  c f l ow s i gn;  
                    comput e <i s  c l c ,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD3,  ARD1,  MFDL,  AFDL,  TFDL 
                            ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
        }  
    }  ( *  End of  comp_f ace * )  
 
    ( *  Cal l s :  s i gn * )  
    pr oc cf l ow el se_ns_r cv {  ( *  Def i ned at  sweep. c: 620 * )  
        comput e <i s  c l c ,  FCAL,  2* CMLL,  ANDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        p3:  
            comput e <i s  c l c ,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  ARD3,  SFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
        1- ( p3) :  
            comput e <i s  c l c ,  SFDL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  AI LL>;  
                    comput e <i s  c l c ,  AI LL>;  
                    cal l  c f l ow s i gn;  
                    comput e <i s  c l c ,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD3,  2* TFDL,  3* ARD1,  3* MFDL 
                            ,  AFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
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            }  
            comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
        }  
    }  ( *  End of  el se_ns_r cv * )  
 
    ( *  Cal l s :  s i gn mi n max * )  
    pr oc cf l ow wor k {  ( *  Def i ned at  sweep. c: 697 * )  
        comput e <i s  c l c ,  FCAL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        do_dsa:  
            comput e <i s  c l c ,  AI LL,  TI LL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  AI LL>;  
                    comput e <i s  c l c ,  AI LL>;  
                    cal l  c f l ow s i gn;  
                    comput e <i s  c l c ,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD3,  ARD1,  MFDL,  AFDL,  TFDL 
                            ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
        }  
        comput e <i s  c l c ,  SI LL>;  
        l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
            comput e <i s  c l c ,  CMLL,  ARL1,  SI LL,  I NLL>;  
        }  
        comput e <i s  c l c ,  SI LL>;  
        l oop ( <i s  c l c ,  LFOR>,  j t +nk- 1+mmi - 1)  {  
            comput e <i s  c l c ,  4* AI LL,  CMLL,  SI LL,  TI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi - 1)  {  
                comput e <i s  c l c ,  CMLL,  3* ARL1,  2* TI LL,  AI LL,  I NLL>;  
            }  
            comput e <i s  c l c ,  2* AI LL>;  
            cal l  c f l ow mi n;  
            cal l  c f l ow mi n;  
            cal l  c f l ow mi n;  
            cal l  c f l ow max;  
            comput e <i s  c l c ,  2* ARL1,  2* TI LL,  AI LL,  2* SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  ndi ag)  {  
                comput e <i s  c l c ,  CMLL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  mmi - 1)  {  
                    comput e <i s  c l c ,  2* AI LL,  CMLL,  ARL1,  TI LL,  I NLL>;  
                }  
                comput e <i s  c l c ,  2* TI LL,  3* AI LL>;  
                cal l  c f l ow mi n;  
                comput e <i s  c l c ,  AI LL>;  
                cal l  c f l ow s i gn;  
                comput e <i s  c l c ,  TI LL,  3* AI LL>;  
                cal l  c f l ow max;  
                comput e <i s  c l c ,  AI LL>;  
                cal l  c f l ow s i gn;  
                comput e <i s  c l c ,  3* TI LL,  2* AI LL,  ABSI ,  5* ARD1,  2* MFDL,  4* TFDL 
                    ,  ARD3,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                    comput e <i s  c l c ,  CMLL,  ARD3,  ARD1,  TFDL,  I NLL>;  
                }  
                comput e <i s  c l c ,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nm- 1)  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  2* ARD1,  2* ARD3,  MFDL,  AFDL,  TFDL 
                            ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                case ( <i s  c l c ,  I FBR>)  {  
                ( - i f i xups) / ( - epsi ) :  
                    comput e <i s  c l c ,  TI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  4* CMLL,  3* ANDL,  8* ARD1,  8* MFDL,  9* TFDL 
                            ,  7* ARD3,  9* AFDL,  DFDL,  AI LL,  TI LL>;  
                    }  
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                1- ( ( - i f i xups) / ( - epsi ) ) :  
                    comput e <i s  c l c ,  TI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  4* CMLL,  3* ANDL,  7* ARD1,  8* MFDL,  8* TFDL 
                            ,  5* ARD3,  9* AFDL,  DFDL,  SI LL,  CMDL>;  
                        case ( <i s  c l c ,  I FBR>)  {  
                        0. 5:  
                            comput e <i s  c l c ,  2* AFDL,  4* TFDL,  DFDL,  3* MFDL,  ARD1 
                                ,  SFDL,  CMDL>;  
                            case ( <i s  c l c ,  I FBR>)  {  
                            0. 5:  
                                comput e <i s  c l c ,  ARD1,  MFDL,  ARD3,  AFDL,  TFDL>;  
                            }  
                            comput e <i s  c l c ,  CMDL>;  
                            case ( <i s  c l c ,  I FBR>)  {  
                            0. 5:  
                                comput e <i s  c l c ,  ARD1,  MFDL,  ARD3,  AFDL,  TFDL>;  
                            }  
                            comput e <i s  c l c ,  SI LL>;  
                        }  
                        comput e <i s  c l c ,  CMDL>;  
                        case ( <i s  c l c ,  I FBR>)  {  
                        0. 5:  
                            comput e <i s  c l c ,  2* AFDL,  4* TFDL,  DFDL,  3* MFDL,  ARD3 
                                ,  ARD1,  SFDL,  CMDL>;  
                            case ( <i s  c l c ,  I FBR>)  {  
                            0. 5:  
                                comput e <i s  c l c ,  ARD1,  MFDL,  ARD3,  AFDL,  TFDL>;  
                            }  
                            comput e <i s  c l c ,  CMDL>;  
                            case ( <i s  c l c ,  I FBR>)  {  
                            0. 5:  
                                comput e <i s  c l c ,  ARD1,  MFDL,  AFDL,  TFDL>;  
                            }  
                            comput e <i s  c l c ,  SI LL>;  
                        }  
                        comput e <i s  c l c ,  CMDL>;  
                        case ( <i s  c l c ,  I FBR>)  {  
                        0. 5:  
                            comput e <i s  c l c ,  2* AFDL,  4* TFDL,  DFDL,  3* MFDL,  ARD3 
                                ,  ARD1,  SFDL,  CMDL>;  
                            case ( <i s  c l c ,  I FBR>)  {  
                            0. 5:  
                                comput e <i s  c l c ,  ARD1,  MFDL,  AFDL,  TFDL>;  
                            }  
                            comput e <i s  c l c ,  CMDL>;  
                            case ( <i s  c l c ,  I FBR>)  {  
                            0. 5:  
                                comput e <i s  c l c ,  ARD1,  MFDL,  ARD3,  AFDL,  TFDL>;  
                            }  
                            comput e <i s  c l c ,  SI LL>;  
                        }  
                        comput e <i s  c l c ,  4* TFDL,  ARD1,  2* ARD3,  2* AI LL,  2* TI LL>;  
                    }  
                }  
                comput e <i s  c l c ,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                    comput e <i s  c l c ,  CMLL,  2* ARD3,  2* ARD1,  MFDL,  AFDL,  TFDL 
                        ,  I NLL>;  
                }  
                comput e <i s  c l c ,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nm- 1)  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD3,  2* ARD1,  2* MFDL,  AFDL 
                            ,  TFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                case ( <i s  c l c ,  I FBR>)  {  
                do_dsa:  
                    comput e <i s  c l c ,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  8* ARD3,  4* ARD1,  3* MFDL,  3* AFDL 
                            ,  3* TFDL,  I NLL>;  
                    }  
                }  
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                comput e <i s  c l c ,  ARD3,  TFDL,  I NLL>;  
                comput e <i s  c l c ,  2* POL1,  AI LL,  TI LL,  I NLL>;  
            }  
        }  
    }  ( *  End of  wor k * )  
 
    ( *  Cal l s :  s i gn * )  
    pr oc cf l ow el se_ew_snd {  ( *  Def i ned at  sweep. c: 996 * )  
        comput e <i s  c l c ,  FCAL,  2* CMLL,  ANDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        1- p2:  
            comput e <i s  c l c ,  SFDL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  AI LL>;  
                    comput e <i s  c l c ,  AI LL>;  
                    cal l  c f l ow s i gn;  
                    comput e <i s  c l c ,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD3,  2* TFDL,  3* ARD1,  3* MFDL 
                            ,  AFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
            comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
        1- ( 1- p2) :  
            comput e <i s  c l c ,  SFDL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  AI LL>;  
                    comput e <i s  c l c ,  AI LL>;  
                    cal l  c f l ow s i gn;  
                    comput e <i s  c l c ,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD1,  ARD3,  3* MFDL,  AFDL,  TFDL 
                            ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
            comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
        }  
    }  ( *  End of  el se_ew_snd * )  
 
    ( *  Cal l s :  s i gn * )  
    pr oc cf l ow el se_ns_snd {  ( *  Def i ned at  sweep. c: 1082 * )  
        comput e <i s  c l c ,  FCAL,  2* CMLL,  ANDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        1- p3:  
            comput e <i s  c l c ,  SFDL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  AI LL>;  
                    comput e <i s  c l c ,  AI LL>;  
                    cal l  c f l ow s i gn;  
                    comput e <i s  c l c ,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD3,  2* TFDL,  3* ARD1,  3* MFDL 
                            ,  AFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
            comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
        1- ( 1- p3) :  
            comput e <i s  c l c ,  SFDL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  nk)  {  
                    comput e <i s  c l c ,  CMLL,  AI LL>;  
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                    comput e <i s  c l c ,  AI LL>;  
                    cal l  c f l ow s i gn;  
                    comput e <i s  c l c ,  TI LL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD1,  ARD3,  3* MFDL,  AFDL,  TFDL 
                            ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
            comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
        }  
    }  ( *  End of  el se_ns_snd * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow l ast  {  ( *  Def i ned at  sweep. c: 1178 * )  
        comput e <i s  c l c ,  FCAL,  2* CMLL,  ANDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        1- p1:  
            comput e <i s  c l c ,  SFDL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD3,  2* TFDL,  3* ARD1,  3* MFDL 
                            ,  AFDL,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
            comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
        1- ( 1- p1) :  
            comput e <i s  c l c ,  SFDL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  mmi )  {  
                comput e <i s  c l c ,  CMLL,  AI LL,  TI LL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                    comput e <i s  c l c ,  CMLL,  SI LL>;  
                    l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                        comput e <i s  c l c ,  CMLL,  3* ARD1,  ARD3,  3* MFDL,  AFDL,  TFDL 
                            ,  I NLL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
            comput e <i s  c l c ,  2* ARD1,  AFDL,  TFDL>;  
        }  
    }  ( *  End of  l ast  * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow max {  ( *  Def i ned at  sweep. c: 1263 * )  
        comput e <i s  c l c ,  FCAL,  2* FARD,  CMDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <0>;  
        1- ( 0. 5) :  
            comput e <0>;  
        }  
        r et ur n;  
    }  ( *  End of  max * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow mi n {  ( *  Def i ned at  sweep. c: 1264 * )  
        comput e <i s  c l c ,  FCAL,  2* FARD,  CMDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <0>;  
        1- ( 0. 5) :  
            comput e <0>;  
        }  
        r et ur n;  
    }  ( *  End of  mi n * )  
 
    ( *  Cal l s :  * )  
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    pr oc cf l ow s i gn {  ( *  Def i ned at  sweep. c: 1265 * )  
        comput e <i s  c l c ,  FCAL,  2* FARD,  CMDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <i s  c l c ,  ABSD>;  
        1- ( 0. 5) :  
            comput e <i s  c l c ,  ABSD>;  
        }  
        r et ur n;  
    }  ( *  End of  s i gn * )  
 
 
}    

A.4  Subtask Object: fixed 

subt ask f i xed {  
 i nc l ude har dwar e;  
 i nc l ude gl obal sum;  
     
 l i nk {  
 gl obal sum:  
  Tx_sum = sum_f i xed ( ) ,  
  Tx_comp = comp_f i xup ( ) ;  
 }  
 
( *  
 *  CHI P3S 
 *  Appl i cat i on Char act er i sat i on Tool  
 *  Sour ce  :  f i xed. c 
 *  RUV Type:  c l c  
 * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow sum_f i xed {  ( *  Def i ned at  f i xed. c: 1 * )  
        comput e <i s  c l c ,  FCAL,  2* POL1,  AI LL,  TI LL>;  
    }  ( *  End of  sum_f i xed * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow comp_f i xup {  ( *  Def i ned at  f i xed. c: 8 * )  
        comput e <i s  c l c ,  FCAL,  AI LL,  TI LL>;  
    }  ( *  End of  comp_f i xup * )  
}    

A.5  Subtask Object: flux_err 

subt ask f l ux_er r  {  
 i nc l ude har dwar e;  
 i nc l ude gl obal max;  
     
 var  numer i c :  
  i t  = 25,  
  j t  = 17,  
  k t  = 50;  
         
 l i nk {  
 gl obal max:  
  Tx_comp = comp_f l ux_er r ( ) ,  
  Tx_max = max_f l ux_er r ( ) ;  
 }  
 
( *  
 *  CHI P3S 
 *  Appl i cat i on Char act er i sat i on Tool  
 *  Sour ce  :  f l ux_er r . c  
 *  RUV Type:  c l c  
 * )  
 
    ( *  Cal l s :  max * )  
    pr oc cf l ow comp_f l ux_er r  {  ( *  Def i ned at  f l ux_er r . c : 1 * )  
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        comput e <i s  c l c ,  FCAL,  POD1,  SFDL,  SI LL>;  
        l oop ( <i s  c l c ,  LFOR>,  kt )  {  
            comput e <i s  c l c ,  CMLL,  SI LL>;  
            l oop ( <i s  c l c ,  LFOR>,  j t )  {  
                comput e <i s  c l c ,  CMLL,  SI LL>;  
                l oop ( <i s  c l c ,  LFOR>,  i t )  {  
                    comput e <i s  c l c ,  CMLL,  ARD3,  CMDL>;  
                    case ( <i s  c l c ,  I FBR>)  {  
                    0. 5:  
                        comput e <i s  c l c ,  3* ARD3,  AFDL,  DFDL,  ABSD,  TFDL,  POD1>;  
                        cal l  c f l ow max;  
                        comput e <i s  c l c ,  POD1,  TFDL>;  
                    }  
                    comput e <i s  c l c ,  I NLL>;  
                }  
                comput e <i s  c l c ,  I NLL>;  
            }  
            comput e <i s  c l c ,  I NLL>;  
        }  
    }  ( *  End of  comp_f l ux_er r  * )  
 
    ( *  Cal l s :  max * )  
    pr oc cf l ow max_f l ux_er r  {  ( *  Def i ned at  f l ux_er r . c : 37 * )  
        comput e <i s  c l c ,  FCAL,  POD1>;  
        cal l  c f l ow max;  
        comput e <i s  c l c ,  POD1,  TFDL>;  
    }  ( *  End of  max_f l ux_er r  * )  
 
    ( *  Cal l s :  * )  
    pr oc cf l ow max {  ( *  Def i ned at  f l ux_er r . c : 43 * )  
        comput e <i s  c l c ,  FCAL,  2* FARD,  CMDL>;  
        case ( <i s  c l c ,  I FBR>)  {  
        0. 5:  
            comput e <0>;  
        1- ( 0. 5) :  
            comput e <0>;  
        }  
        r et ur n;  
    }  ( *  End of  max * )  
 
}    

A.6  Parallel Template Object: async 

( *  
 *  async. l a -  Sequent i al  ' par al l el '  t empl at e 
 * )  
 
par t mp async {  
 
 i nc l ude har dwar e;  
 
 var  comput e:  Tx;  
 
 opt i on {  
  nst age = 1,  
  seval   = 0 
 }  
 
 pr oc exec i ni t  {  
  s t ep cpu {  
   conf dev Tx;  
  }  
 }  
}  

A.7  Parallel Template Object: pipeline 

#i nc l ude <mpi def s. h> 
par t mp pi pel i ne {  
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 i nc l ude har dwar e;  
 i nc l ude Eval ;  
 
 var  comput e:  
  Tx_sweep_i ni t ,  
  Tx_oct ant ,  
  Tx_get _di r ect ,  
  Tx_pi pel i ne_i ni t ,  
  Tx_kk_l oop_i ni t ,  
  Tx_el se_ew_r cv,  
  Tx_comp_f ace,  
  Tx_el se_ns_r cv,  
  Tx_wor k,  
  Tx_el se_ew_snd,  
  Tx_el se_ns_snd,  
  Tx_l ast ;  
    
 var  numer i c :  
  mm = 6,  
  mmi  = 3,  
  i t  = 26,  
  j t  = 18,  
  k t  = 50,  
  mk = 10,  
  npe_i  = 2,  
  npe_j  = 3;  
 
 opt i on {  
  nst age = 1,  
  seval   = 0;  
 }  
  
 pr oc exec Get _i 2 
  var  phase;  
 {  
  var  numer i c :  
   i 2;  
  i f  (  phase <= 4)  i 2 = - 1;  
  el se i 2 = 1;  
  r et ur n i 2;  
 }  
  
 pr oc exec Get _j 2 
  var  phase;  
 {  
  var  numer i c :  
   j 2;  
  i f  (  phase == 1)  j 2 = - 1;  
  el se i f ( phase == 2)  j 2 = - 1;  
  el se i f ( phase == 3)  j 2 = 1;  
  el se i f ( phase == 4)  j 2 = 1;  
  el se i f ( phase == 5)  j 2 = - 1;  
  el se i f ( phase == 6)  j 2 = - 1;  
  el se i f ( phase == 7)  j 2 = 1;  
  el se j 2 = 1;  
  r et ur n j 2;  
 }  
  
 pr oc exec Get _myi d 
  var  x ,  y ;  
 {  
  var  numer i c :  
   myi d;  
  myi d = npe_i  *  ( y  -  1)  + x;  
  r et ur n myi d;  
 }  
  
 pr oc exec West  
  var  x ,  y ;  
 {  
  var  numer i c :  
   west ;  
  west   = 0;  
  i f  (  x  ! = 1 )  west   = Get _myi d(  x- 1,  y  ) ;  
  r et ur n west ;  
 }  
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 pr oc exec East  
  var  x ,  y ;  
 {  
  var  numer i c :  
   east ;  
  east   = 0;  
  i f  (  x  ! = npe_i  )  east   = Get _myi d(  x+1,  y  ) ;  
  r et ur n east ;  
 }  
 
 pr oc exec Sout h 
  var  x ,  y ;  
 {  
  var  numer i c :  
   sout h;  
  sout h = 0;  
  i f  (  y  ! = 1 )  sout h = Get _myi d(  x ,  y- 1) ;  
  r et ur n sout h;  
 }  
 
 pr oc exec Nor t h 
  var  x ,  y ;  
 {  
  var  numer i c :  
   nor t h;  
  nor t h = 0;  
  i f  (  y  ! = npe_j  )  nor t h = Get _myi d(  x ,  y+1 ) ;  
  r et ur n nor t h;  
 }  
 
 pr oc exec Get _ew_r cv 
  var  phase,  x ,  y ;  
 {  
  var  numer i c :  
   i 2,  ew_r cv;  
    
  i 2 =  Get _i 2(  phase ) ;  
  i f  ( i 2 > 0)  
   ew_r cv = West (  x ,  y  ) ;  
  el se 
   ew_r cv = East (  x ,  y  ) ;  
  r et ur n ew_r cv;  
 }  
   
 pr oc exec Get _ns_r cv 
  var  phase,  x ,  y ;  
 {  
  var  numer i c :  
   j 2,  ns_r cv;  
    
  j 2 =  Get _j 2(  phase ) ;  
  i f  ( j 2 > 0)  
   ns_r cv = Sout h(  x ,  y  ) ;  
  el se 
   ns_r cv = Nor t h(  x ,  y  ) ;  
  r et ur n ns_r cv;  
 }  
   
 pr oc exec Get _ew_snd 
  var  phase,  x ,  y ;  
 {  
  var  numer i c :  
   i 2,  ew_snd;  
    
  i 2 =  Get _i 2(  phase ) ;  
  i f  ( i 2 > 0)  
   ew_snd = East (  x ,  y  ) ;  
  el se 
   ew_snd = West (  x ,  y  ) ;  
  r et ur n ew_snd;  
 }  
   
 pr oc exec Get _ns_snd 
  var  phase,  x ,  y ;  
 {  
  var  numer i c :  
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   j 2,  ns_snd;  
    
  j 2 =  Get _j 2(  phase ) ;  
  i f  ( j 2 > 0)  
   ns_snd = Nor t h(  x ,  y  ) ;  
  el se 
   ns_snd = Sout h(  x ,  y  ) ;  
  r et ur n ns_snd;  
 }  
   
 
 pr oc exec i ni t  {  
  var  numer i c :  
   phase,  
   i ,  
   j ,  
   x ,  
   y ,  
   myi d,  
   mmo,  
   kb,  
   ni b,  
   nj b,  
   ew_r cv,  
   ns_r cv,  
   ew_snd,  
   ns_snd;  
    
  mmo = mm/ mmi ;  
  kb = (  k t  + mk -  1 )  /  mk;  
  ni b = ( j t +1) * ( mk+1) * ( mmi +1) ;  
  nj b = ( i t +1) * ( mk+1) * ( mmi +1) ;    
   
  s t ep cpu {  
   conf dev Tx_sweep_i ni t ;  
  }  
   
  f or (  phase = 1;  phase <= 8;  phase = phase + 1)  
  {  
   s t ep cpu {  
    conf dev Tx_oct ant ;  
   }  
    
   s t ep cpu {  
    conf dev Tx_get _di r ect ;  
   }  
    
   f or (  i  = 1;  i  <= mmo;  i  = i  + 1 )  
   {  
    s t ep cpu {  
     conf dev Tx_pi pel i ne_i ni t ;  
    }  
     
    f or (  j  = 1;  j  <= kb;  j  = j  + 1 )  
    {  
     s t ep cpu {  
      conf dev Tx_kk_l oop_i ni t ;  
     }  
      
     f or (  x  = 1;  x  <= npe_i ;  x  = x + 1 )  
     f or (  y  = 1;  y  <= npe_j ;  y  = y + 1 )  
     {  
      myi d = Get _myi d(  x ,  y  ) ;  
      ew_r cv = Get _ew_r cv(  phase,  x ,  y  ) ;  
      i f (  ew_r cv ! = 0 )  
      {  
       s t ep mpi r ecv {  

conf dev ew_r cv,  myi d,  
ni b,  MPI _Packed;  

       }  
      }  
      el se 
      {  
       s t ep cpu on myi d {  
        conf dev Tx_el se_ew_r cv;  
       }  
      }  
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     }  
      
     s t ep cpu {  
      conf dev Tx_comp_f ace;  
     }  
      
     f or (  x  = 1;  x  <= npe_i ;  x  = x + 1 )  
     f or (  y  = 1;  y  <= npe_j ;  y  = y + 1 )  
     {  
      myi d = Get _myi d(  x ,  y  ) ;  
      ns_r cv = Get _ns_r cv(  phase,  x ,  y  ) ;  
      i f (  ns_r cv ! = 0 )  
      {  
       s t ep mpi r ecv {  

conf dev ns_r cv,  myi d,  
nj b,  MPI _Packed;  

       }  
      }  
      el se 
      {  
       s t ep cpu on myi d {  
        conf dev Tx_el se_ns_r cv;  
       }  
      }  
       
     }  
      
     s t ep cpu {  
      conf dev Tx_wor k;  
     }  
      
     f or (  x  = 1;  x  <= npe_i ;  x  = x + 1 )  
     f or (  y  = 1;  y  <= npe_j ;  y  = y + 1 )  
     {  
      myi d = Get _myi d(  x ,  y  ) ;  
      ew_snd = Get _ew_snd(  phase,  x ,  y  ) ;  
      i f (  ew_snd ! = 0 )  
      {  
       s t ep mpi send {  

conf dev myi d,  ew_snd,  
ni b,  MPI _Packed;  

       }  
      }  
      el se 
      {  
       s t ep cpu on myi d {  
        conf dev Tx_el se_ew_snd;  
       }  
      }  
       
     }  
      
     f or (  x  = 1;  x  <= npe_i ;  x  = x + 1 )  
     f or (  y  = 1;  y  <= npe_j ;  y  = y + 1 )  
     {  
      myi d = Get _myi d(  x ,  y  ) ;  
      ns_snd = Get _ns_snd(  phase,  x ,  y  ) ;  
      i f (  ns_snd ! = 0 )  
      {  
       s t ep mpi send {  

conf dev myi d,  ns_snd,  
nj b,  MPI _Packed;  

       }  
      }  
      el se 
      {  
       s t ep cpu on myi d {  
        conf dev Tx_el se_ns_snd;  
       }  
      }  
       
     }  
      
    }  
     
    s t ep cpu {  
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     conf dev Tx_l ast ;  
    }  
   }  
  }  
 }  
}  

A.8  Parallel Template Object: globalsum 

 
#i ncl ude <mpi def s. h> 
par t mp gl obal sum {  
 
 i nc l ude har dwar e;  
 
 var  comput e:  
  Tx_sum,  
  Tx_comp;  
 
 opt i on {  
  nst age = 1,  
  seval   = 0 
 }  
 
 pr oc exec i ni t  {  
  var  numer i c :  i , j ;  
 
       
  f or (  i  = 2;  i  <= har dwar e. Npr oc;  i  = i  + 1)  
  {  
   s t ep mpi send {  
    conf dev i ,  1,  1,  MPI _Packed;  
   }  
    
   s t ep mpi r ecv {  
    conf dev i ,  1,  1,  MPI _Packed;  
   }  
   s t ep cpu on 1 {  
    conf dev Tx_sum;  
   }  
  }  
   
   
  f or (  i  = 2;  i  <= har dwar e. Npr oc;  i  = i  + 1)  
  {  
   s t ep mpi send {  
      conf dev 1, i , 1,  MPI _Packed;  
         }  
 
 
   s t ep mpi r ecv {  
      conf dev 1, i , 1,  MPI _Packed;  
         }  
 
  }  
   
  s t ep cpu {  
   conf dev Tx_comp;  
  }  
 }   
}  

A.9  Parallel Template Object: globalmax 

#i nc l ude <mpi def s. h> 
par t mp gl obal max {  
 
 i nc l ude har dwar e;  
 
 var  comput e:  
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  Tx_max,  
  Tx_comp;  
 
 opt i on {  
  nst age = 1,  
  seval   = 0;  
 }  
 
 pr oc exec i ni t  {  
  var  numer i c :  i ;  
   
 
  s t ep cpu {  
   conf dev Tx_comp;  
  }  
   
  f or (  i  = 2;  i  <= har dwar e. Npr oc;  i  = i  + 1)  
  {  
   s t ep mpi send {  
    conf dev i ,  1,  1,  MPI _Packed;  
   }  
    
   s t ep mpi r ecv {  
    conf dev i ,  1,  1,  MPI _Packed;  
   }  
   s t ep cpu on 1 {  
    conf dev Tx_max;  
   }  
  }  
   
   
  f or (  i  = 2;  i  <= har dwar e. Npr oc;  i  = i  + 1)  
  {  
   s t ep mpi send {  
      conf dev 1, i , 1,  MPI _Packed;  
         }  
 
 
   s t ep mpi r ecv {  
      conf dev 1, i , 1,  MPI _Packed;  
         }  
 
  }  
 }  
}  
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AAppppeennddiixx  BB  

AARRMMSS  EEXXPPEERRIIMMEENNTT  RREESSUULLTTSS    

 

The ARMS experiment results are included in this section. There are totally 149 

application execution requests sent to the agent system, 144 of them are executed 

and 5 of them are failed for resource discovery. 

The user view of the results is shown in Section B.1, which includes all the 

applications requests (including application ID, application name, and required 

time) and their execution details (including discovery agents, discovery time, 

waiting time, execution time, and the number of processors used) during the 

experiment. 

There are 8 agents in the experimental system. The agent views of the results are 

shown in Section B.2 – B.9 respectively. In each agent view, there is an 

application browser and a correspondent Gantt chart. Note that each agent 

identifies an incoming application using a new unique ID, which may be not same 

as those shown in the user view. And also note that the Gantt chart only gives a 

graphical view of up to latest 16 applications that are scheduled on an agent. 
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B.1  Experiment Results @ Users 

ID Application Name RT Discovery Agents DT WT ET #P 

52420 /dcs/vlsi/junwei/a4/arms/memsort 30 origin-->found 0 0 10 8 
52422 /dcs/vlsi/junwei/a4/arms/cpi 3 tizer-->gem-->found 5 0 2 12 
52425 /dcs/vlsi/junwei/a4/arms/improc 138 sprite-->found 0 0 40 8 
52426 /dcs/vlsi/junwei/a4/arms/fft 24 rubbish-->tizer-->found 3 0 20 16 
52430 /dcs/vlsi/junwei/a4/arms/jacobi 47 coke-->found 0 0 19 15 
52432 /dcs/vlsi/junwei/a4/arms/memsort 27 tizer-->gem-->found 4 0 10 8 
52433 /dcs/vlsi/junwei/a4/arms/cpi 120 origin-->found 0 0 2 12 
52436 /dcs/vlsi/junwei/a4/arms/sweep3d 94 burroughs-->found 0 0 14 15 
52439 /dcs/vlsi/junwei/a4/arms/fft 98 burroughs-->found 0 11 36 16 
52441 /dcs/vlsi/junwei/a4/arms/jacobi 38 coke-->found 0 8 19 15 
52445 /dcs/vlsi/junwei/a4/arms/fft 40 tizer-->found 0 4 20 16 
52448 /dcs/vlsi/junwei/a4/arms/memsort 45 budweiser-->found 0 0 24 8 
52451 /dcs/vlsi/junwei/a4/arms/jacobi 56 origin-->found 0 0 6 15 
52455 /dcs/vlsi/junwei/a4/arms/cpi 2 tizer-->gem-->failed 11 - - - 
52458 /dcs/vlsi/junwei/a4/arms/sweep3d 120 tizer-->found 0 11 8 15 
52459 /dcs/vlsi/junwei/a4/arms/sweep3d 55 rubbish-->found 0 0 16 15 
52461 /dcs/vlsi/junwei/a4/arms/closure 26 rubbish-->found 0 14 8 15 
52463 /dcs/vlsi/junwei/a4/arms/jacobi 76 burroughs-->found 0 23 21 15 
52467 /dcs/vlsi/junwei/a4/arms/improc 59 burroughs-->tizer--

>found 
6 16 40 8 

52469 /dcs/vlsi/junwei/a4/arms/jacobi 116 tizer-->found 0 8 12 15 
52473 /dcs/vlsi/junwei/a4/arms/improc 160 burroughs-->found 0 34 72 8 
52477 /dcs/vlsi/junwei/a4/arms/cpi 55 sprite-->found 0 0 4 12 
52480 /dcs/vlsi/junwei/a4/arms/cpi 113 gem-->found 0 0 2 12 
52484 /dcs/vlsi/junwei/a4/arms/jacobi 123 origin-->found 0 0 6 15 
52486 /dcs/vlsi/junwei/a4/arms/closure   9 sprite-->found 0 0 4 15 
52490 /dcs/vlsi/junwei/a4/arms/sweep3d 172 coke-->found 0 0 12 15 
52491 /dcs/vlsi/junwei/a4/arms/fft 38 burroughs-->tizer--

>found 
6 0 36 8 

52496 /dcs/vlsi/junwei/a4/arms/memsort 38 rubbish-->tizer-->gem--
>found 

10 0 10 8 

52497 /dcs/vlsi/junwei/a4/arms/improc 75 coke-->found 0 5 64 8 
52499 /dcs/vlsi/junwei/a4/arms/sweep3d 12 sprite-->found 0 0 8 15 
52500 /dcs/vlsi/junwei/a4/arms/jacobi 40 origin-->found 0 0 6 15 
52503 /dcs/vlsi/junwei/a4/arms/improc 102 gem-->found 0 0 20 8 
52505 /dcs/vlsi/junwei/a4/arms/cpi 46 sprite-->found 0 2 4 12 
52506 /dcs/vlsi/junwei/a4/arms/jacobi 14 sprite-->gem-->sprite--

>found 
13 0 12 15 

52510 /dcs/vlsi/junwei/a4/arms/closure 7 gem-->sprite-->found 4 0 4 15 
52514 /dcs/vlsi/junwei/a4/arms/closure 31 rubbish-->found 0 0 8 15 
52517 /dcs/vlsi/junwei/a4/arms/closure 15 rubbish-->found 0 5 8 15 
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52521 /dcs/vlsi/junwei/a4/arms/memsort 52 budweiser-->found 0 0 24 8 
52525 /dcs/vlsi/junwei/a4/arms/jacobi 48 budweiser-->found 0 20 14 15 
52529 /dcs/vlsi/junwei/a4/arms/sweep3d 77 budweiser-->found 0 30 9 15 
52532 /dcs/vlsi/junwei/a4/arms/improc 130 sprite-->found 0 0 40 8 
52533 /dcs/vlsi/junwei/a4/arms/sweep3d 149 burroughs-->found 0 0 54 8 
52535 /dcs/vlsi/junwei/a4/arms/improc 74 rubbish-->tizer-->found 2 0 40 8 
52536 /dcs/vlsi/junwei/a4/arms/fft 30 budweiser-->sprite--

>gem -->found 
8 0 10 16 

52538 /dcs/vlsi/junwei/a4/arms/sweep3d 56 rubbish-->found 0 0 16 15 
52542 /dcs/vlsi/junwei/a4/arms/cpi 39 tizer-->found 0 0 14 8 
52545 /dcs/vlsi/junwei/a4/arms/cpi 83 burroughs-->found 0 42 7 12 
52546 /dcs/vlsi/junwei/a4/arms/fft 65 rubbish-->found 0 8 40 16 
52550 /dcs/vlsi/junwei/a4/arms/improc 150 burroughs-->found 0 44 72 8 
52551 /dcs/vlsi/junwei/a4/arms/closure 31 burroughs-->tizer--

>found 
9 0 12 7 

52554 /dcs/vlsi/junwei/a4/arms/improc 173 budweiser-->found 0 14 48 8 
52558 /dcs/vlsi/junwei/a4/arms/cpi 8 gem-->found 0 0 2 12 
52561 /dcs/vlsi/junwei/a4/arms/improc 110 gem-->found 0 0 20 8 
52563 /dcs/vlsi/junwei/a4/arms/jacobi 131 coke-->found 0 3 19 15 
52565 /dcs/vlsi/junwei/a4/arms/closure 11 gem-->found 0 0 6 7 
52567 /dcs/vlsi/junwei/a4/arms/sweep3d 166 sprite-->found 0 5 8 15 
52571 /dcs/vlsi/junwei/a4/arms/memsort 16 gem-->found 0 0 10 8 
52572 /dcs/vlsi/junwei/a4/arms/memsort 57 rubbish-->tizer-->found 2 0 20 8 
52576 /dcs/vlsi/junwei/a4/arms/fft 40 tizer-->found 0 1 36 8 
52578 /dcs/vlsi/junwei/a4/arms/fft 46 coke-->found 0 7 32 16 
52582 /dcs/vlsi/junwei/a4/arms/improc 87 gem-->found 0 0 20 8 
52586 /dcs/vlsi/junwei/a4/arms/memsort 37 tizer-->found 0 8 20 8 
52589 /dcs/vlsi/junwei/a4/arms/fft 43 rubbish-->tizer-->found 5 20 20 16 
52593 /dcs/vlsi/junwei/a4/arms/cpi 55 origin-->found 0 0 2 12 
52596 /dcs/vlsi/junwei/a4/arms/improc 94 rubbish-->found 0 0 80 8 
52598 /dcs/vlsi/junwei/a4/arms/improc 98 sprite-->found 0 0 40 8 
52599 /dcs/vlsi/junwei/a4/arms/sweep3d 112 budweiser-->found 0 17 9 15 
52602 /dcs/vlsi/junwei/a4/arms/closure 4 tizer-->gem-->found 5 0 2 15 
52606 /dcs/vlsi/junwei/a4/arms/memsort 18 budweiser-->sprite--

>gem-->found 
9 0 10 8 

52609 /dcs/vlsi/junwei/a4/arms/memsort 45 budweiser-->found 0 16 24 8 
52613 /dcs/vlsi/junwei/a4/arms/closure 2 origin-->gem-->failed 8 - - - 
52617 /dcs/vlsi/junwei/a4/arms/jacobi 68 gem-->found 0 8 6 15 
52621 /dcs/vlsi/junwei/a4/arms/improc 167 tizer-->found 0 13 40 8 
52624 /dcs/vlsi/junwei/a4/arms/improc 89 gem-->found 0 7 20 8 
52628 /dcs/vlsi/junwei/a4/arms/memsort 35 budweiser-->found 0 0 24 8 
52633 /dcs/vlsi/junwei/a4/arms/sweep3d 110 gem-->found 0 0 15 8 
52637 /dcs/vlsi/junwei/a4/arms/improc 91 rubbish-->found 0 0 80 8 
52641 /dcs/vlsi/junwei/a4/arms/sweep3d 117 tizer-->found 0 0 30 8 
52645 /dcs/vlsi/junwei/a4/arms/memsort 53 sprite-->found 0 0 20 8 
52648 /dcs/vlsi/junwei/a4/arms/improc 91 origin-->found 0 0 20 8 
52649 /dcs/vlsi/junwei/a4/arms/memsort 23 coke-->sprite-->found 5 0 20 8 
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52652 /dcs/vlsi/junwei/a4/arms/memsort 17 burroughs-->tizer--
>gem-->found 

17 0 10 8 

52654 /dcs/vlsi/junwei/a4/arms/memsort 26 rubbish-->tizer-->gem--
>found 

9 0 10 8 

52658 /dcs/vlsi/junwei/a4/arms/sweep3d 121 origin-->found 0 0 4 15 
52660 /dcs/vlsi/junwei/a4/arms/sweep3d 77 burroughs-->found 0 6 14 15 
52661 /dcs/vlsi/junwei/a4/arms/fft 80 coke-->found 0 0 32 16 
52664 /dcs/vlsi/junwei/a4/arms/fft 86 origin-->found 0 8 10 16 
52666 /dcs/vlsi/junwei/a4/arms/closure 13 burroughs-->tizer--

>found 
6 2 4 15 

52671 /dcs/vlsi/junwei/a4/arms/improc 91 sprite-->found 0 0 40 8 
52673 /dcs/vlsi/junwei/a4/arms/closure 25 rubbish-->tizer-->found 2 3 4 15 
52677 /dcs/vlsi/junwei/a4/arms/closure 3 sprite-->gem-->failed 12 - - - 
52678 /dcs/vlsi/junwei/a4/arms/closure 8 sprite-->budweiser--

>found 
16 0 4 15 

52680 /dcs/vlsi/junwei/a4/arms/fft 91 gem-->found 0 0 10 16 
52684 /dcs/vlsi/junwei/a4/arms/improc 190 tizer-->found 0 0 40 8 
52688 /dcs/vlsi/junwei/a4/arms/fft 30 origin-->found 0 0 10 16 
52691 /dcs/vlsi/junwei/a4/arms/jacobi 37 coke-->found 0 2 19 15 
52694 /dcs/vlsi/junwei/a4/arms/sweep3d 58 coke-->found 0 18 12 15 
52695 /dcs/vlsi/junwei/a4/arms/cpi 10 coke-->budweiser--

>found 
13 0 4 12 

52696 /dcs/vlsi/junwei/a4/arms/improc 174 tizer-->found 0 0 40 8 
52697 /dcs/vlsi/junwei/a4/arms/closure 4 rubbish-->tizer-->gem--

>found 
9 0 2 15 

52702 /dcs/vlsi/junwei/a4/arms/improc 140 origin-->found 0 0 20 8 
52703 /dcs/vlsi/junwei/a4/arms/fft 69 sprite--> found 0 8 20 16 
52704 /dcs/vlsi/junwei/a4/arms/memsort 10 tizer-->gem-->failed 15 - - - 
52709 /dcs/vlsi/junwei/a4/arms/jacobi 46 origin-->found 0 0 15 8 
52711 /dcs/vlsi/junwei/a4/arms/memsort 19 budweiser-->sprite--

>gem-->found 
11 0 10 8 

52713 /dcs/vlsi/junwei/a4/arms/improc 167 sprite--> found 0 18 40 8 
52715 /dcs/vlsi/junwei/a4/arms/memsort 57 budweiser-->found 0 0 24 8 
52716 /dcs/vlsi/junwei/a4/arms/closure 27 gem-->found 0 0 2 15 
52718 /dcs/vlsi/junwei/a4/arms/sweep3d 153 origin-->found 0 6 4 15 
52724 /dcs/vlsi/junwei/a4/arms/closure 11 coke-->found 0 0 6 15 
52729 /dcs/vlsi/junwei/a4/arms/closure 25 origin-->found 0 0 2 15 
52731 /dcs/vlsi/junwei/a4/arms/cpi 2 burroughs-->tizer--

>gem-->failed 
24 - - - 

52732 /dcs/vlsi/junwei/a4/arms/cpi 47 tizer-->found 0 4 4 12 
52737 /dcs/vlsi/junwei/a4/arms/improc 191 burroughs-->found 0 0 72 8 
52738 /dcs/vlsi/junwei/a4/arms/cpi 88 gem-->found 0 0 2 12 
52740 /dcs/vlsi/junwei/a4/arms/cpi 83 budweiser-->found 0 0 4 12 
52745 /dcs/vlsi/junwei/a4/arms/cpi 31 coke-->found 0 0 6 12 
52747 /dcs/vlsi/junwei/a4/arms/memsort 21 coke-->sprite-->gem--

>found 
14 0 10 8 

52749 /dcs/vlsi/junwei/a4/arms/closure 5 budweiser-->found 0 0 4 15 
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52751 /dcs/vlsi/junwei/a4/arms/cpi 98 sprite--> found 0 0 14 8 
52754 /dcs/vlsi/junwei/a4/arms/sweep3d 79 coke-->found 0 0 12 15 
52756 /dcs/vlsi/junwei/a4/arms/closure 25 budweiser-->found 0 0 4 15 
52759 /dcs/vlsi/junwei/a4/arms/sweep3d 62 tizer-->found 0 0 8 15 
52763 /dcs/vlsi/junwei/a4/arms/closure 34 rubbish-->found 0 0 8 15 
52765 /dcs/vlsi/junwei/a4/arms/jacobi 34 coke-->found 0 1 19 15 
52769 /dcs/vlsi/junwei/a4/arms/fft 58 coke-->found 0 16 32 16 
52770 /dcs/vlsi/junwei/a4/arms/improc 45 sprite--> found 0 0 40 8 
52774 /dcs/vlsi/junwei/a4/arms/cpi 80 sprite--> found 0 0 14 8 
52775 /dcs/vlsi/junwei/a4/arms/memsort 35 origin-->found 0 0 10 8 
52777 /dcs/vlsi/junwei/a4/arms/jacobi 31 rubbish-->found 0 0 24 15 
52781 /dcs/vlsi/junwei/a4/arms/fft 79 budweiser-->found 0 0 24 16 
52782 /dcs/vlsi/junwei/a4/arms/jacobi 153 tizer-->found 0 0 12 15 
52787 /dcs/vlsi/junwei/a4/arms/memsort 67 burroughs-->found 0 0 36 8 
52790 /dcs/vlsi/junwei/a4/arms/sweep3d 139 budweiser-->found 0 15 9 15 
52792 /dcs/vlsi/junwei/a4/arms/closure 15 tizer-->found 0 2 4 15 
52795 /dcs/vlsi/junwei/a4/arms/memsort 42 burroughs-->tizer--

>found 
5 0 20 8 

52798 /dcs/vlsi/junwei/a4/arms/memsort 50 sprite--> found 0 0 20 8 
52800 /dcs/vlsi/junwei/a4/arms/closure 30 gem-->found 0 0 2 15 
52802 /dcs/vlsi/junwei/a4/arms/closure 3 tizer-->gem-->found 7 0 2 15 
52807 /dcs/vlsi/junwei/a4/arms/cpi 93 sprite--> found 0 11 4 12 
52809 /dcs/vlsi/junwei/a4/arms/closure 13 burroughs-->tizer--

>found 
5 6 4 15 

52811 /dcs/vlsi/junwei/a4/arms/closure 13 budweiser-->found 0 3 4 15 
52814 /dcs/vlsi/junwei/a4/arms/sweep3d 152 rubbish-->found 0 0 16 15 
52816 /dcs/vlsi/junwei/a4/arms/jacobi 7 coke-->sprite-->gem--

>found 
16 0 6 15 

52820 /dcs/vlsi/junwei/a4/arms/memsort 45 tizer-->found 0 4 20 8 
52822 /dcs/vlsi/junwei/a4/arms/closure 9 burroughs-->found 0 1 7 15 
52825 /dcs/vlsi/junwei/a4/arms/sweep3d 153 burroughs-->found 0 5 14 15 
52828 /dcs/vlsi/junwei/a4/arms/improc 55 rubbish-->tizer-->found 3 0 40 8 
52831 /dcs/vlsi/junwei/a4/arms/cpi 121 coke-->found 0 0 6 12 

RT: Required Time 
DT: Discovery Time 
WT: Waiting Time 
ET: Execution Time 
#P: The Number of Processors Used 
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B.2  Experiment Results @ gem 
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B.3  Experiment Results @ origin 
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B.4  Experiment Results @ sprite 
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B.5  Experiment Results @ tizer 
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B.6  Experiment Results @ coke 
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B.7  Experiment Results @ budweiser 
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B.8  Experiment Results @ burroughs 
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B.9  Experiment Results @ rubbish 

 
 

 


