

AAGGEENNTT--BBAASSEEDD RREESSOOUURRCCEE

MMAANNAAGGEEMMEENNTT FFOORR GGRRIIDD CCOOMMPPUUTTIINNGG

Junwei Cao

A Thesis Submitted to the University of Warwick for
the Degree of Doctor of Philosophy

Department of Computer Science
University of Warwick

October 2001

- I -

CCOONNTTEENNTTSS

Contents..I

List of Figures..VI

List of Tables .. VIII

Acknowledgements.. IX

Declaration.. X

Glossary ...XI

Abstract ... XIV

Chapter 1 Introduction.. 1

1.1 Grid Computing ...2

1.2 Software Agents...5

1.3 Thesis Contributions...7

1.4 Thesis Outline..8

CONTENTS

- II -

Chapter 2 Resource Management for Grid Computing..................... 11

2.1 Performance Evaluation ...11

2.2 PACE Methodology ...14

2.2.1 Layered Framework...14

2.2.2 Object Definition...16

2.2.3 Model Creation..17

2.2.4 Mapping Relations...18

2.2.5 Evaluation Engine..18

2.2.6 PACE Toolkit ..19

2.3 Grid Resource Management ...21

2.3.1 Data Management..25

2.3.2 Communication Protocols..27

2.3.3 Resource Advertisement and Discovery...28

2.3.4 QoS Support ..29

2.3.5 Resource Scheduling ...30

2.3.6 Resource Allocation and Monitoring..31

2.4 Summary..32

Chapter 3 Service Discovery in Multi-Agent Systems...................... 34

3.1 Multi-Agent Systems..34

3.1.1 Knowledge Representation ..37

3.1.2 Agent Communication...38

3.1.3 Agent Negotiation..38

3.1.4 Agent Coordination ...39

3.2 Service Advertisement and Discovery ..41

3.2.1 Service Registry...44

3.2.2 Service Advertisement ...45

3.2.3 Service Discovery..46

3.2.4 Interoperability ..47

3.3 Use of Agent Technologies in Grid Development48

3.4 Summary..49

Chapter 4 Sweep3D:

CONTENTS

- III -

Performance Evaluation Using the PACE Toolkit 51

4.1 Overview of Sweep3D..51

4.2 Sweep3D Models...53

4.2.1 Model Description...53

4.2.2 Application Model Creation...55

4.2.3 Resource Model Creation...58

4.2.4 Mapping Relations...61

4.3 Validation Experiments..62

4.3.1 Validation Results on SGI Origin2000...62

4.3.2 Validation Results on Sun Clusters..64

4.4 PACE as a Local Resource Manager ..66

Chapter 5 A4:

Agile Architecture and Autonomous Agents.................................... 68

5.1 Agent Hierarchy ...69

5.2 Agent Structure..71

5.3 Service Advertisement..72

5.3.1 Agent Capability Tables ..72

5.3.2 ACT Maintenance..74

5.4 Service Discovery ..75

5.4.1 ACT Lookup ...76

5.4.2 Formal Approach...78

5.5 Performance Metrics ..81

5.5.1 Discovery Speed..82

5.5.2 System Efficiency..82

5.5.3 Load Balancing..83

5.5.4 Success Rate..83

5.6 A4 Simulator..84

5.6.1 Inputs/Outputs...84

5.6.2 Simulator Kernel ...86

5.6.3 User Interfaces...89

5.6.4 Main Features..92

5.7 A Case Study..92

CONTENTS

- IV -

5.7.1 Performance Model ...93

5.7.2 Simulation Results...93

5.8 A4 as a Global Framework ...96

Chapter 6 ARMS:

Agent-based Resource Management System for Grid Computing 98

6.1 ARMS in Context...98

6.2 ARMS Architecture..100

6.2.1 Grid Users...100

6.2.2 Grid Resources..101

6.2.3 ARMS Agents...102

6.2.4 ARMS Performance Monitor and Advisor103

6.3 ARMS Agent Structure..103

6.3.1 ACT Manager..105

6.3.2 PACE Evaluation Engine...107

6.3.3 Scheduler...108

6.3.4 Matchmaker...110

6.4 ARMS Implementation...111

6.4.1 Agent Kernel ...111

6.4.2 Agent Browser...112

6.5 A Case Study..113

6.5.1 System Design...113

6.5.2 Automatic Users..115

6.5.3 Experiment Results I..116

6.5.4 Experiment Results II ..117

Chapter 7 PMA:

Performance Monitor and Advisor for ARMS................................ 123

7.1 PMA Structure...123

7.2 Performance Optimisation Strategies..125

7.2.1 Use of ACTs..125

7.2.2 Limited Service Lifetime...126

7.2.3 Limited Scope..127

CONTENTS

- V -

7.2.4 Agent Mobility and Service Distribution..127

7.3 Performance Steering Policies..128

7.4 A Case Study..130

7.4.1 Example Model ...130

7.4.2 Simulation Results...132

Chapter 8 Conclusions.. 136

8.1 Thesis Summary...136

8.2 Future Work...139

8.2.1 Performance Evaluation...139

8.2.2 Multi-processor Scheduling ...140

8.2.3 Agent-based Resource Management ..141

8.2.4 Enhanced Implementation..142

Bibliography... 143

Appendix A PSL Code for Sweep3D.. 156

Appendix B ARMS Experiment Results... 178

- VI -

LLIISSTT OOFF FFIIGGUURREESS

Figure 2.1 The PACE Layered Framework...15

Figure 2.2 Software Object Structure...16

Figure 2.3 Hardware Object Structure..17

Figure 2.4 Model Creation Process...17

Figure 2.5 Mapping Relations..18

Figure 2.6 Evaluation Process of PACE Models...19

Figure 2.7 The PACE Toolkit...20

Figure 2.8 Grid Resources..25

Figure 3.1 Research Topics in Multi-Agent Systems..37

Figure 3.2 Knowledge Representation..38

Figure 3.3 Coordination Models: Control-driven vs. Data-driven40

Figure 4.1 Data Decomposition of the Sweep3D Cube.......................................52

Figure 4.2 Sweep3D Object Hierarchy (HLFD Diagram)54

Figure 4.3 Sweep3D Application Object ..55

Figure 4.4 SGI Origin2000 Hardware Object ...58

Figure 4.5 Creating Hardware Communication Models Using Mathematica.......60

Figure 4.6 Mapping between Sweep3D Model Objects and C Source Code........61

Figure 4.7 PACE Model Validation on an SGI Origin200064

Figure 4.8 PACE Model Validation on a Cluster of SunUltra1 Workstations......65

LIST OF FIGURES

- VII -

Figure 5.1 Agent Hierarchy..69

Figure 5.2 Layered Agent Structure..71

Figure 5.3 An Example System..78

Figure 5.4 A4 Simulator...84

Figure 5.5 Simulation Process of A4 Simulator ..87

Figure 5.6 A4 Simulator GUIs for Modelling...90

Figure 5.7 A4 Simulator GUIs for Simulation ..91

Figure 5.8 Example Model: Agent Hierarchy ...93

Figure 5.9 Simulation Results ..94

Figure 6.1 ARMS in Context..99

Figure 6.2 ARMS Architecture...100

Figure 6.3 ARMS Agent Structure...104

Figure 6.4 Service Information in ARMS...105

Figure 6.5 ARMS Agent Browsers...113

Figure 6.6 ARMS Case Study: Agent Hierarchy...114

Figure 6.7 ARMS Case Study: Applications...115

Figure 6.8 ARMS Experiment Results: Application Execution.........................119

Figure 6.9 ARMS Experiment Results: Service Discovery119

Figure 7.1 PMA vs. ARMS..124

Figure 7.2 Choice of Optimisation Strategies ...133

Figure 7.3 Choice of G_ACT Update Frequency..134

- VIII -

LLIISSTT OOFF TTAABBLLEESS

Table 2.1 Overview of Performance Evaluation Tools..13

Table 2.2 Overview of Grid Projects and their Resource Management24

Table 3.1 Overview of Multi-Agent Systems: Applications and Tools................36

Table 3.2 Overview of Distributed System Infrastructures with Service Discovery

Capabilities..44

Table 4.1 PACE Model Validation on an SGI Origin2000..................................63

Table 4.2 PACE Model Validation on a Cluster of SunUltra1 Workstations.......65

Table 5.1 Service Advertisement and ACT Maintenance....................................75

Table 5.2 Formal Representation..79

Table 6.1 ARMS Case Study: Resources..114

Table 6.2 ARMS Case Study: Requirements..116

Table 6.3 ARMS Case Study: Workloads...116

Table 6.4 ARMS Experiment Results: Application Execution..........................118

Table 6.5 ARMS Experiment Results: Service Discovery118

Table 7.1 Example Model: Agents...130

Table 7.2 Example Model: Services...131

Table 7.3 Example Model: Requests..131

Table 7.4 Example Model: Strategies...131

Table 7.5 Simulation Results..132

- IX -

AACCKKNNOOWWLLEEDDGGEEMMEENNTTSS

I would like to thank my supervisor, Prof. Graham R. Nudd, for offering me a

great environment, plenty of opportunities, and freedom to be creative. I would

like to thank my advisors, Dr. Darren J. Kerbyson and Dr. Stephen A. Jarvis, for

giving me many detailed instructions on the ideas presented in this thesis.

I would also like to thank the members of High Performance Systems Group, for

their help: Efstathios Papaefstathiou, John Harper, Stewart Perry, Daniel Spooner,

James Turner, Ahmed Alkindi, Sirma Cekirdek, Dechao Wang, and Jiang Chen.

I would like to give special thanks to Prof. Malcolm McCrae and Dr. Li Xu.

Without their efforts, I would not be able to get the opportunity to study at the

University of Warwick.

Finally, I would like to thank my wife, Ms. Yu Han. Her love can always give

inspirations for me to make progress on my work.

- X -

DDEECCLLAARRAATTIIOONN

This thesis is presented in accordance with the regulations for the degree of

Doctor of Philosophy. It has been composed by myself and has not been

submitted in any previous application for any degree. The work described in this

thesis has been undertaken by myself except where otherwise stated.

The various aspects concerning the PACE methodology have been published in

[Cao2000]. Parts of the content in Chapters 4 – 7, concerning Sweep3D, A4,

ARMS, and PMA, have been published in [Cao1999d], [Cao2000b], [Cao2001b]

and [Cao2001] respectively. The detail introductions to the A4 methodology and

the ARMS implementation have been accepted for journal publications in

[Cao2001c] and [Cao2001d].

- XI -

GGLLOOSSSSAARRYY

A4 Agile Architecture and Autonomous Agents

AARIA Autonomous Agents at Rock Island Arsenal

ACL Agent Communication Language

ACT Agent Capability Table

ADEPT Advanced Decision Environment for Process Tasks

API Application Programming Interface

AppLeS Application-Level Scheduler

ARMS Agent-based Resource Management System (for Grid Computing)

ASCI Accelerated Strategic Computing Initiative

AT (PACE) Application Tools

C_ACT Cached Agent Capability Table

CIMS Computer Integrated Manufacturing System

CORBA Common Object Request Broker Architecture

CORBA-LC CORBA Lightweight Components

DHCP Dynamic Host Configuration Protocol

DPM Dynamic Performance Measurement

DPSS Distributed-Parallel Storage System

EE (PACE) Evaluation Engine

FTP File Transfer Protocol

GLOSSARY

- XII -

G_ACT Global Agent Capability Table

GA Genetic Algorithm

GRACE Grid Architecture for Computational Economy

GUI Graphical User Interface

GUSTO Globus Ubiquitous Supercomputing Testbed

HAVi Home Audio-Video interoperability

HLFD Hierarchical Layered Framework Diagram

HMCL Hardware Model Configuration Language

HTC High Throughput Computing

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

JATLite Java Agent Template, Lite

KQML Knowledge Query and Manipulation Language

L_ACT Local Agent Capability Table

LDAP Lightweight Directory Access Protocol

MACIP CIMS Application Integration Platform

MAS Multi-Agent Systems

MDS Metacomputing Directory Service

MPI Message Passing Interface

OAS Operational Administration System

OMG Object Management Group

PACE Performance Analysis and Characterisation Environment

PMA Performance Monitor and Advisor

POEMS Performance Oriented End-to-end Modelling System

PSE Problem Solving Environment

PSL Performance Specification Language

PVM Parallel Virtual Machine

QoS Quality of Service

RMI Remote Method Invocation

RMS Resource Management System

RSL Resource Specification Language

RT (PACE) Resource Tools

SDD Self Device Describing

SDP Service Discovery Protocol

GLOSSARY

- XIII -

SLA Service Level Agreement

SLP Service Location Protocol

SMP Symmetric Multiprocessor

SNMP Simple Network Management Protocol

SPE Software Performance Engineering

SSDP Simple Service Discovery Protocol

SUIF Stanford University Intermediate Format

T_ACT This Agent Capability Table

TCP/IP Transmission Control Protocol/Internet Protocol

UPnP Universal Plug and Play

XML Extensible Makeup Language

- XIV -

AABBSSTTRRAACCTT

A computational grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end

computational capability. An ideal grid environment should provide access to the

available resources in a seamless manner. Resource management is an important

infrastructural component of a grid computing environment. The overall aim of

resource management is to efficiently schedule applications that need to utilise the

available resources in the grid environment. Such goals within the high

performance community will rely on accurate performance prediction capabilities.

An existing toolkit, known as PACE (Performance Analysis and Characterisation

Environment), is used to provide quantitative data concerning the performance of

sophisticated applications running on high performance resources. In this thesis an

ASCI (Accelerated Strategic Computing Initiative) kernel application, Sweep3D,

is used to illustrate the PACE performance prediction capabilities. The validation

results show that a reasonable accuracy can be obtained, cross-platform

comparisons can be easily undertaken, and the process benefits from a rapid

evaluation time. While extremely well-suited for managing a locally distributed

multi-computer, the PACE functions do not map well onto a wide-area

environment, where heterogeneity, multiple administrative domains, and

ABSTRACT

- XV -

communication irregularities dramatically complicate the job of resource

management. Scalability and adaptability are two key challenges that must be

addressed.

In this thesis, an A4 (Agile Architecture and Autonomous Agents) methodology is

introduced for the development of large-scale distributed software systems with

highly dynamic behaviours. An agent is considered to be both a service provider

and a service requestor. Agents are organised into a hierarchy with service

advertisement and discovery capabilities. There are four main performance

metrics for an A4 system: service discovery speed, agent system efficiency,

workload balancing, and discovery success rate.

Coupling the A4 methodology with PACE functions, results in an Agent-based

Resource Management System (ARMS), which is implemented for grid

computing. The PACE functions supply accurate performance information (e.g.

execution time) as input to a local resource scheduler on the fly. At a meta-level,

agents advertise their service information and cooperate with each other to

discover available resources for grid-enabled applications. A Performance

Monitor and Advisor (PMA) is also developed in ARMS to optimise the

performance of the agent behaviours.

The PMA is capable of performance modelling and simulation about the agents in

ARMS and can be used to improve overall system performance. The PMA can

monitor agent behaviours in ARMS and reconfigure them with optimised

strategies, which include the use of ACTs (Agent Capability Tables), limited

service lifetime, limited scope for service advertisement and discovery, agent

mobility and service distribution, etc.

The main contribution of this work is that it provides a methodology and

prototype implementation of a grid Resource Management System (RMS). The

system includes a number of original features that cannot be found in existing

research solutions.

- 1 -

CChhaapptteerr 11

IINNTTRROODDUUCCTTIIOONN

In fifty years, the raw speed of individual computers has increased by around one

million times. However, they are still too slow for more and more scientific

problems. For example, in some physics applications, data is produced by the

fastest contemporary supercomputer, and it is clear that the analysis of this data

would need much more computing power.

One solution to the computing power challenge leads to the research on Cluster

Computing [Buyya1999]. Multiple individual computers can be linked into each

other and work together to provide high computing capabilities. For example, the

ASCI white system at Lawrence Livermore National Laboratory in the USA

currently is the No. 1 supercomputer in the TOP500 list. This consists of SMP

(Symmetric Multi-Processor) nodes, each containing 16 processors and clustered

together using a high performance interconnect. Although clustering technologies

enable a great deal of progress in providing computing power, a cluster remains a

separate machine, dedicated to a specific purpose, and not being able to scale

across organisation boundaries, which limits how large such a system can

become.

CHAPTER 1 INTRODUCTION

- 2 -

With the rapid development of communication technologies, Internet Computing

[Foster2000] provides another attempt towards supplying computing power in a

more decentralised way. There are millions of powerful PCs around the world,

however, most of them are idle much of the time. It is thought possible to harness

these free CPU cycles so that scientists could solve important problems via the

Internet. However, the real requirements may become much more complex. Email

and the Web can only provide basic mechanisms for scientists to work together.

Scientists may also want to link their data, their computers, and other resources

together to provide a virtual laboratory [Foster2001]. The so-called Grid

Computing technologies seek to make this possible.

1.1 Grid Computing

Civilisation has benefited from many successful infrastructures developed during

20th century. These include road systems, railways, the power grid, the telephone

system, and the Internet. Once you press a light switch in a room, the light turns

on. One can use it without knowing where the power comes from. The Internet is

the latest important infrastructure, which is often referred to as the information

highway. Given a domain name, you can get the information you want from your

computer without knowing where the information comes from and how it reaches

you.

The emerging concepts such as “The network is the computer” , “world-wide

computer” , and “ information power grid” [Leinberger1999] enable researchers in

the high performance community to seek a new infrastructure that can provide not

only information, but also high-end computing capabilities through networks.

Once connected via your resource-short notebook to the network, it would be

possible to run large scientific programs without worrying where the computing

power comes from and whether it is a supercomputer in the US, Europe, or Japan

that is actually doing computation for you.

A computational grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end

CHAPTER 1 INTRODUCTION

- 3 -

computational capability [Foster1998]. It provides the protocols, services, and

software development kits needed to enable flexible, controlled resource sharing

on a large scale. The main components in the grid architecture include

[Baker2001]:

• Grid Fabric - Comprising global resources geographically distributed and

accessible from anywhere on the Internet. These resources might include

computers (such as PCs and workstations running operating systems such

as UNIX or Windows NT), supercomputers, clusters (running cluster

operating systems or resource management systems), databases, and other

special scientific instruments.

• Grid Services - Offering core services, such as information,

communication, naming, resource management, performance analysis,

visualisation, security and authentication, accounting, etc.

• Grid Tools - Providing high-level services allow programmers to develop

grid applications. These services include languages, libraries, APIs, SDKs,

debuggers, web tools, etc.

• Grid Applications - Grid-enabled applications developed using grid tools.

There are many kinds of potential grid applications, such as wide-area

distributed supercomputing, high-throughput computing, data-intensive

computing, on-demand computing, etc.

The research into grid computing technologies can be split into three main phases:

• Exploration phase (- 1998). Several early attempts, which are now

considered to be the classical projects in grid research, started with

different motivation and together build an umbrella termed

“Computational Grids” . The key sign during this phase is the emergence

of the GUSTO (Globus Ubiquitous Supercomputing Testbed), a prototype

for future computational grids. Also the publication of the book in 1998,

“The GRID – Blueprint for a New Computing Infrastructure”

[Foster1998], indicate that the concept of the grid comes into being.

CHAPTER 1 INTRODUCTION

- 4 -

• Spreading phase (1998 - 2001). During this period, the concept of the grid

has spread very rapidly. Researchers from the high performance

community and others give annotations to the concepts from different

views. Many projects begin to fit their research backgrounds into this new

context. The key sign of this phase is that in March 2001, 360 researchers

from USA, Europe, and Japan attended the first global grid forum (GGF1)

held in Amsterdam (with 60 people having registration refused), and in

May about 200 researchers from all over the world attended the first

IEEE/ACM international symposium on cluster computing and the grid

(CCGrid2001) held in Brisbane, Australia.

• Exploding phase (2001 -). Entering the new millennium, grid computing is

considered to be an active research field with great potential and well

known by most of computer scientists. Researchers from different fields of

computer science will contribute work in this context. Companies support

related activities on grid research. Governments begin to make plans to

support native grid research and development. For example, the European

Union gives 9.8 million euros funding over three years in support of the

DataGrid project [Segal2000]. The UK Department of Industry also

earmarked a large sum of money for their e-Science activities [Hey2001].

However, a practical grid environment does not yet exist. It is clear that the grid

software infrastructure will be a large-scale distributed software system that is

perhaps more complex than any existing software system. The most essential parts

of the grid are its services, which act as middleware between grid resources and

grid-enabled applications. Currently many grid-oriented software systems are

being developed separately with different motivations, methodologies and tools.

Many new ideas in them are important to accelerate the grid development. In

order to integrate existing efforts and put the grid into practice, advanced software

engineering methodology and technologies should be applied for the grid

infrastructure development.

CHAPTER 1 INTRODUCTION

- 5 -

1.2 Software Agents

Software agents are becoming an important software development technology.

The key sign of this trend is the emergence of diverse applications and approaches

in many different areas [Bradshaw1997], including intelligent user interfaces

[Lieberman1997], industry [Parunak1998], electronic commerce [Nwana1998],

business process management [Jennings2000], digital libraries [Atkins1996],

electronic meeting [Chen1996], entertainment [Maes1995], network management

[Davison1998], and so on.

Agents are computer systems, capable of flexible, autonomous action in dynamic,

unpredictable, typically multi-agent domains. Autonomy is the most essential

feature, which differentiate the agent from other simple programs. Unfortunately,

as mentioned in [Jennings1998], autonomy is a difficult concept to pin down

precisely, but we mean it simply in the sense that the system should be able to act

without the direct intervention of humans (or other agents), and should have

control over its own actions and internal state.

There are basically two different ways for agents to achieve autonomy:

intelligence and social ability. Intelligence means that an agent can achieve the

autonomy by an AI approach within the ability of itself, such as personality,

emotion, self-learning, life-like, knowledge reasoning, etc. Social ability means

that an agent achieves its autonomy by relationships with the other agents in a

Multi-Agent System (MAS), such as communication via an Agent

Communication Language (ACL), coordination, negotiation, evolution, self-

organisation, market mechanism, and mobility, etc.

For any new technology to be considered to be useful, it must offer either the

ability to solve problems that have hitherto not been solved or the ability to solve

problems that can already be solved in a significantly better (cheaper, more

natural, easier, more efficient, or faster) way [Jennings2001b]. Software agents

can be used to develop three classes of system:

CHAPTER 1 INTRODUCTION

- 6 -

• Open systems. An open system is one in which the structure of the system

itself is capable of dynamically changing. The characteristics of such a

system are that its components are not known in advance, can change over

time, and may be highly heterogeneous. The best-known example of a

highly open software environment is the Internet; and the grid is likely to

also be an open system on a scale possibly larger than the Internet. The

functionality is almost certain to require techniques based on negotiation

or cooperation, which lie very firmly in the domain of MAS.

• Complex systems. The most powerful tools for handling complexity in

software development are modularity and abstraction. Agents represent a

powerful tool for making systems modular. They can provide a useful

abstraction in just the same way those procedures, abstract data types, and

objects provide abstractions. They allow a software developer to

conceptualise a complex software system as a society of cooperating

autonomous problem solvers. For many applications, this high-level view

is simply more appropriate than the alternatives.

• Ubiquitous computing systems. Interaction between computer and user

must become an equal partnership. The machine should not just act as a

dumb receptor of task descriptions, but should cooperate with the user to

achieve their goal. These considerations give rise to the idea of an agent

acting as an expert assistant with respect to some application,

knowledgeable about both the application itself and the user, and capable

of acting with the user in order to achieve the user’s goals.

Software agents have been accepted as a powerful high-level abstraction for the

modelling of complex software systems like the grid software infrastructure.

However, though in current grid-oriented software systems agent technology has

been used in different ways, many new techniques developed in agent research

have not yet been applied. The work described in this thesis integrates agent,

performance, and scheduling technologies to implement one of the most important

grid services, resource management.

CHAPTER 1 INTRODUCTION

- 7 -

1.3 Thesis Contributions

In this work the methodology, tools and implementation of agent-based resource

management for grid computing are introduced. The performance prediction

capabilities are used to provide quantitative data concerning the performance of

sophisticated applications running on local high performance resources. At a

metacomputing level, agents cooperate with each other and perform resource

advertisement and discovery functions to schedule applications that need to utilise

the available resources. The performance of the agent system can be also

monitored, simulated, steered, and improved. The main contributions of this thesis

include:

• Performance prediction driven QoS (Quality of Service) support of

resource management and scheduling. Existing performance evaluation

technologies can provide accurate prediction information regarding the

execution of parallel and distributed applications. In this work, we

integrate these performance prediction capabilities into resource

management for grid computing. This is a key feature that differentiates

this work from other solutions.

• Agent-based hierarchical model for service discovery. Agent hierarchies

can be found in other agent applications [Ciancarini1999]. In this work, a

hierarchy of homogenous agents with service advertisement and discovery

capabilities is defined at a meta-level of a grid computing environment.

This provides the first scalable agent-based resource management system

for grid computing.

• Simulation-based performance optimisation and steering of agent-based

service discovery. Most current grid resource management infrastructures

focus on the implementation of data models and communication protocols.

Performance issues have not been the key consideration of these systems.

In our work, we focus more on performance optimisation of agent

behaviours for service discovery. Several optimisation strategies and

steering policies are provided and simulation tools and results are included

CHAPTER 1 INTRODUCTION

- 8 -

to show their impact on the overall system performance. To the authors’

knowledge, this cannot be found in any of other works.

In summary, all of the above provide an available methodology and prototype

implementation of agent-based resource management for grid computing, which

can be used as a fundamental framework for further improvement and refinement.

However, there are still some limitations on the system implementation aspect of

this work.

• An existing PACE toolkit is used to provide performance prediction

capabilities. For example, the PACE application performance modelling is

based on the source code analysis, and a PACE resource model includes

only static performance information of a resource.

• In the implementation of the agent-based grid resource management

system, grid applications refer to only scientific computing applications

that are computing intensive rather than data intensive, and grid resources

are considered to be providers of high performance computing power

rather than storage capabilities.

• While the performance monitoring and optimisation of agent behaviours

are described as automatic processes, this is not implemented in the system

described in this work. The use of the performance optimisation strategies

and steering policies must be supervised by a system manager.

1.4 Thesis Outline

The introduction to agent-based resource management is divided into four parts.

The PACE performance prediction capabilities are described using a parallel

benchmarking program, Sweep3D. The agent hierarchy is included in the

introduction of an A4 methodology. An initial implementation of the agent-based

resource management for grid computing, ARMS, is given in an individual

chapter. And the following chapter gives details of performance optimisation

issues and an implementation of a performance monitor and advisor (PMA) in the

ARMS.

CHAPTER 1 INTRODUCTION

- 9 -

The remaining parts of the thesis is organised in the following way:

Chapter 2 reviews existing performance techniques for parallel and

distributed applications. The PACE toolkit, developed at the

University of Warwick, is presented in greater detail.

Several current solutions to grid resource management are

also described and compared. Current challenges are then

summarised.

Chapter 3 reviews existing agent infrastructure and service discovery

techniques. The state of the art of agent technologies for

grid computing is also summarised.

Chapter 4 introduces Sweep3D, a case study of performance

evaluation using the PACE toolkit. The PACE performance

model for Sweep3D is given in some detail. Validation

results on different platforms with different data sizes are

also included to show the prediction capabilities of PACE.

Chapter 5 presents the A4 methodology, agile architecture and

autonomous agents, which can be used to build large-scale

distributed systems that exhibit highly dynamic behaviour.

The main issues include agent hierarchy, agent structure,

agent capability tables, service advertisement and

discovery, performance metrics. A simulator for A4 has

been developed and is used to illustrate these issues.

Chapter 6 describes an implementation of an agent-based resource

management system for grid computing, ARMS, which

integrates PACE functions using the A4 methodology. The

ARMS architecture and agent structure are presented in

detail. The main modules in an ARMS agent include a

communication module, an ACT (Agent Capability Tables)

manager, a scheduler and a matchmaker. Experiments are

CHAPTER 1 INTRODUCTION

- 10 -

also included to show the grid resource management

capabilities of ARMS.

Chapter 7 discusses performance optimisation issues that arise from

the agent system of ARMS. A special agent, PMA, acts as a

performance monitor and advisor for ARMS, which is

capable of performance modelling and simulation for agent

resource discovery. Some optimisation strategies are

suggested, including use of ACTs, limit resource lifetime,

limit scope for resource advertisement and discovery, etc.

Chapter 8 draws conclusions from the work presented in this thesis

and offers suggestions for future improvement to the

methodology, tools, and implementation.

- 11 -

CChhaapptteerr 22

RREESSOOUURRCCEE MMAANNAAGGEEMMEENNTT FFOORR

GGRRIIDD CCOOMMPPUUTTIINNGG

The grid, composed of distributed and often heterogeneous computing resources,

is becoming the platform-of-choice for many performance-challenged

applications. Proof-of-concept implementations have demonstrated that the grid

environment has the potential to provide great performance benefits to parallel

and distributed computing applications. The current research into grid computing

aims to provide access to a multitude of processing systems in a seamless fashion.

That is, from a user’s perspective, applications may be executed on such a grid

without the need to know which systems are being used, or where they are

physically located. The overall aim of resource management is to efficiently

schedule applications that need to utilise the available resources in the grid

environment. Such goals within the high performance community will rely on

accurate performance evaluation, analysis and scheduling.

2.1 Performance Evaluation

An increasing number of applications are being developed to run on parallel

systems. An underlying goal in the use of high performance systems is to apply

complex systems to achieve rapid application execution times. Whether there will

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 12 -

be impressive gains in cost-performance make performance a key issue in parallel

computing. For decades, the quantitative evaluation of computer performance has

been applied to the entire life cycle of a system. These methods assist in the

prediction, analysis, scheduling, and tuning of the performance of computers.

Numerous methodologies have been developed to evaluate the performance of

computer systems. These can be organised into four main groups: benchmarking,

analytical modelling, simulation, and monitoring. In benchmarking pre-defined

workloads are run on systems to obtain performance measurements, which can be

used as a basis for performance comparisons. Modelling methodologies require

the construction of a mathematical or logical relationship that represents the

behaviour of the system. The evaluation of this representation is performed by

either analytical based techniques or by simulation. Monitoring tools can also be

used to measure and analyse the performance of parallel systems. Performance

studies often use more than one technique simultaneously to validate and verify

the results of each other.

The techniques and tools that are being developed for the performance evaluation

of parallel and distributed computing systems are many-fold, each having their

own motivation and methodology. The main research projects currently in

progress in this area are summarised in Table 2.1. A more detailed overview of

previous performance evaluation methods and tools can be found in

[Papaefstathiou1995b].

Name Unit Description

AppLeS
[Berma
n1996]

Grid Computing
Lab.,
Dept. of Computer
Science and
Engineering,
Univ. of California,
San Diego

This is an application-level scheduler using expected
performance as an aid. Performance predictions are
generated from structural models, consisting of
components that represent the performance activities
of the application.

CHAOS
[Uysal1
998]

High Performance
Systems Software
Lab.,
Dept. of Computer
Science,

A part of this work is concerned with the
performance prediction of large-scale data intensive
applications on large-scale parallel machines. It
includes a simulation-based framework to predict the
performance of these applications on existing and

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 13 -

Univ. of Maryland future parallel machines.
PACE
[Nudd2
000]

High Performance
Systems Lab.,
Dept. of Computer
Science,
Univ. of Warwick,
UK

PACE is a performance prediction toolkit suitable for
a non-performance expert. PACE supports the
development of performance prediction models for
sequential and parallel applications running on high
performance systems. It is based on a layered
characterisation methodology, and is an analytical
approach that organises a performance model into
three separate layers: application, parallelisation, and
hardware.

Paradyn
[Miller1
995]

Paradyn Group,
Dept. of Computer
Science, Univ. of
Wisconsin-
Madison

Paradyn is a performance measurement tool for
parallel and distributed programs. Paradyn scales to
long running programs (hours or days) and large
(thousand node) systems, and automates much of the
search for performance bottlenecks. It can provide
precise performance data down to the procedure and
statement level. Paradyn is based on a dynamic
notion of performance instrumentation and
measurement. Unmodified executable files are placed
into execution and then performance instrumentation
is inserted into the application program and modified
during execution.

Parsec
[Bagrod
ia1998]

Parallel Computing
Lab.,
Dept. of Computer
Science,
Univ. of California,
Los Angeles

This is a parallel simulation environment for complex
systems, which includes a C-based simulation
language, a GUI (Pave), and a portable run-time
system that implements the simulation operations.

POEMS
[Deelm
an1998]

Parallel Computing
Lab.,
Dept. of Computer
Science,
Univ. of California,
Los Angeles,
etc.

The aim of this work is to create a problem-solving
environment for end-to-end performance modelling
of complex parallel and distributed systems. This
spans application software, run-time and operating
system software, and hardware architecture. The
project supports evaluation of component
functionality through the use of analytical models
and discrete-event simulation at multiple levels of
detail. The analytical models include deterministic
task graph analysis, and LogP, LoPC models
[Frank1997].

GMA
[Tierne
y2001]

Performance
Working Group,
Global Grid Forum

The goal of the development of a Grid Monitoring
Architecture is to describe a common architecture
with all the major components and their essential
interactions in just enough detail that Grid
Monitoring systems that follow the architecture can
easily devise common APIs and wire protocols.

Table 2.1 Overview of Performance Evaluation Tools

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 14 -

The motivation behind the development of the Performance Analysis and

Characterization Environment (PACE) at the University of Warwick was to

provide quantitative data concerning the performance of sophisticated applications

running on high performance systems [Cao2000]. The framework of PACE is a

methodology based on a layered approach that separates software and hardware

system components through the use of a parallelisation template. This is a

modular approach that leads to readily reusable models, which can be

interchanged for experimental analysis.

Each of the modules in PACE can be described at multiple levels of detail in a

similar way to POEMS, thus providing a range of result accuracies but at varying

costs in terms of prediction evaluation time. PACE is aimed to be used for pre-

implementation analysis, such as design or code porting activities as well as for

on-the-fly use in scheduling systems in similar manner to that of AppLeS.

AppLeS is not originally motivated for grid computing but being improved to be

utilised in a grid environment. In this work, PACE is integrated into an agent-

based architecture to evaluate performance of grid applications. GMA is the only

project that is developed in context of grid computing, however, it focuses more

on performance monitoring than evaluation. The PACE methodology and toolkit

are described in greater detail below.

2.2 PACE Methodology

The main concepts behind PACE include a layered framework and the use of

associative objects as a basis for representing system components. An initial

implementation of PACE supports performance modelling of parallel and

distributed applications from object definition, through to model creation and

result generation. These factors are described further below.

2.2.1 Layered Framework

Many existing techniques, particularly for the analysis of serial machines, use

Software Performance Engineering (SPE) methodologies [Smith1990], to provide

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 15 -

a representation of the whole system in terms of two modular components,

namely a software execution model and a system model. However, for high

performance computing systems, which involve concurrency and parallelism, the

model must be enhanced. The PACE layered framework is an extension of SPE

for the characterisation of parallel and distributed systems. It supports the

development of three types of models: software model, parallelisation model and

system (hardware) model. It allows the separation of the software and hardware

model by the addition of the intermediate parallelisation model.

The framework and layers can be used to represent entire systems, including: the

application, parallelisation and hardware aspects, as illustrated in Figure 2.1.

 Application Domain

Application Layer

Subtask Layer

Parallel Template Layer

Hardware Layer

Figure 2.1 The PACE Layered Framework

The functions of the layers are:

• Application Layer – describes the application in terms of a sequence of

parallel kernels or subtasks. It acts as the entry point to the performance

study and includes an interface that can be used to modify parameters of a

performance study.

• Application Subtask Layer – describes the sequential part of every subtask

within an application that can be executed in parallel.

• Parallel Template Layer – describes the parallel characteristics of subtasks

in terms of expected computation-communication interactions between

processors.

• Hardware Layer – collects system specification parameters, micro-

benchmark results, statistical models, analytical models, and heuristics to

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 16 -

characterise the communication and computation abilities of a particular

system.

According to the layered framework, a performance model is built up from a

number of separate objects. Each object is of one of the following types:

application, subtask, parallel template, and hardware. A key feature of the object

organisation is the independent representation of computation, parallelisation, and

hardware. This is possible due to strict object interaction rules.

All objects have a similar structure, and a hierarchical set of objects representing

the layers of the framework is built up into the complete performance model. An

example of a complete performance model, represented by a Hierarchical Layered

Framework Diagram (HLFD), is shown in Figure 4.2.

2.2.2 Object Definition

Each software object (application, subtask, or parallel template) is comprised of

an internal structure, options, and an interface that can be used by other objects to

modify its behaviour. A schematic representation of a software object is shown in

Figure 2.2.

Identity Type
Include

External Var.
Link

Options
Procedures

Object 2 (lower)
Object 3 (higher)
Object 1 (lower)
Object 2 (lower)

Object 1 (lower)

Figure 2.2 Software Object Structure

Each hardware object is subdivided into many smaller component hardware

models, each describing the behaviour of individual parts of the hardware system.

An example is shown in Figure 2.3 illustrating the main subdivision currently

considered involving a distinction between computation, communication, memory

[Harper1999] and I/O models.

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 17 -

 Hardware Object

CPU

Memory

Network

clc

Cache Main Cache

Sockets MPI PVM

flc suif ct

Figure 2.3 Hardware Object Structure

2.2.3 Model Creation

The creation of a software object in the PACE system is achieved through an

application characterisation tool. It aids the conversion of sequential or parallel

source code into a Performance Specification Language (PSL) [Papaefstathiou

1995] via the Stanford University Intermediate Format (SUIF) [Hall1996]. It

performs a static analysis of the code to produce the control flow of the

application, operation counts in terms of high-level language operations

[Qin1991], and also the communication structure. This process is illustrated in

Figure 2.4.

Source
Code

SUIF
Front End

SUIF
Format

User Profiler

A
C
T

Application
Layer

Parallelisation
Layer

Figure 2.4 Model Creation Process

In PACE a Hardware Model Configuration Language (HMCL) allows users to

create new hardware objects by specifying system-dependent parameters. On

evaluation, the relevant sets of parameters are used, and supplied to the evaluation

methods for each of the component models. An example HMCL fragment is

illustrated in Figure 4.4.

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 18 -

2.2.4 Mapping Relations

There are strict mapping relations between source code of the application and its

performance model. Figure 2.5 illustrates the way in which independent objects

are abstracted directly from the source code and built up into a complete

performance model, which can be used to produce performance prediction results.

The source code of the parallel application is firstly divided into several serial

parts and an abstracted parallel part. Serial parts can be automatically converted

into performance scripts using the PACE application characterisation tool. The

parallel part can be converted into the corresponding parallel template line by line.

The strict mapping relations make the model creation processes fast and

straightforward. The user does not even need to understand the detailed

parallelisation of the application.

The mapping relations are controlled by the PSL compiler and the PACE

evaluation engine, which is described further in Chapter 4 through the use of the

example application – Sweep3D.

 Application
Source Code

Model Scripts

Parallel
Template

Subtask

H
ar

dw
ar

e
O

bj
ec

t
(H

M
C

L
) Abstracted

Parallel
Part
 ...

Serial
Part Serial

Part Serial
Part

Figure 2.5 Mapping Relations

2.2.5 Evaluation Engine

Once all the necessary objects have been defined for a performance study, they

can be combined and evaluated within the PACE evaluation engine. This involves

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 19 -

the evaluation of the single application object, and all subtask objects, which in

turn require the evaluation of associated parallel template objects and hardware

objects. The sequence of steps performed during the evaluation of one subtask

object is shown in Figure 2.6.

The init procedure of the subtask object is the entry point, which may call other

procedures within the object. Parameters are linked to the currently active parallel

template object (specified by the option command). The parallel template object is

similarly evaluated and uses the hardware object. The result of the evaluation of

the parallel template object is the execution time, which is returned to the

application object. Further details can be found in [Papaefstathiou1998].

Application
Object

Subtask Object ParTmp Object

Init

Proc 1 Proc 1 Proc n Proc n

Link Init

… …

Execution Time

Hardware Object

Figure 2.6 Evaluation Process of PACE Models

2.2.6 PACE Toolkit

The PACE methodology described above is implemented as a toolkit, which is

summarised in Figure 2.7. The main components in the PACE toolkit include:

application tools (AT), resource tools (RT), and an evaluation engine (EE).

• Application Tools: The Source Code Analyser can be used to convert

sequential source code components into performance descriptions. Users

can also edit these descriptions using the object editor or retrieve existing

objects from a library. These performance descriptions are organised

together into the PSL scripts of the application, which can be compiled

into the application model. The application model is one of the inputs into

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 20 -

the evaluation engine, which contains all of the application-level

performance information.

• Resource Tools: The RTs provide several benchmarking programs to

measure the performance of CPU, network interfaces (e.g. MPI and PVM),

and memory aspects of hardware platforms respectively. The measurement

results are represented in HMCL scripts and added to the system. The

resource model is another input into the evaluation engine, which contains

all of the system-level performance information.

• Evaluation Engine: The EE is the kernel part of the PACE toolkit, which

executes completed performance models and produces evaluation results

on time estimates, or trace information of the expected application

behaviour. Important applications of prediction data include those of on-

the-fly performance analysis [Kerbyson1998] and dynamic multi-

processor scheduling [Perry2000], which can be applied for efficient

resource management.

Evaluation Engine (EE)

Application Tools (AT)

Source
Code

Analysis

Object
Editor

Object
Library

PSL Scripts

Compiler

Application Model

Resource Tools (RT)

CPU Network
(MPI,
PVM)

Cache
(L1, L2)

HMCL Scripts

Compiler

Resource Model

Performance
Prediction

On-the-fly
analysis

Multi-processor
scheduling

Figure 2.7 The PACE Toolkit

Some assumptions are made to simplify the PACE implementation. For example,

the PACE application performance modelling is based on the source code

analysis. The source code of the application is assumed to be available for

performance modelling. A resource model in PACE can only include static

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 21 -

performance information of a resource. The dynamic situation of the network

traffic or CPU workload is not considered. The PACE toolkit is relatively smaller

than many other performance evaluation tools, and some of its unique features

(e.g. rapid evaluation time, reasonable accuracy, etc.) allow it to be applied to

performance-driven resource management in a grid computing environment.

2.3 Grid Resource Management

The resource management is central to the operation of a grid. The basic function

of resource management is to accept requests for resources from machines within

the grid and assign specific machine resources to a request from the overall pool

of grid resources for which the user has access permission. A resource

management system matches requests to resources, schedules the matched

resources, and executes the requests using the scheduled resources.

Several solutions have been offered that address to some extent the issues of

resource management and scheduling for grid computing. Our work is different

from these in a number of ways. Some of the principal existing grid projects and

their resource management are described in Table 2.2. A good overview of grid

resource management technologies can be found in [Krauter2000].

Name Unit Project Description Resource Management

Condor
[Litzko
w1988]
[Raman
1998]

Condor
team,
Dept. of
Computer
Science,
Univ. of
Wisconsin-
Madison

The goal of the Condor
project is to develop,
implement, deploy and
evaluate mechanisms and
policies that support High
Throughput Computing
(HTC) on large collections
of distributively owned
computing resources.

Condor uses a classified
advertisement (classad)
matchmaking framework for
flexible resource management
in distributed environments
with decentralised ownership
of resources, which uses the
matchmaker/entity (which can
be both provider and
requestor) structure.
Features: extensible schema
model; no QoS; network
directory store; centralised
queries discovery; periodic
push advertisement.

DPSS Data The DPSS is a data block DPSS uses a broker/agent

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 22 -

[Tierney
2000]
[Brooks
1997]

Intensive
Distributed
Computing
Group,
Lawrence
Berkeley
National
Laboratory

server, which provides
high-performance data
handling and architecture
for building high-
performance storage
systems from low-cost
commodity hardware
components. This
technology has been quite
successful in providing an
economical, high-
performance, widely
distributed, and highly
scalable architecture for
caching large amounts of
data that can potentially be
used by many different
users.

architecture: agents are
processes that monitors the
state of the system; broker
agent (or broker) is an agent
that manages the information,
filters information for clients,
or performs some action on
behalf of a client. Agents
model their environment using
an extensible set of Facts and
act on their environment using
a set of Tasks.
Features: object model; no
QoS; agent-based store;
centralised queries discovery;
periodic push advertisement.

Globus
[Foster1
997]
[Czajko
wski199
8]

Mathemati
cs and
Computer
Science
Division,
Argonne
National
Laboratory

The Globus system is
intended to achieve a
vertically integrated
treatment of application,
middleware, and network.
A low-level toolkit provides
basic mechanisms such as
communication,
authentication, network
information, and data
access. These mechanisms
are used to construct
various higher-level
metacomputing services,
such as parallel
programming tools and
schedulers. The long-term
goal is to build a grid
infrastructure, an integrated
set of higher-level services
that enable applications to
adapt to heterogeneous and
dynamically changing
metacomputing
environments.

The architecture distributes the
resource management problem
among distinct local manager,
resource broker, and resource
co-allocator components, and
defines an extensible resource
specification language (RSL)
to exchange information about
requirements. The information
service within the architecture
uses a Metacomputing
Directory Service (MDS)
[Fitzgerald1997], which
adopts the data representations
and API defined by the LDAP
service [Yeong1995].
Features: extensible schema
model; soft QoS; network
directory store; distributed
queries discovery; periodic
push advertisement.

GRACE
[Buyya2
000]

School of
Computer
Science
and
Software
Engineerin

GRACE (Grid Architecture
for
Computational Economy) is
a new framework that uses
economic theories in grid
resource management and

Nimrod/G is a grid resource
broker that allows managing
and steering task farming
applications (parameter
studies) on computational
grids. It follows an economic

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 23 -

g,
Monash
University,
Australia

scheduling. The
components that make up
GRACE include global
scheduler (broker), bid-
manager, directory server,
and bid-server working
closely with grid
middleware and fabrics.
The GRACE infrastructure
also offers generic
interfaces (APIs) that the
grid tools and applications
programmers can use to
develop software
supporting the
computational economy.

(computational market) model
for resource management and
scheduling. It allows the study
of the behaviour of output
variables against a range of
different input scenarios.
Features: extensible schema
model; hard QoS; relational
resource info store; distributed
queries discovery; periodic
push/pull advertisement.

Legion
[Grimsh
aw1999]
[Chapin
1999]

Dept. of
Computer
Science,
Univ. of
Virginia

Legion is an object-oriented
metacomputing
environment, intended to
connect many millions of
hosts ranging from PCs to
massively parallel
supercomputers. It manages
billions of objects and
allows users to write and
run applications in an easy-
to-use, transparent fashion.
It unites machines from
thousands of administrative
domains into a single
coherent system.

Legion uses a resource
management infrastructure.
The philosophy of scheduling
is that it is a negotiation of
service between autonomous
agents, one acting on the part
of the application (consumer)
and one on behalf of the
resource or system (provider).
The components of the model
are the basic resources (hosts
and vaults), the information
database, the schedule
implementer, and an execution
monitor.
Features: extensible object
model; soft QoS; object model
store; distributed queries
discovery; periodic pull
advertisement.

NetSolv
e
[Casano
va1998]

Dept. of
Computer
Science,
Univ. of
Tennessee

NetSolve is a client-server
system that enables users to
solve complex scientific
problem remotely. The
system allows users to
access both hardware and
software computational
resources distributed across
a network. NetSolve
searches for computational
resources on a network,
chooses the best one
available, and using retry

The NetSolve agent operates
both as a database and as a
resource broker. The agent
keeps track of information
about all the servers in its
resource pool, including their
availability, load, network
accessibility, and the range of
computational tasks that they
can perform. The agent then
selects a server to perform the
task, and the server responds
to the client’s request.

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 24 -

for fault-tolerance solves a
problem, and returns the
answers to the user.

Features: extensible schema
model; soft QoS; distributed
queries discovery; periodic
push advertisement.

Ninf
[Sato19
98]
[Nakada
1998]

Computer
Science
Division,
Electrotech
nical
Laboratory,
Japan

Ninf is an ongoing global
network-wide computing
infrastructure project which
allows users to access
computational resources
including hardware,
software and scientific data
distributed across a wide
area network with an easy-
to-use interface. Ninf is
intended not only to exploit
high performance in
network parallel computing,
but also to provide high
quality numerical
computation services and
accesses to scientific
databases published by
other researchers.
Computational resources
are shared as Ninf remote
libraries executable at a
remote Ninf server.

In order to facilitate location
transparency and network-
wide parallelism, the Ninf
metaserver maintains global
resource information regarding
computational server and
databases, allocating and
scheduling coarse-grained
computation to achieve good
global load balancing. The
Ninf metaserver is a JAVA
agent, a set of which gathers
network information regarding
the Ninf servers, and also
helps the client to choose an
appropriate Ninf server, either
automatically or semi-
automatically.
Features: fixed schema model;
no QoS; centralised queries
discovery; periodic push
advertisement.

Table 2.2 Overview of Grid Projects and their Resource Management

Grid resources are the entities such as processors or hosts that are managed by the

resource management system. A local resource in the grid is usually a multi-

processor or a cluster of machines, which are distributed geographically in a small

scope, connected with high-speed networks, and administrated within the same

organisation. These local resources may be far away from each other, connected

via the Internet with irregular communications, and cross administrative domains.

All these resources compose a global metacomputing environment, such as that

illustrated in Figure 2.8.

The grid resource management functions are performed at both a meta and a local

level. Each local high performance resource is managed by a local resource

manager. A mechanism is also needed at a meta-level to coordinate the

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 25 -

behaviours of multiple local resource managers so as to achieve high performance

in the overall grid system.

 A local resource
can be a multi-
processor or

cluster of
machines.

A processor
or host

High-speed
networks

Low-speed
networks

Metacomputing Environment

Local

Local

Local
Local

Figure 2.8 Grid Resources

The basic issues relating to metacomputing resource management include data

representation and management, communication protocols, resource discovery

and quality of service (QoS) support. The main issues related to local resource

management are multi-processor scheduling, resource allocation and monitoring.

These are introduced in detail below.

2.3.1 Data Management

The main data used in a resource management system is that used to describe the

attributes and operations of a resource. Data management related issues include

data representation and data storage.

A grid resource can be described by a corresponding resource model. The

resource model determines how to describe and manage the grid resource. There

are two basic approaches for data representation.

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 26 -

• Schema based approach. The data that comprises a resource is described

in a description language along with some integrity constraints. The

schema languages are further characterised by the ability to extend the

schemas. In a fixed schema all elements of resource description are

defined and cannot be extended. In an extensible scheme new schema

types for resource descriptions can be added. Predefined attribute-value

based resource models are in the fixed schema category. The resource

specification language (RSL) used in Globus resource management is an

extensible schema model. The Condor ClassAd approach using semi-

structured data approach is also in the extensible schema category.

• Object based approach. In an object model scheme the operations on the

resources are defined as part of the resource model. The object model can

be predetermined and fixed as part of the definition of the resource

management system. Also the resource model can provide a mechanism to

extend the definition of the object model managed by the system. Legion

uses extensible object models to describe resources in the system.

The resource information should be stored in the resource management system in

proper organisation. It helps characterise the overall performance of the resource

management system and determine the cost of implementing the resource

management protocols since a resource discovery capability may be provided by

the data storage implementation. There are two basic approaches to the storage of

resource information in the system.

• Network directories. Network directory data storage is based on IETF

standards, such as LDAP [Yeong1995] and SNMP [Case1988], or utilise

specialised distributed database implementation. The information service

in Globus resource management system uses a Metacomputing Directory

Service (MDS), which adopts the data representations and API defined by

the LDAP service.

• Distributed objects. This data storage approach utilise persistent object

services that can be provided by a language-based model such as that

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 27 -

provided by persistent Java object implementations. Legion uses object

model data storage.

The important difference between the distributed object and network directory

approaches is that in network directories the schema and operations are separated

with the operations defined externally to the data store schema. In an object

oriented approach the schema defines the data and the operations.

The applications submitted from the grid users should also be attached to a

corresponding application model, including the information on the requirements

from the user on the application execution. The representation, storage, and

transference of these application models are also very important and have impacts

on the overall performance of the resource management system. Most of above

issues on resource models can also be applied to application models, which will

not therefore be discussed again in detail here.

2.3.2 Communication Protocols

Communication is a central issue for building distributed software systems. In a

grid resource management system, different local resource managers need to

communicate with each other to perform meta-level resource management

functions. Communication protocols are needed as the basis of communication

implementation. The implementation of communication enables different entities

in a distributed system to communicate with each other. However, some common

protocols are needed for them to understand each other.

Communication can be implemented by low-level Internet protocols, such as

TCP/IP, FTP, and HTTP. The communication protocols can be pre-defined in the

system using simple data structures. Many existing enterprise distributed system

infrastructures, languages and platforms can also provide powerful support for

data representation and communication. In the work described in this thesis, data

representation and communication protocols have not been the key consideration.

The resource management system focuses more on resource discovery, QoS

support, and related performance issues.

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 28 -

2.3.3 Resource Advertisement and Discovery

A major function of a grid resource management system is to provide a

mechanism for resources in the grid to be discovered and utilised by grid

applications. Resource advertisement and discovery provide complementary

functions. Discovery is initiated by a grid application to find suitable resources

within the grid. Advertisement is initiated by a resource trying to find a suitable

application that can utilise it. The overhead of matching resources and

applications determines the efficiency of the system and determines the maximum

resource utilisation that a resource management system can achieve in the grid

computing environment. There are two approaches to resource advertisement and

discovery in a grid resource management system: query based and agent based.

• Query-based: Network directory based mechanisms such as Globus MDS

use parameterised queries that are sent across the network to the nearest

directory, which then uses a query engine to execute the query against the

database contents. Query based systems are further characterized

depending on whether the query is executed against a distributed database

or a centralized database. Legion also uses distributed query-based

resource discovery, while centralised query-based resource discovery is

adopted in most current computational grid projects, such as Condor,

DPSS, NetSolve and Ninf.

• Agent-based: Agent based approaches send active code fragments across

machines in the grid that are interpreted locally on each machine. Agents

can also passively monitor and either periodically distribute resource

information or respond to another agent. Thus agents can mimic a query

based resource discovery scheme. Currently agent-based approaches can

only be found in some service discovery projects (which will also be

discussed in detail in the next chapter), such as 2K [Kon2000] and Bond

[Boloni1999]. The agent-based resource management system described in

this work aims to apply agent technologies in resource management for

computational grids.

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 29 -

The major difference between a query based approach and an agent based

approach is that agent based systems allow the agent to control the query process

and make resource discovery decisions based on its own internal logic rather than

rely on a fixed function query engine. Agent based resource discovery is

inherently distributed.

2.3.4 QoS Support

In metacomputing resource management, resources should be discovered and

corresponding resource information should be returned to the grid user according

to QoS principles. As also described in [Krauter2000], our notion of QoS is not

limited to network bandwidth but extends to the processing capabilities of the

resources in the grid. Thus we focus on the degree that a grid can provide end-to-

end QoS across all components rather than QoS only on the network.

There are two parts to QoS, admission control and policing. Admission control

determines if the requested level of service can be given and policing ensures that

the application does not violate its service level agreement (SLA). A resource

management system that does not allow applications to specify QoS requirements

in resource requests does not support QoS. Otherwise the QoS support can be

classified into soft and hard support.

• Soft QoS support. An RMS that provides explicit QoS attributes for

resource requests but cannot enforce service levels via policing provides

soft QoS support. Most current grid systems (e.g. Globus, Legion, and

NetSolve) provide soft QoS since most non real-time operating systems do

not allow the specification of service levels for running applications and

thus cannot enforce non-network QoS guarantees.

• Hard QoS support is provided when all nodes in the grid can police the

service levels guaranteed by the resource management system. Nimrod/G

in GRACE supports hard QoS through computational economy services of

GRACE infrastructure.

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 30 -

The resource management system described in this thesis can also provide hard

QoS support. The users need to define their requirements explicitly when they

submit a resource request, which is similar to Nimrod/G. Unlike Nimrod/G, in

which the grid resource estimation is performed through heuristics and historical

information (load profiling), the performance prediction capability of grid

resources is achieved via integrating PACE functions into the system.

There are some other functions that can be provided in meta-level grid resource

management. For example, co-allocation problems arise when applications have

resource requirements that can be satisfied only by using resources simultaneously

at several sites. As described in [Foster1999], Globus resource management

supports resource co-allocation, which, however, is not the key consideration in

our implementation. In the sections below, brief introductions are given to two

important issues related to local resource management.

2.3.5 Resource Scheduling

The scheduling on a local grid resource is a “multiple applications on multiple

processors” problem. Applications arrive at the resource at different times with

different requirements. Resource scheduling in a local resource manager is

responsible for deciding when to start running an application, and how many

processors should be dispatched to an application. There are two kinds of

scheduling policies and corresponding metrics.

• Resource-oriented - maximising the utilisation of the resource. In a

previous work done at Warwick [Perry1999], scheduling a number of

parallel applications on a homogenous multi-processor machine is studied.

It is achieved through just-in-time performance prediction (provided by

PACE) coupled with iterative heuristic algorithms for optimisation of the

utilisation of the resource.

• Application-oriented - meeting requirements from the applications. In the

system described in this work, each application submitted from a grid user

should be attached with explicit performance requirements. Local resource

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 31 -

scheduling focuses on meeting these requirements from the user point of

view.

These two aspects of scheduling are related, but sometimes may conflict. There

must be a balance in order to achieve both resource-oriented and application-

oriented optimisation. Rescheduling is also a part of resource scheduling problem.

The rescheduling characteristic of a resource management system determines

when the current schedule is re-examined and the application executions

reordered. There are two rescheduling approaches.

• Periodic or batch rescheduling approaches group resource requests and

system events and process them at intervals. This interval may be periodic

or may be triggered by certain system events. The key point is that

rescheduling is done in batches instead of individual requests or events.

• Event driven online rescheduling performs rescheduling as soon the

resource management system receives the resource request or system

event.

The local resource scheduling is not the main focus of the work described in this

thesis. However, in the following chapters, the related problems will be mentioned

and discussed. An algorithm will also be given for an initial implementation to be

used by meta-level resource management.

2.3.6 Resource Allocation and Monitoring

After applications are scheduled on a grid resource, resource allocation is

responsible for running the application and returning the results. The local

resource manger should be wrapped with parallel application execution

environments like MPI and PVM. When the application begins running, the

resource should be monitored and corresponding information can be used by

local-level rescheduling or meta-level resource discovery. These will not be

discussed in detail here.

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 32 -

2.4 Summary

A grid infrastructure is a large-scale distributed system with highly dynamic

behaviours. This chapter introduces the research background to performance

evaluation techniques and grid resource management issues. Previous work on the

PACE toolkit at Warwick has been described in detail. In summary, the

development of computational grids introduces two key challenges:

• Scalability: The grid may potentially encompass all high performance

computing resources. A given component of the grid will have it’s own

functions, resources and environment. These are not necessarily geared to

work together in the overall grid. They may be physically located in

different organisations and may not be aware of each other.

• Adaptability: A grid is a dynamic environment where the location, type,

and performance of the components are constantly changing. For example,

a component resource may be added to, or removed from, the grid at any

time. These resources may not be entirely dedicated to the grid; hence

their computational capabilities will vary over time.

New software development technologies are needed for the implementation of the

grid software infrastructure. Several new grid projects are utilising existing

distributed computing technologies, such as CORBA (Common Object Request

Broker Architecture) [Slama1999] and Jini [Amold1999].

CORBA is OMG’s (Object Management Groups) open, vendor-independent

architecture and infrastructure that computer applications use to work together

over networks. CORBA was not originally designed for developing high

performance computing applications. Some work provides CORBA based tools

that enable to use CORBA in different contexts. For example, in the work

described in [Denis2001], portable parallel CORBA objects are provided as a new

programming approach for grid computing, which can interconnect two MPI

codes by CORBA without modifying MPI or CORBA. The work described in

[Sevilla2001] makes use of the CORBA-LC (CORBA Lightweight Components)

to provide a new network-centred reflective component model, which allows

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

- 33 -

building distributed applications assembling binary independent components

spread on the network. However, as mentioned in [Foster2001], such technologies

only enable resource sharing within a single organization, and can not be used to

address the concerns and requirements listed above.

A Jini system is a distributed system federating groups of users and resources,

which is based on the Java platform. The work described in [Furmento2001] is a

computational community that supports the federation of resources from different

organisations, designed and implemented in Java and Jini. The service discovery

technique in Jini is introduced in the next chapter.

Agent technologies have been used for the development of distributed software

systems for several years. Multi-agent systems provide a clear high-level

abstraction and a more flexible implementation of distributed infrastructures and

applications. Multi-agent systems coupled with service discovery approaches are

introduced in the following chapter.

- 34 -

CChhaapptteerr 33

SSEERRVVIICCEE DDIISSCCOOVVEERRYY IINN

MMUULLTTII--AAGGEENNTT SSYYSSTTEEMMSS

The software infrastructure of the grid is an open, complex software system.

Multi-agent technology is one of the ways to overcome the challenges in the

development of the grid. Service has been accepted as the most important concept

in this distributed system development, and service discovery is therefore

considered an essential part in many distributed system infrastructures. In this

chapter, we introduce in detail background research on service discovery in multi-

agent systems, the technique of which will be used in our grid resource

management system.

3.1 Multi-Agent Systems

Agent technologies have been developed for over ten years. Numerous theories,

languages, tools, and applications have emerged in different fields [Cao1998].

Giving a short survey of multi-agent systems is a difficult task. However, there is

an easy and direct way to obtain an impression on what a multi-agent system is by

looking into several representative and successful multi-agent projects. Table 3.1

gives a list of 6 agent projects, including 3 multi-agent applications, 1 mobile

agent project, 1 agent development tool and 1 agent communication language.

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 35 -

Name Unit Description

AARIA
[Parunak
2001]

Michigan
Manufacturi
ng
Technology
Centre,
etc.

AARIA is an industrial-strength agent-based factory
scheduling and simulation system. Three persistent agents
are Parts, Resources, and Unit Process. Interactions among
these three persistent agents are modelled as transient
agents, such as Engagements, Materials, Products, and
Operations. Each transient agent has a six-phase life cycle:
Inquiring, Committing, Committed, Available, Active, and
Achieved.

ADEPT
[Jenning
s2000b]

DAI
Research
Unit,
Queen Mary
and
Westfield
College,
Univ. of
London,
UK

A business process is composed of a number of primitive
functional activities or tasks. In any reasonably complex
process, dependencies exist between the tasks and so they
have to be executed in a controlled and ordered way. This
execution invariably involves the consumption of
resources. In most organisations, these resources are
grouped into business units that control the way in which
they are deployed. Within ADEPT, these business units are
represented by autonomous software agents. The agents
communicate with one another over a network and
negotiate over how they can collaborate to manage the
overall business process. To be consistent with the service-
oriented philosophy, negotiation and collaboration are at
the level of the services that agents offer to one another. In
this case, a service is a packaging of tasks and other (sub-)
services that allows an agent to offer or to receive from
another agent some functional operation. A service can be
reused as a component of another service and agents can
take the role of provider (server) or customer (client) for
services.

D’Agent
s
[Brewing
ton1999]

Dept. of
Computer
Science,
Dartmouth
College

A mobile agent is an executing program that can migrate
during execution from machine to machine in a
heterogeneous network. On each machine, the agent
interacts with stationary service agents and other resources
to accomplish its task. Mobile agents are particularly
attractive in distributed information-retrieval applications.
By moving to the location of an information resource, the
agent can search the resource locally, eliminating the
transfer of intermediate results across the network and
reducing end-to-end latency.

JATLite
[Jeon200
0]

Agent Based
Engineering
Group,
Centre for
Design
Research,
Stanford
Univ.

JATLite (Java Agent Template, Lite) is a package of
programs written in the Java language that allow users to
quickly create new software agents that communicate
robustly over the Internet. JATLite provides a basic
infrastructure in which agents register with an Agent
Message Router facilitator using a name and password,
connect/disconnect from the Internet, send and receive
messages, transfer files, and invoke other programs or
actions on the various computers where they are running.

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 36 -

JATLite especially facilitates the construction of agents
that send and receive messages using the emerging
standard communications language, KQML.

KQML
[Labrou1
999]

Laboratory
for
Advanced
Information
Technology,
Computer
Science and
Electrical
Engineering,
University
of Maryland,
Baltimore
County

KQML, the Knowledge Query and Manipulation
Language, is a language and protocol for exchanging
information and knowledge. KQML is both a message
format and a message-handling protocol to support run-
time knowledge sharing among agents. KQML can be used
as a language for an application program to interact with an
intelligent system or for two or more intelligent systems to
share knowledge in support of cooperative problem
solving.

MACIP
[Fan199
9]
[Cao199
9b]
[Cao199
9]

National
CIMS
Research
and
Engineering
Centre,
Tsinghua
Univ.,
P. R. China

CIMS Application Integration Platform (MACIP) is
developed to offer manufacturing enterprises with a
complete solution for the CIMS implementation through
integrating a set of application software products.
Operational Administration System (OAS) is the kernel of
the MACIP to implement integration functions. Multi-agent
technology is used in OAS to implement the integration of
different software applications. Each agent is wrapped with
one or more applications and takes these applications as
services that can be provided to other agents. The
communication and cooperation among these applications
are implemented via service discovery among the agents.
Applications may be added to or removed from the system
at run time. Agents must be flexible enough to adapt to
these dynamic behaviours of the system.

Table 3.1 Overview of Multi-Agent Systems: Applications and Tools

In the sections below, a coarse division of research topics that arise from the

implementation of multi-agent systems is given. Each agent in the system is an

autonomous entity with its own functions, data, resource, and environment. The

basic characteristic of an agent is to manage its internal data at a knowledge level.

In MACIP, an agent has knowledge about services provided by other agents and

stores them in different tables. On the basis of knowledge representation, agents

may also communicate with each other at a knowledge level. KQML can be used

as an ACL for agents to exchange information and knowledge. Two agents may

communicate on the same subject a number of times. Agent negotiation is

discussed in detail in the ADEPT project and has been used successfully for

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 37 -

business process management. Further relations among multiple agents can be

characterised as agent coordination issues. JATLite provides one coordination

model for multi-agent systems. These are also illustrated in Figure 3.1 and

discussed further below.

Knowledge
Representation

Agent
Communication

Agent
Negotiation

Agent
Coordination

Figure 3.1 Research Topics in Multi-Agent Systems

3.1.1 Knowledge Representation

The knowledge representation of an agent is a correspondence between the

external application domain and an internal symbolic reasoning system. The

symbolic reasoning system is the agent’s model of the external world and consists

of data structures for storing information and procedures for manipulating these

data structures. The mapping between the elements of the application domain and

those of the domain model allows the agent to reason about the application

domain by performing reasoning processes in the domain model, and transferring

the conclusions back into the application domain.

As illustrated in Figure 3.2, in order to find a solution to a problem P in the

application domain, this problem is first represented as Pm in the agent’s domain

model. Next the agent looks for a solution Sm of Pm in its domain model. Then the

obtained solution Sm is reverse-mapped into S, which is the solution of the

problem P.

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 38 -

 Domain Model Application Domain

Pm P

Sm S

R

R-1

Figure 3.2 Knowledge Representation

The general features of a knowledge representation include representational

adequacy, inferential adequacy, problem-solving efficiency, and learning

efficiency. Good knowledge representation can lead to efficient knowledge

reasoning, acquisition, and learning. More information on building knowledge-

based agents can be found in [Tecuci1998].

3.1.2 Agent Communication

Agents usually interact by exchanging complex symbolic information and

possibly have to agree on complex interaction protocols. In addition, agents are

autonomous, possibly designed separately at different times by different people,

and including heterogeneous software components. These issues led to the

development of ACLs, such as KQML. A good summary on the many years of

research into ACLs can be found in [Singh1998].

3.1.3 Agent Negotiation

Negotiation is the process by which two agents come to a mutually acceptable

agreement on some matter. For an agent to influence an acquaintance, the

acquaintance needs to be convinced that it should act in a particular way. The

means of achieving this state are to make proposals, trade options, offer

concessions, and (hopefully) come to a mutually acceptable agreement. More

information on agent negotiation can be found in [Jennings2001, Kraus1998].

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 39 -

Though knowledge representation, agent communication and negotiation are

important issues in the implementation of multi-agent systems, they are not the

key consideration in the work described in this thesis. Our agent-based

methodology designed for grid resource management system development focus

more on agent coordination in a large scale.

3.1.4 Agent Coordination

Although ACLs and middleware systems, notably CORBA, are important to

achieve interoperability, they mainly focus on peer-to-peer communications and

do not account for a more comprehensive view of the interaction as a primary

component of agents’ societies. Therefore, both ACLs and middleware systems

have to somehow be extended in order to include not only language and protocol

specifications but also the definition of coordination laws, to allow for a global

understanding and the management of interactions.

When a multi-agent system is made up of a large number of independently

designed components, it may be very difficult to correctly design and manage the

system as a whole. An approach that simply puts components together and lets

them interact is likely to degenerate into chaos. Instead, models and tools are

needed to put components together in a structured way. As already recognised in

the area of software engineering, the design and management of a large software

project requires the definition and analysis of its software architecture

[Garlan1993, Perry1992]. This includes defining the role of each component, the

mechanisms on which composition can be based, and their composition laws. A

similar approach would be also helpful in the context of multi-agent systems.

However, in this case, a more dynamic and flexible definition of the software

architecture, that is interaction-oriented rather than composition-oriented, is

needed.

Coordination is the art of managing interactions and dependencies among

activities [Malone1994], that is, in the context of multi-agent systems, among

agents. A coordination model provides a formal framework in which the

interaction of software agents can be expressed [Gelernter1992]. A coordination

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 40 -

model consists of three elements: the coordinables, the coordination media, and

the coordination laws [Ciancarini1996]. Coordination models can be classified as

control-driven or data-driven [Papadopoulos1998], which are also illustrated in

Figure 3.3 and explained in detail below.

Coordinables

Event-Dispatching Rules

 Event Catcher

Events to/from
Coordinables

Coordinables

Data-Access Rules

Shared Data Spaces

Data to/from
Coordinables

Figure 3.3 Coordination Models: Control-driven vs. Data-driven

• Control-driven. Coordinables (agents) typically open themselves to the

external world and interact with it through events occurring on well-

defined input/output ports. Manifold [Arbab1993] is a typical language

that implements a control-driven coordination model.

• Data-driven. Coordinables interact with the external world by exchanging

data structures through the coordination media, which especially acts as a

shared data space. The research on data-driven coordination models

originates from the parallel programming language Linda [Carriero1989].

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 41 -

Different application contexts exhibit different needs with respect to coordination,

and the choice of a coordination model is likely to have a great impact in the

design of multi-agent systems. In general, control-driven coordination models

better suit those systems made up of a well-defined number of entities in which

the flow of control and the dependencies between the components have to be

regulated, and in which data exchange is not so important. The data-driven model

on the other hand seems to better suit open applications, where a number of

possibly pre-unknown and autonomous entities have to cooperate. In this case, the

control driven model would somehow clash with the autonomy of the components

and the dynamics of the open environment. Focusing on data preserves autonomy

and dynamics of the components, which are usually designed to acquire

information rather than control.

The grid environment is open and highly dynamic. The methodology developed to

implement grid resource management adopts an extended data-driven mechanism

for agents to exchange service information and cooperate with each other for

service discovery.

In this section, we provide a brief introduction to multi-agent technologies. There

is more than ten years of development of agent technologies. Agent-oriented

software engineering [Wooldridge1999, Ciancarini2001] is emerging as another

important approach complementing the structural method [Cao1996] and object-

oriented method [Fan2000], especially in the case when more and more

distributed software applications are emerging with increasing complexity and

flexibility [Cao1999c]. A more detail introduction to theories, applications,

methods, and tools of multi-agent systems can also be found in [Fan2001].

3.2 Service Advertisement and Discovery

As already stated, resource advertisement and discovery is an important issue in

the implementation of grid resource management. In this section we will introduce

service advertisement and discovery technologies for mobile computing. Many

ideas described in this section can be applied directly to problems of resource

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 42 -

discovery for grid computing. Table 3.2 gives an overview of six distributed

system infrastructures with service discovery capabilities. A good survey can also

be found in [Richard2000].

Name Unit Description Service Discovery

Blueto
oth
[Bray2
000]
[Miller
1999]

IBM,
Intel,
Nokia,
Ericsson,
Toshiba

The Bluetooth protocols
allow for the development
of interactive services and
applications over
interoperable radio
modules and data
communication protocols.

The Bluetooth Service Discovery
Protocol (SDP) provides a means
for client applications to discover
the existence of services provided
by server applications as well as the
attributes of those services. The
attributes of a service include the
type or class of service offered and
the mechanism or protocol
information needed to utilise the
service.
Features:
 Registry
 Advertisement

 Discovery
 Interoperability
 Security

HAVi
[Lea20
01]

Grundig,
Hitachi,
Panasonic,
Philips,
Sharp,
Sony,
Thomson,
Toshiba

Home Audio-Video
interoperability is a
specification for home
networks of consumer
electronics devices.
Typical HAVi devices are
digital audio and video
products such as cable
modems, set-top boxes,
digital and Internet-
enabled TVs, and storage
devices such as DVD
drives for audio and video
content. As technology
advances and becomes
more affordable, other
kinds of HAVi devices
may appear, such as
videophones and Internet
phones, which will plug
into home networks and
should be able to
communicate without the
user having to program
them.

The approach the HAVi
Architecture has adopted is to
utilise Self Device Describing
(SDD) data, required on all
devices. SDD data contains
information about the device,
which can be accessed by other
devices. The SDD data contains, as
a minimum, enough information to
allow instantiation of an embedded
Device Control Module. This
results in registration of device
capabilities with the HAVi
Registry, allowing applications to
infer the basic set of command
messages that can be sent to the
device.
Features:

 Registry
 Advertisement
 Discovery

 Interoperability
 Security

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 43 -

Jini
[Amol
d1999]
[Jini19
99]

Sun
Microsyste
ms

A Jini system is a
distributed system based
on the idea of federating
groups of users and the
resources required by
those users. The overall
goal is to turn the network
into a flexible, easily
administered tool on
which resources can be
found by human and
computational clients. The
focus of the system is to
make the network a more
dynamic entity that better
reflects the dynamic nature
of the workgroup by
enabling the ability to add
and delete services
flexibly.

The heart of the Jini system is a trio
of protocols called discovery, join,
and lookup. A pair of these
protocols, discovery/join, occurs
when a device is plugged in.
Discovery occurs when a service is
looking for a lookup service with
which to register. Join occurs when
a service has located a lookup
service and wishes to join it.
Lookup occurs when a client or
user needs to locate and invoke a
service described by its interface
type (written in the Java
programming language) and
possibly, other attributes.
Features:

 Registry
 Advertisement
 Discovery
 Interoperability
 Security

Salutati
on
[Pasco
e2001]

The
Salutation
Consortium

The Salutation architecture
is created to solve the
problems of service
discovery and utilisation
among a broad set of
appliances and equipment
and in an environment of
widespread connectivity
and mobility.

The architecture provides a
standard method for applications,
services and devices to describe
and to advertise their capabilities to
other applications, services and
devices and to find out their
capabilities. The architecture also
enables applications, services and
devices to search other
applications, services or devices for
a particular capability, and to
request and establish interoperable
sessions with them to utilize their
capabilities.
Features:

 Registry
 Advertisement
 Discovery
 Interoperability

 Security
SLP
[Guttm
an1999
]

The IETF The Service Location
Protocol provides a
scalable framework for the
discovery and selection of
network services. Using
this protocol, computers
using the Internet need

SLP supports a framework by
which client applications are
modelled as User Agents and
services are advertised by Service
Agents. A third entity, called a
Directory Agent provides
scalability to the protocol.

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 44 -

little or no static
configuration of network
services for network based
applications. This is
especially important as
computers become more
portable, and users less
tolerant or able to fulfil the
demands of network
system administration.

Features:
 Registry
 Advertisement
 Discovery
 Interoperability
 Security

UPnP
[UPnP
200]
[Golan
d1999]

Microsoft Universal Plug and Play
(UPnP) is architecture for
pervasive peer-to-peer
network connectivity of
PCs of all form factors,
intelligent appliances, and
wireless devices. UPnP is
a distributed, open
networking architecture
that leverages TCP/IP and
the Web to enable
seamless proximity
networking in addition to
control and data transfer
among networked devices
in the home, office, and
everywhere in between.

Simple Service Discovery Protocol
(SSDP), as the name implies,
defines how network services can
be discovered on the network.
SSDP defines methods both for a
control point to locate resources of
interest on the network, and for
devices to announce their
availability on the network. SSDP
eliminates the overhead that would
be necessary if only one of these
mechanisms is used.
Features:
 Registry

 Advertisement
 Discovery

 Interoperability
 Security

Table 3.2 Overview of Distributed System Infrastructures with Service
Discovery Capabilities

Service advertisement and discovery technologies enable device cooperation and

reduce configuration problems, which is a necessity in increasingly mobile

computing environment. The main features of the service discovery suites

include: service registry, service advertisement, service discovery, and

interoperability. These are introduced in the sections below.

3.2.1 Service Registry

When a new component enters into a distributed system, there is usually a

registration procedure for it to contact other existing components in the system.

This process can be described by service registry.

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 45 -

In Jini, to register service availability or to discover services, a service or client

must first locate one or more lookup servers by using a multicast request protocol.

This request protocol terminates with the invocation of a unicast discovery

protocol, in which clients and services are used to communicate with a specific

lookup service.

Unlike Jini, SLP can operate without directory servers. The presence of one or

more directory agents can substantially improve performance, however, this is

done by reducing the number of multicast messages and the amount of network

bandwidth used. In active discovery, service agents and user agents multicast SLP

requests or use DHCP to discover directory agents. When a directory agent is

present, service agents and user agents use unicast communication to register their

services and find appropriate services respectively. In the absence of directory

agents, user agents multicast requests for services and receive unicast responses

directly from the service agents that control the matching services. This tends to

increase bandwidth consumption, but provides a simpler model, appropriate for

small networks.

In the A4 methodology introduced in this work, there is no distinction between

clients, servers, and go-betweens as seen in Jini and SLP. Each agent in the

system functions as a client, a server, or a directory, which provides a simpler

model as well as resulting in a high performance implementation.

3.2.2 Service Advertisement

After joining the system, the components in the system operating as service

providers must advertise their services to other components, which is referred to

as service advertisement.

In UPnP, there is no service registry process. However, when devices are

introduced into a network, they directly multicast “alive” messages to control

points. When they want to cancel the availability of their services, they send

“byebye” messages. In SSDP, each service has three associated IDs – service

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 46 -

type, service name, and location – which are multicast when services are

advertised.

Jini uses Java’s Remote Method Invocation (RMI) facility for all interactions

between either a client or a service and the lookup server after initial discovery of

the lookup server. Jini associates a proxy, or remote control object, with each

service instance. A service advertises its availability by registering its object in

one or more lookup servers.

In the A4 methodology, service advertisement only happens between nearby

agents so that the system is scalable, the details of which will be introduced in

Chapter 5.

3.2.3 Service Discovery

The components acting as service requestors will search for available services in

the system. This is the kernel process, which is defined as service discovery.

Bluetooth is a wireless radio system, so there is no service registry or

advertisement in Bluetooth. The Bluetooth SDP provides a simple API for

enumerating the devices in range, and browsing available services. It also

supports “stop” rules that limit the duration of searches or the number of devices

returned. Client applications use the API to search for available services either by

service class that uniquely identify types of devices, or by matching attributes.

Salutation managers function as service brokers; they help clients find needed

services and let services register their availability. A client can use the

slmSearchCapability() call to determine if Salutation managers have registered

specific functional units. Once a functional unit is discovered,

slmQueryCapability() can be used to verify that a functional unit has certain

capabilities.

In the A4 methodology, many agents can take part in a service discovery process.

A service discovery process can traverse the system for many steps until the

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 47 -

discovery succeeds or is forced to stop. This mechanism has a scalable

implementation, which is different from all of the above methods.

3.2.4 Interoperability

When a client component in the system finds an available server component,

whether these two components can cooperate with each other directly is described

as the problem of interoperability.

In Jini, to use a service, a device must first secure an instance of the proxy object

for it. From a client point of view, the location of the service provided by this

remote control object is unimportant, because the object encapsulates the location

of the service and the protocol necessary to operate it.

Salutation managers fill a role similar to lookup servers in Jini, but they can also

manage the connections between clients and services. After the connection is

established, a Salutation manager can operate in several “personalities” , with or

without further operations in the data stream.

Unlike higher level service discovery technologies such as Jini, Bluetooth’s SDP

does not provide a mechanism for using discovered services – specific actions

required to use a service must be provided by a higher level protocol. However, it

does define a standard attribute ProtocolDescriptionList, which enumerates

appropriate protocols for communicating with a service.

In the initial implementation of A4 systems, the protocols for communication

among agents are pre-defined using simple data structures. Interoperability is

supported in a simple way, which may need further extensions for practical large-

scale applications.

Another important issue, which is not a key consideration in the A4 methodology,

is the feature of security. For example, Jini depends on Java’s security model,

which provides tools like digital certificates, encryption, and control over mobile

code activities. The security issues will not be discussed in detail here. The A4

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 48 -

methodology focuses on simulation based quantitative performance evaluation

and optimisation of service discovery in large-scale multi-agent systems, which

cannot be found in other work.

3.3 Use of Agent Technologies in Grid Development

The use of service discovery in multi-agent systems provides a suitable high-level

abstraction for grid resource management, which will be described in detail in

Chapter 5 as the so-called A4 methodology. In this section, we give a brief

introduction to the state-of-the-art in the use of agent technologies in grid

development.

Software agents have been used in several grid projects, such as AppLeS, DPSS,

and NetSolve. In these projects, agents are high-level abstractions of software

entities, which usually act as resource or data brokers or representatives of grid

users in the grid software infrastructure. An agent-based grid computing project

can be found in [Rana2001]. In this work, an “Agent Grid” is described that

integrates services and resources for establishing multi-disciplinary PSEs

(Problem Solving Environments). Specialised agents contain behavioural rules,

and can modify these rules based on their interaction with other agents, and with

the environment in which they operate. The A4 methodology can also be applied

for integrating multiple services and resources. Rather than using a collection of

many predefined specialised agents, a hierarchy of homogenous agents is used in

the A4 methodology, where agents can be reconfigured with special roles at

running time.

As mentioned, agents can achieve autonomy through intelligence and social

ability. Both of these features can be used in grid development. For example, a

resource scheduler is an important entity in a grid resource management system.

Due to the large search space, AI technologies will most likely be used to solve

large-scale resource scheduling issues. The powerful high-level abstraction of

multi-agent systems can also be used to solve some architectural problems arising

in grid development. In this work, we use agents for grid resource management.

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 49 -

As summarised in [Buyya2000b], there are three different models for grid

resource management architecture: hierarchical model, abstract owner model, and

computational market/economy model. In the methodology provided by A4, the

agent system is organised in a hierarchical manner, which is used to address

scalability. Meanwhile, each agent also acts as an abstract owner of the grid

resources, and the service discovery process is performed in a market based way.

Making full use of capabilities that agents provide, our architectural model for

grid resource management can capture the essence of all three of the existing

models.

During the past two years, the research into agents and the grid have begun to

converge. A key sign of this trend can be seen clearly at CCGrid 2001. At this

conference on cluster computing and the grid, two keynote speeches, one main

conference section, and one workshop focused on research into agent

technologies. It is clear that more agent applications on grid computing will

emerge during the next few years.

However, agents cannot do everything, and there is also a long way to go to put

grid computing into practice. In this work, we provide a framework (including

methodology, functionality, and corresponding tools) for agent-based resource

management for grid computing. There are many gaps that remain and require

further work for a full grid resource management system. For example, an agent-

based grid resource management system should be able to cooperate with other

grid services (e.g. those provided by the Globus toolkit). These are not discussed

in detail here.

3.4 Summary

Multi-agent and service discovery technologies have been introduced in detail in

this chapter, which provides the background of the A4 methodology presented in

Chapter 5. There is little research into the performance of large-scale multi-agent

systems, because there are seldom such kinds of agent applications. This research

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

- 50 -

is motivated by the development of a grid resource management system, which is

large-scale with highly dynamic behaviours.

By the use of advanced agent technology the development of the software

infrastructure in the grid is sure to accelerate. At the same time, new applications

with new requirements will also stimulate the emergence of new technologies for

software agents.

From a view of software engineering, agents provide high-level abstractions to the

system. To implement an agent, different techniques must be applied according to

requirements from different agent applications. In the work described in the

thesis, performance prediction capabilities are one of the key features for the

agent implementation, which can be provided by PACE. In the following four

chapters, the main parts of the work are introduced, beginning with a case study of

the performance evaluation using the PACE toolkit.

- 51 -

CChhaapptteerr 44

SSWWEEEEPP33DD::

PPEERRFFOORRMMAANNCCEE EEVVAALLUUAATTIIOONN UUSSIINNGG

TTHHEE PPAACCEE TTOOOOLLKKIITT

The grid resource management system is introduced, beginning with previous

work at Warwick, that is the PACE toolkit. In this chapter, we validate the PACE

performance prediction capabilities using a new parallel application [Cao1999d]

called Sweep3D - a complex benchmark for evaluating wavefront application

techniques on high performance parallel and distributed architectures [Koch1992].

This benchmark is also being analysed by other performance prediction

approaches including POEMS. The sections below contain a brief overview of

Sweep3D, the model description of the application, and validation results on two

high performance systems.

4.1 Overview of Sweep3D

The benchmark code Sweep3D represents the heart of a real Accelerated Strategic

Computing Initiative (ASCI) application [Nowak1997]. It solves a 1-group time-

independent discrete ordinates (Sn) 3D cartesian (XYZ) geometry neutron

transport problem. The XYZ geometry is represented by a 3D rectangular grid of

cells indexed as IJK. The angular dependence is handled by discrete angles with a

spherical harmonics treatment for the scattering source. The solution involves two

CHAPTER 4 SWEEP3D

- 52 -

main steps: the streaming operator is solved by sweeps for each angle, and the

scattering operator is solved iteratively.

A sweep (Sn) proceeds as follows. For one of eight given angles, each grid cell

has 4 equations with 7 unknowns (6 faces plus 1 central); boundary conditions

complete the system of equations. The solution is by a direct ordered solve known

as a sweep from one corner of the data cube to the opposite corner. Three known

inflows allow the cell centre to be solved producing three outflows. Each cell’ s

solution then provides inflows to 3 adjoining cells (1 in each of the I, J, & K

directions). This represents a wavefront evaluation in all 3 grid directions. For

XYZ geometries, each octant of angles has a different sweep direction through the

mesh, but all angles in a given octant sweep the same way.

Sweep3D exploits parallelism through the wavefront process. The data cube

undergoes a decomposition so that a set of processors, indexed in a 2D array, hold

part of the data in the I and J dimensions, and all of the data in the K dimension.

The sweep processing consists of pipelining the data flow from each cube vertex

in turn to its opposite vertex. It is possible for different sweeps to be in operation

at the same time but on different processors.

K

I J

A

B

C

Figure 4.1 Data Decomposition of the Sweep3D Cube

For example, Figure 4.1 depicts a wavefront (shaded in Grey) that originated from

the unseen vertex in the cube, and is about to finish at vertex A. At the same time,

a further wavefront is starting at vertex B and will finish at vertex C. Note that the

CHAPTER 4 SWEEP3D

- 53 -

example shows the use of a 5x5 grid of processors, and in this case each processor

holds a total of 2x2x10 data elements (data set of 10x10x10).

The version of Sweep3D that can be downloaded from the ASCI website is

written entirely in Fortran77 except that it requires automatic arrays and a C timer

routine is used. This version of Sweep3D supports both PVM [Geist1994] and

MPI [Dongarra1994] message passing libraries as well as a single processor

version. In this case study, we convert the Sweep3D programmes into a pure C

version with only MPI functions, which can be used more conveniently for

validation experiments of PACE performance modelling and prediction

capabilities.

4.2 Sweep3D Models

In this section, we introduce the Sweep3D performance models in detail. The

application model is composed of 9 objects written in the PACE PSL. The

creation of resource models for two platforms is also introduced. The relations

between the source code, application model, and resource model help a better

understanding of the PACE methodology. The contents in this section correspond

to those shown schematically in Section 2.2.

4.2.1 Model Description

We define the application object of the model as sweep3d, and divide each

iteration of the application into four subtasks according to their different functions

and different parallelisations. The object hierarchy is shown in Figure 4.2, each

object is a separate rectangle and is labelled with the object name. The functions

of each object are:

• sweep3d – the entry of the whole performance model. It initialises all

parameters used in the model and calls the subtasks iteratively according

to the convergence control parameter (epsi) as input by the user.

CHAPTER 4 SWEEP3D

- 54 -

• source – subtask for getting the source moments, which is actually a

sequential process.

• sweep – subtask for sweeper, which is the core component of the

application.

• fixed – subtask to compute the total flux fixup number during each

iteration.

• flux_err – subtask to compute the maximum relative flux error.

• async – a sequential “parallel” template.

• pipeline – parallel template specially made for the sweeper function.

• globalsum – parallel template which represents the parallel pattern for

getting the sum value of a given parameter from all the processors.

• globalmax – parallel template which represents the parallel pattern for

getting the maximum value of a given parameter from all the processors.

• SgiOrigin2000 – contains all the hardware configurations for SGI

Origin2000, which is comprised of smaller component hardware models

already in existence within PACE. This can be interchanged with a

hardware model of a different system, e.g. a cluster of Sun workstations.

Application
Object

Subtask
Object

sweep3d

sweep source flux_err fixed

Parallel
Template
Object

Hardware
Object

async pipeline global
sum

global
max

SgiOrigin2000

Figure 4.2 Sweep3D Object Hierarchy (HLFD Diagram)

CHAPTER 4 SWEEP3D

- 55 -

4.2.2 Application Model Creation

The objects of application, subtask, and parallel template in the Sweep3D model

introduced above can be expressed using the PACE PSL. The PSL code for

Sweep3D is fully listed in Appendix A. Figure 4.3 describes different parts of the

sweep3d object clearly in PSL scripts, the sections of which correspond to those

schematically shown in Figure 2.2.

 application sweep3d {
 include har dwar e;
 include sour ce;
 include sweep;
 include f i xed;
 include f l ux_er r ;
 var numer i c :
 npe_i = 2,
 npe_j = 3,
 mk = 10,
 mmi = 3,
 i t _g = 50,
 j t _g = 50,
 k t = 50,
 epsi = - 12,
 · · · · · ·
 link {
 har dwar e:
 Npr oc = npe_i * npe_j ;
 sour ce:
 i t = i t ,
 · · · · · ·
 sweep:
 i t = i t ,
 · · · · · ·
 }
 option {
 hr duse = " Sgi Or i gi n2000" ;
 }
 proc exec i ni t {
 · · · · · ·
 f or (i = 1; i <= - epsi ; i = i + 1) {
 call sour ce;
 call sweep;
 call f i xed;
 call f l ux_er r ;
 }
 }
}

Figure 4.3 Sweep3D Application Object

Each object follows the same syntax and requires the following parts:

• Include statement – declares other objects that are referenced.

CHAPTER 4 SWEEP3D

- 56 -

• External variable definition – defines variables that form the interface to

other objects as well as the PSL run-time system. The variables can be

either numeric or strings.

• Linking statement – enables external variables and options defined in other

objects to be modified.

• Option – sets the default options of the object.

• Procedures – describe the relationships between objects in order to predict

performance. These relationships can either be described as control flow

graphs (cflow) or execution statements (exec), which are analytical

formulas. Each object also has a procedure init, which is the entry point

for evaluation.

Some of the main statements used in the PSL to represent the performance aspects

of the source code are as follows:

• compute – a processing part of the application, its argument is a resource

usage vector. This vector is evaluated through the hardware object.

• loop – the body of which includes a list of the control flow statements that

will be repeated.

• call - used to execute another procedure.

• case – the body of which includes a list of expressions and corresponding

control flow statements which might be evaluated.

• step – corresponds to the use of one of the hardware resources of the

system. Its argument is used to configure the device specified in the

current step. This is used in parallel templates only.

• confdev – configures a device. The meaning of its arguments depend on

the device. For example, the device mpirecv (MPI receive communication

operation) accepts three arguments: source processor ID, destination

processor ID and message size.

CHAPTER 4 SWEEP3D

- 57 -

As mentioned before, application model creation can be processed almost

automatically with the assistance of PACE application characterisation tool,

which makes the performance modelling very easy and fast. However, during the

performance modelling of Sweep3D, we still meet some difficulties.

Firstly, there are some aspects of the program that can be only processed by the

PACE tools under guidance by the user. For example, the loop numbers in the

program those are not explicit must be estimated by input from the user directly.

PACE tools do not analyse data dependencies in the program. In Sweep3D, if a

loop number is not a constant, we calculate an average value as an approximate

estimation and input it to the model. The execution probabilities of each branch of

if statements must also be estimated by the user, which make the implementation

of PACE source code analysis tools much more efficient.

Secondly, there are some non-structural C statements like goto statement in the

Sweep3D source code, which are not supported by PACE tools. We must give a

reasonable estimation about these parts. Fortunately, those parts contain only a

small number of instructions and have little impact on the overall execution time

of the program.

Thirdly, pipeline is a parallel template specially made for the sweeper function,

which is the kernel part of the Sweep3D model. Though, as mentioned before, a

line by line mapping relation exists between the source code and corresponding

parallel template, we must define the arguments of device configurations by

ourselves, which need a deeper understanding of the parallelisation of Sweep3D.

For example, the processors used by Sweep3D are logically organised into a 2D

array, so the arguments for mpirecv, such as the source processor ID and the

destination processor ID, must be calculated in advance. That is why pipeline

looks much more complex than the other parallel template objects.

Though there are several approximate processes in the Sweep3D model, we can

still get fairly reasonable performance prediction results given in the following

sections. The accuracy of the performance prediction lies on not only the

CHAPTER 4 SWEEP3D

- 58 -

application model but also the hardware configurations described in the resource

models.

4.2.3 Resource Model Creation

The resource models are embedded in the PACE tools ready for application

performance evaluation. For ordinary usage, the PACE resource tools are not

provided to the user. There are only a limited number of hardware platforms, so

these models can be pre-installed into the PACE system, and be used directly for

performance evaluation, which is convenient especially to those users who are not

professional performance engineers. Figure 4.4 gives an illustration of part of the

resource model for the multi-processor machine, the SGI Origin 2000.

 config Sgi Or i gi n2000 {

 har dwar e {

 }
 pvm {

 }
 mpi {

 DD_COMM_A = 512,
 DD_COMM_B = 33. 228,
 DD_COMM_C = 0. 02260,
 DD_COMM_D = - 5. 9776,
 DD_COMM_E = 0. 10690,
 DD_TRECV_A = 512,
 DD_TRECV_B = 22. 065,
 DD_TRECV_C = 0. 06438,
 DD_TRECV_D = - 1. 7891,
 DD_TRECV_E = 0. 09145,
 DD_TSEND_A = 512,
 DD_TSEND_B = 14. 2672,
 DD_TSEND_C = 0. 05225,
 DD_TSEND_D = - 12. 327,
 DD_TSEND_E = 0. 07646,

 }
 c l c {

 }
}

Figure 4.4 SGI Origin2000 Hardware Object

However, when a new hardware platform emerges, a new resource model should

be produced for performance evaluation of applications running on this new

CHAPTER 4 SWEEP3D

- 59 -

resource. Also, if a new network API like MPI and PVM is developed, the

corresponding configuration should also be added into each resource model.

When we begin to evaluate the Sweep3D model on the SGI Origin2000, the MPI

configurations shown in Figure 4.4 are actually not ready in the SGI Origin2000

model. In this section, we give a brief introduction to how this data is produced

using PACE tools, which can lead to a deeper understanding of the working

mechanisms of PACE.

We notice that each MPI function is configured using five parameters, A to E.

These parameters provide a simple description of MPI communications between

processors of SGI Origin2000. They are used to calculate the consuming time of

corresponding communication operation according to the follow equation:

T
B Cx

D Ex

if

if

x A

x Ax =
+
+

�� � ≤
>

,

,

where x is the number of double floats during one communication process (to

make the evaluation of the Sweep3D model easy, we use the number of double

floats directly as the variable. For general use of the model, x should be the

number of communicating bytes).

A benchmark program with an MPI communication interface is run on two

processors in a Ping-Pong style. For a given length of contents, the processors

send it back and forth many times. Timers are added into the beginning and end

points of the communication and measure the communication time consumed.

Average values are calculated and recorded into the data files. In each data file,

there are a number of data items. Each data item is a pair of data length and

communication time.

Figure 4.5 gives a simple linear regression program written in Mathematica

[Wolfram1991]. Given a data file, the function described in the program can

calculate the five parameters and create corresponding hardware communication

models. The results it produces from three data files are those parameters shown

in Figure 4.4.

CHAPTER 4 SWEEP3D

- 60 -

Figure 4.5 Creating Hardware Communication Models Using
Mathematica

PACE processor resource model creation will not be described here and can be

found in [Papaefstathiou1994]. It is clear that the data included in the PACE

resource models are static, which ignores the impact of the dynamic factors on the

system performance, such as the changing of computing workload and

CHAPTER 4 SWEEP3D

- 61 -

communication bandwidth. For most of the tightly coupled parallel systems that

are not overloaded, PACE resource models can still give good approximate and

provide reasonable accuracy.

4.2.4 Mapping Relations

This section corresponds to those introduced in Section 2.2.4. The example model

objects and their correspondence with the C source code are shown in Figure 4.6,

which is a detailed example of Figure 2.5.

 Sweep3D Source Code

voi d l ast () {
 #pragma capp I f do_dsa
 i f (do_dsa) {
 i = i 0 - i 2;
 #pragma capp Loop mmi
 f or (mi = 1; mi <= mmi ; mi ++) {
 m = mi + mi o;
 #pragma capp Loop nk
 f or (l k = 1; l k <= nk; l k++) {
 k = k0 + si gn(l k-1, k2) ;
 #pragma capp Loop j t
 f or (j = 1; j <= j t ; j ++) {
 Face[i +i 3] [j] [k] [1] =
 Face[i +i 3] [j] [k] [1] +
 wmu[m]*Phi i b[j] [l k] [mi] ;
 }
 }
 }
 }
}

voi d work() {
 #pragma capp I f do_dsa
 i f (do_dsa) {
 i = i 0 - i 2;
 #pragma capp Loop mmi
 f or(mi = 1; mi <= mmi ; mi ++) {
 m = mi + mi o;
 #pragma capp Loop nk
 for (l k = 1; l k <= nk; l k++) {
 k = k0 + si gn(l k-1, k2) ;
 #pragma capp Loop j t
 f or (j = 1; j <= j t ; j ++) {
 Face[i +i 3] [j] [k] [1] =
 Face[i +i 3] [j] [k] [1] +
 wmu[m] *Phi i b[j] [l k] [mi] ;
 }
 }
 }
 }
}

Sweep3D Performance Model Scripts

voi d compu_f ace() {
 #pragma capp I f do_dsa
 i f (do_dsa) {
 i = i 0 - i 2;
 #pragma capp Loop mmi
 f or (mi = 1; mi <= mmi ; mi ++) {
 m = mi + mi o;
 #pragma capp Loop nk
 f or (l k = 1; l k <= nk; l k++) {
 k = k0 + si gn(l k-1, k2) ;
 #pragma capp Loop j t
 f or (j = 1; j <= j t ; j ++) {
 Face[i +i 3] [j] [k] [1] =
 Face[i +i 3] [j] [k] [1] +
 wmu[m] *Phi i b[j] [l k] [mi] ;
 }
 }
 }
 }
}

subtask sweep {

 proc cflow comp_f ace {(* Cal l s: si gn *)
 compute <i s cl c, FCAL>;
 case (<i s cl c, I FBR>) {
 do_dsa:
 compute <i s cl c, AI LL, TI LL, SI LL>;
 loop (<i s cl c, LFOR>, mmi) {
 compute <i s cl c, CMLL, AI LL, TI LL, SI LL>;
 loop (<i s cl c, LFOR>, nk) {
 compute <i s cl c, CMLL, AI LL>;
 compute <i s cl c, AI LL>;
 call cf l ow si gn;
 compute <i s cl c, TI LL, SI LL>;
 loop (<i s cl c, LFOR>, j t) {
 compute <i s cl c, CMLL, 2*ARD4, ARD3,
 ARD1, MFDL, AFDL, TFDL, I NLL>;
 }
 compute <i s cl c, I NLL>;
 }
 compute <i s cl c, I NLL>;
 }
 }
 } (* End of comp_f ace *)
 proc cflow work { }
 proc cflow l ast { }

}

partmp pi pel i ne {

 proc exec i ni t {

 step cpu { confdev Tx_sweep_i ni t ; }
 for (phase = 1; phase <= 8; phase = phase + 1) {
 step cpu { confdev Tx_oct ant ; }
 step cpu { confdev Tx_get _di rect ; }
 f or (i = 1; i <= mmo; i = i + 1) {
 step cpu { confdev Tx_pi pel i ne_i ni t ; }
 f or(j = 1; j <= kb; j = j + 1) {
 step cpu { confdev Tx_kk_l oop_i ni t ; }
 for (x = 1; x <= npe_i ; x = x + 1)
 for (y = 1; y <= npe_j ; y = y + 1) {
 myi d = Get _myi d(x, y) ;
 ew_rcv = Get_ew_rcv(phase, x, y) ;
 i f (ew_rcv != 0)
 step mpi recv { confdev ew_rcv, myi d, ni b; }
 el se
 step cpu on myi d { confdev Tx_el se_ew_rcv; }
 }
 step cpu { confdev Tx_comp_f ace; }
 for (x = 1; x <= npe_i ; x = x + 1)
 for (y = 1; y <= npe_j ; y = y + 1) {
 myi d = Get _myi d(x, y) ;
 ns_rcv = Get_ns_rcv(phase, x, y) ;
 i f (ns_rcv != 0)
 step mpi recv { confdev ns_rcv, myi d, nj b; }
 el se
 step cpu on myi d { confdev Tx_el se_ns_rcv; }
 }
 step cpu { confdev Tx_work; }

 }
 step cpu { confdev Tx_l ast ; }
 }
 }
 }
}

voi d sweep() {

 sweep_init();
 f or (i q = 1; i q <= 8; i q++) {
 octant();
 get_direct();
 f or (mo = 1; mo <=mmo; mo++) {
 pipeline_init();
 f or (kk = 1; kk <= kb; kk++) {
 kk_loop_init();

 i f (ew_rcv != 0)
 i nf o = MPI_Recv(Phi i b, ni b,
 MPI _DOUBLE, t i ds[ew_rcv] ,
 ew_t ag, MPI _COMM_WORLD,
 &st at us);
 el se
 else_ew_rcv();

 comp_face();

 i f (ns_rcv != 0)
 i nf o = MPI_Recv(Phi j b, nj b,
 MPI _DOUBLE, t i ds[ns_rcv] ,
 ns_t ag, MPI _COMM_WORLD,
 &st at us);
 el se
 else_ns_rcv();

 work();

 }
 last();
 }
 }
}

config Sgi Or i gi n2000 {

 hardware {

 }
 pvm {

 }
 mpi {

 DD_COMM_A = 512,
 DD_COMM_B = 33. 228,
 DD_COMM_C = 0. 02260,
 DD_COMM_D = -5. 9776,
 DD_COMM_E = 0. 10690,
 DD_TRECV_A = 512,
 DD_TRECV_B = 22. 065,
 DD_TRECV_C = 0. 06438,
 DD_TRECV_D = -1. 7891,
 DD_TRECV_E = 0. 09145,
 DD_TSEND_A = 512,
 DD_TSEND_B = 14. 2672,
 DD_TSEND_C = 0. 05225,
 DD_TSEND_D = -12.327,
 DD_TSEND_E = 0. 07646,

 }
 cl c {

 MFSL = 0. 00602936,
 MFSG = 0. 025046,
 MFDL = 0. 0068927,
 MFDG = 0. 011226,

 ARDN = 0. 000612696,
 ARD1 = 0. 0094727,
 ARD2 = 0. 0234027,
 ARD3 = 0. 0438327,
 ARD4 = 0. 0672354

 CMLL = 0. 0098327,
 CMLG = 0. 0203127,
 CMSL = 0. 0096327,
 CMSG = 0. 0305927,
 CMCL = 0. 0100327,
 CMCG = 0. 0223627,
 CMFL = 0. 0107527,
 CMFG = 0. 0229227,
 CMDL = 0. 0106327,
 CMDG = 0. 0227327,
 I FBR = 0. 0020327,

 FCAL = 0. 030494,
 LFOR = 0. 011834,

 }
}

A C

E B D

Profiling

Figure 4.6 Mapping between Sweep3D Model Objects and C Source
Code

CHAPTER 4 SWEEP3D

- 62 -

Figure 4.6A is the C source code showing part of the main function sweep, whose

serial parts have been abstracted into a number of sub-functions in bold font.

Figure 4.6C shows how the same source code structure is used to provide the

parallel template description. Figure 4.6B is an example sub-function source code,

which can be converted automatically to the control flow procedure in the subtask

object as shown in Figure 4.6D.

Figure 4.6 also shows the inner mapping between the software objects and

hardware object of the performance model. All of the performance specification

components in PSL can find their corresponding configurations from the hardware

object, shown in Figure 4.6E. The abundant off-line configuration information

included by the hardware object is the basis to implement a rapid evaluation time

to produce the performance predictions.

It can be seen from the part of the Sweep3D model that there is a lot of

information extracted from the source code that is used for the performance

prediction. The accuracy of the resulting model is of importance, and in Section

4.3 below, detailed results are shown to validate the model with measurements on

the two systems considered.

4.3 Validation Experiments

In this section validation results on execution time for Sweep3D are given to

illustrate the accuracy of the PACE modelling capabilities for performance

evaluation. The procedures in the PACE evaluation engine to achieve these results

have been introduced in Section 2.5.

4.3.1 Validation Results on SGI Origin2000

Table 4.1 shows the validation results of the PACE model against the code

running on an SGI Origin2000 shared memory system. Note that the result for

single processor input are not included because there are many special

configurations, which are not included in the current performance model for the

CHAPTER 4 SWEEP3D

- 63 -

sequential code. The accuracy of the performance prediction results were

evaluated as follows:

Error =
Prediction - Measurement

Measurement
× 100%

The errors between measurements and predictions are also shown in Table 4.1. It

can be seen that the maximum error is 11.44%, but the average error is

approximately 5%.

Total Time Data

Size

2D
Proc.
Array Prediction (s) Measurement (s) Err (%)

1x2 4.73037 4.440255 6.53
2x2 2.59659 2.584936 0.45
2x3 1.8373 1.812252 1.38
2x4 1.51869 1.609818 -5.66
3x3 1.3399 1.343736 -0.29
3x4 1.10918 1.164072 -4.72

15x15x15

4x4 0.907100 1.002728 -9.54
1x2 22.9501 20.780170 10.44
2x2 12.1537 11.619632 4.60
2x3 7.83574 7.893481 -0.73
2x4 6.02865 5.979522 0.82
3x3 5.52498 5.532116 -0.13
3x4 4.24959 4.469564 -4.92

25x25x25

4x4 3.36453 3.537966 -4.90
1x2 69.3858 64.832165 7.02
2x2 36.1978 33.097098 9.37
2x3 22.1074 21.160975 4.47
2x4 16.3181 16.137180 1.12
3x3 15.3466 15.272606 0.48
3x4 11.3211 11.451001 -1.13

35x35x35

4x4 8.84226 9.984213 -11.44
1x2 217.398 228.893311 -5.02
2x2 112.307 102.285787 9.80
2x3 65.6201 67.278086 -2.46
2x4 46.7591 49.534483 -5.60
3x3 45.1373 47.289627 -4.55
3x4 32.1438 34.796392 -7.62

50x50x50

4x4 24.8468 24.800020 0.20

Table 4.1 PACE Model Validation on an SGI Origin2000

CHAPTER 4 SWEEP3D

- 64 -

The validation results are also illustrated in Figure 4.7. As shown in the figure,

run time decreases when the number of processors increases. At the same time the

parallel efficiency decreases too. In fact when the number of processors is more

than 16, the run time does not improve any further.

grid size: 15x15x15

0

1

2

3

4

5

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Processors

Run
time
(sec) Model

Measured

grid size: 25x25x25

0

5

10

15

20

25

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Processors

Run
time
(sec) Model

Measured

grid size: 50x50x50

0

50

100

150

200

250

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Processors

Run
time
(sec) Model

Measured

grid size: 35x35x35

0
10
20
30
40
50
60
70
80

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Processors

Run
time
(sec) Model

Measured

Figure 4.7 PACE Model Validation on an SGI Origin2000

4.3.2 Validation Results on Sun Clusters

By only changing the hardware object to the SunUltra1 predictions on this new

system can be obtained as shown in Table 4.2. A cluster of 9 SunUltra1

workstations was used to obtain the measurements assuming no background

loading.

Total Time Data

Size

2D Proc.
Array

Prediction (s) Measurement (s) Err (%)

1x2 11.597 12.442062 -6.79
2x2 7.42898 6.938457 7.07
2x3 5.88532 5.659182 4.00
2x4 5.29021 5.445188 2.85

15x15x15

3x3 4.84622 5.101984 5.01
25x25x25 1x2 51.4059 51.326475 0.15

CHAPTER 4 SWEEP3D

- 65 -

2x2 29.6231 27.409842 8.07
2x3 20.5203 20.188288 1.64
2x4 16.7535 17.007142 -1.49

3x3 15.5563 15.041854 3.42
1x2 149.708 145.008424 3.24
2x2 82.8056 78.401377 5.62
2x3 53.097 53.201457 -0.20
2x4 40.9785 42.817732 -4.30

35x35x35

3x3 38.4032 37.551111 2.27
1x2 456.928 462.103560 -1.12
2x2 244.501 232.202359 5.30
2x3 147.7 147.227193 0.32
2x4 108.571 120.719472 -10.06

50x50x50

3x3 103.838 104.700557 0.82

Table 4.2 PACE Model Validation on a Cluster of SunUltra1
Workstations

It can be seen that the maximum error is 10.06%, but the average error is also

approximately 5%. As shown in Figure 4.8, the run time spent is much more than

that on SGI Origin2000 with the same workload. But the trend of the curve is

almost the same.

grid size: 15x15x15

0
2
4
6
8

10
12
14

02 03 04 05 06 07 08 09
Processors

Run
time
(sec)

Model
Measured

grid size: 25x25x25

0

10

20

30

40

50

60

02 03 04 05 06 07 08 09
Processors

Run
time
(sec)

Model
Measured

grid size: 35x35x35

0
20
40
60
80

100
120
140
160

02 03 04 05 06 07 08 09
Processors

Run
time
(sec)

Model
Measured

grid size: 50x50x50

0
50

100
150
200
250
300
350
400
450
500

02 03 04 05 06 07 08 09
Processors

Run
time
(sec) Model

Measured

Figure 4.8 PACE Model Validation on a Cluster of SunUltra1
Workstations

CHAPTER 4 SWEEP3D

- 66 -

Besides the reasonable accuracy, the performance model can be used to obtain the

evaluation results in a rapid time period, typically less than 2s. This is a key

feature of PACE that enables the performance models to be used to steer the

application execution onto an available system at run-time in an efficient manner

[Kerbyson1998, Alkindi2001].

4.4 PACE as a Local Resource Manager

In this chapter, we use Sweep3D as a case study to validate the performance

prediction capabilities of the PACE toolkit. The key features of PACE

performance prediction capabilities include:

• a reasonable prediction accuracy (the maximum error between

measurements and predictions is 15%);

• a rapid evaluation time (typically seconds of CPU use) for a given system

and problem size;

• and easy performance comparison across different computational systems.

It has been shown that the PACE system can produce reliable performance

information which may be used for investigating application and system

performance in many different ways. As mentioned in [Kerbyson2000],

performance data produced by PACE can be used for the management of parallel

and distributed systems. However, the PACE toolkit is initially not developed in

the context of grid computing. In this section, we will discuss whether PACE

functions can be used to produce performance related data for resource

management in a grid environment.

As we have mentioned in Section 2.4, a grid environment brings two key

challenges, which are scalability and adaptability. For the grid resource

management system to be scalable, it is obviously not possible to provide the

whole grid resources with one PACE manager. In this case, it will definitely

become the bottleneck of the system. It is practical that one PACE resource

CHAPTER 4 SWEEP3D

- 67 -

manager may be able to manage and schedule applications running on a local

resource.

PACE models contain only static information on the application and system.

PACE application model is retrieved directly from the source code of the parallel

application. The hardware information contained in PACE resource models is

measured off-line on computing and communication capabilities of the resource.

When a parallel application is executed on a grid resource, there are many

dynamic factors that have an impact on the resource performance. For example,

the grid resource may not be entirely dedicated to the grid users. Especially the

communication between the grid resources is provided by low speed networks,

which may result in irregular communication latency when parallel applications

are running. PACE prediction will not provide the same reasonable accuracy

under such kind of highly dynamic situation.

In summary, while extremely well suited for managing a locally distributed multi-

computer, the PACE functions do not map well onto wide-area grid computing

environments, where heterogeneity, multiple administrative domains, and

communication irregularities dramatically complicate the job of resource

management.

As illustrated in Figure 2.8, grid resource management functions should be

performed at both local and meta levels. Our method for grid resource

management is to use PACE as local resource manager. At the meta level, an

additional mechanism, summarised as the A4 methodology in the following

chapter, are introduced to coordinate different local resource managers to achieve

the overall management of grid resources.

- 68 -

CChhaapptteerr 55

AA44::

AAGGIILLEE AARRCCHHIITTEECCTTUURREE AANNDD

AAUUTTOONNOOMMOOUUSS AAGGEENNTTSS

A4 (Agile Architecture and Autonomous Agents) is a methodology for building

large-scale distributed software systems with highly dynamic behaviours

[Cao2001c]. The methodology is developed in order to be used for meta-level grid

resource management, which is an extension of work described in [Cao2000b].

A4’s emphasis is on dealing with architectural level dynamics and using

simulation based analysis to provide quantitative performance evaluation and

optimisation of system behaviours, which differentiate A4 from other distributed

system infrastructures described in Section 3.2.

• An agent is the main component in the system. Each has its own

motivation, resource and environment. They are not predetermined to

work together. The number of agents will dramatically increase when a

wide-area software environment is considered. Together they form a large-

scale multi-agent system.

• Autonomy is used to describe the character of the agent. The autonomy is

mainly achieved by the intelligence and the social ability of the agents. An

agent can fulfil high-level tasks by its own intelligence or by cooperating

with other agents continuously with little human interference.

CHAPTER 5 A4

- 69 -

• Architecture is used to provide a glue for the interactions between the

agents. For example, large-scale multiple agents can be organized into a

hierarchy.

• Agility is used to describe the character of the architecture. Agility means

quick adaptation to environmental change. Autonomy provides the system

with component-level adaptability, while agility provides the architecture-

level adaptability of the system.

5.1 Agent Hierarchy

The hierarchical model is illustrated in Figure 5.1. There is a single type of

component, the agent, which is used to compose the whole system. Each agent has

the same set of functions. Agents are organised into a hierarchy. In Figure 5.1

different terms are used to differentiate the level of the agent in the hierarchy. The

broker is an agent that heads the whole hierarchy, maintaining all service

information of the system. A coordinator is an agent that heads a sub-hierarchy. A

leaf-node is actually termed an agent in this description.

B

C

A

A
C

A A
B

C

A

: Broker

: Coordinator

: Agent

Figure 5.1 Agent Hierarchy

The broker and coordinators are also agents except that they are in a special

position in the hierarchy. All the agents have the same function despite their

different positions. The broker does not have any more priorities than coordinators

or agents. The hierarchy of homogenous agents gives a high-level abstraction of a

distributed system.

CHAPTER 5 A4

- 70 -

The agent hierarchy can also represent an open and dynamic system. New agents

can join the hierarchy or existing agents can leave the hierarchy at any time.

When a new agent wants to join the system, in the hierarchical model, it will

broadcast to find its nearest existing agent. An agent can only have one

connection to an agent higher in the hierarchy to register with, but be registered

with many lower level agents. Each agent records related registration information.

After registration, agents can communicate with each other using unicast instead

of multicast. When an agent wants to leave the system, it must contact its upper

agent to cancel the registration, and also inform its lower agents to re-register in

the hierarchy.

The hierarchy model can address partly the problem of scalability. When the

number of agents increases, the hierarchy may lead to many system activities

being processed in a local domain. In this way the system may scale well and does

not need to rely on one or a few central agents, which may otherwise become a

system bottleneck.

Service is another important concept in the A4 methodology. Request is a

complementary concept to service. In other methodologies, a client is abstracted

into a request sender; a server is abstracted into a service provider; and a

matchmaker is an abstraction of a router between a client and corresponding

server. In the A4 methodology, an agent contains all of the above abstractions. An

agent can send requests and provide services. Every agent can act as a router

between a request and a service. This gives a simple and uniform abstraction of

the functions in the system.

A resource can be a program, a device or a human in the system, where a service

is originally provided, while a user is a human, where a request is originally sent

out. An agent can be a manager of one or more resources. When a resource is

available to provide a service, the corresponding agent is responsible for

distributing the service information to many other agents. When a user wants to

send a request, it usually finds and contacts its nearest agent, and a request may

pass by many agents to reach the required resource. These processes that happen

CHAPTER 5 A4

- 71 -

in the agent hierarchy are defined as service advertisement and discovery, which

will be discussed in detail in the following sections.

5.2 Agent Structure

The agent hierarchy gives an overall architectural description of the system. In

this section, a layered agent structure is considered, which can provide functions

both for local management and global coordination. The structure is illustrated in

Figure 5.2 and explained in detail below.

Agent

Local Management Layer

Coordination Layer

Communication Layer

Networks

Agent

Local Management Layer

Coordination Layer

Communication Layer

Figure 5.2 Layered Agent Structure

• Communication Layer – Agents in the system must be able to

communicate with each other using common data models and

communication protocols. ACL can be used to address these problems.

However, an initial system implementation can use some simple pre-

defined data structures instead of a language. The communication layer

provides an agent with an interface to heterogenous networks and

operating systems.

• Coordination Layer – The request an agent receives from the

communication layer should be explained and submitted to the

coordination layer, which decides how the agent should act on the request

according to its own knowledge. For example, if an agent receives a

service discovery request, it must decide whether it has related service

CHAPTER 5 A4

- 72 -

information. Our methodology focuses on the implementation of this

layer.

• Local Management Layer – This layer encapsulates the functions needed

for local system management. For example, if an agent finds that the

required service is within its own capabilities, the request will be

submitted to this layer from the coordination layer to access the resource.

This local manager can also provide service information to the

coordination layer. Different agents can include different functions for

local system management.

How the agents in the system cooperate with each other is up to the functions

implemented in the coordination layer in each agent. In the A4 methodology,

these functions are described as two complementary processes, service

advertisement and discovery, which will be described in detail below.

5.3 Service Advertisement

An agent in the system can have many local resources that can provide services.

The agent can take them as its own capabilities. Local management in an agent is

responsible for collecting this service information and provide it to the

coordination layer, where this information is stored. An agent must decide how

and when to advertise this service information to other nearby agents.

An agent can also receive many service advertisements from nearby agents and

also store this information in its coordination layer as its own knowledge. All of

the service information are organised into Agent Capability Tables (ACTs).

5.3.1 Agent Capability Tables

An ACT item is composed of three constituent parts:

• Agent ID. This ID includes the contact information of an agent. During the

registration process described before, an agent can only get ID information

CHAPTER 5 A4

- 73 -

and contact its upper or lower agents. With the agent IDs stored in ACTs,

an agent can also contact more agents and cooperate with them for service

discovery.

• Service Information. Service information should contain all performance

related information about a resource. This information will be used by the

agent to evaluate the performance of corresponding resources, estimate the

capability of corresponding agents, and make service discovery decisions.

In general, a name should be defined for each service.

• Options. Additional options can be added into each ACT item to constrain

agent behaviours for service advertisement and discovery. Concrete

options will be introduced in detail later.

When a new resource is available to provide service, its agent should advertise the

service information to other agents. The performance of services offered by an

agent can change over time. When this occurs, the corresponding service

information needs also to be updated. When a service becomes unavailable, it

needs to advertise to cancel previous information that has been advertised into the

hierarchy. The dynamics of the system increase the difficulty of system

management.

An agent can choose to maintain different kinds of ACTs according to different

sources of service information. These include:

• T_ACT (This ACT). In the coordination layer of each agent, T_ACT is

used to record service information of local resources. The local

management layer is responsible for collecting this information and

reporting it to the coordination layer.

• L_ACT (Local ACT). Each agent can have one L_ACT to record the

service information received from its lower agents. The services recorded

in L_ACT are provided by the resources in its local scope.

• G_ACT (Global ACT). The G_ACT in an agent is actually a record of the

service information received from its upper agent. The service information

CHAPTER 5 A4

- 74 -

recorded in G_ACT are provided by the agents, which have the same

upper agent as the agent itself.

• C_ACT (Cached ACT). Cached service information is stored in C_ACT.

When an agent sends a request for service discovery, the returned result

can be stored in C_ACT, and hence looked up when next requested.

5.3.2 ACT Maintenance

The performance of the resources that provide services may vary over time, which

may cause the corresponding service information that is stored in the ACTs of

other agents to become out-of-date. There are basically two ways to maintain the

contents of ACTs in an agent: data-pull and data-push, each of which have two

approaches: periodic and event-driven. These are summarised in Table 5.1.

Type Approach ACT Description

T_ACT The ACT management can ask local management to
monitor its own resources and return the service
information to T_ACT periodically.

L_ACT An agent can ask its lower agents for the service
information they have, and update its own L_ACT
periodically.

G_ACT An agent can ask its upper agent for the service
information it has, and update its own G_ACT
periodically.

Periodic

C_ACT An agent can check whether the service information
in its cache is out-of-date periodically. Any
unavailable service information will be deleted.

T_ACT A service discovery process can trigger a T_ACT
updating. When a request arrives and an agent looks
up the T_ACT, the ACT management can ask local
management to monitor its own resources and return
the service information to T_ACT immediately.

L_ACT When a request arrives, an agent can ask its lower
agents for the service information they have, and
update its own L_ACT immediately.

G_ACT When a request arrives, an agent can ask its upper
agent for the service information it has, and update its
own G_ACT immediately.

Data-
pull

Event-
driven

C_ACT When a request arrives, an agent can check whether
the service information in its cache is still available.
Any out-of-date service information will be deleted.

CHAPTER 5 A4

- 75 -

T_ACT The local management in an agent can monitor its
resources and submit the results to the ACT
management in the coordination layer periodically.

L_ACT Lower agents can report their service information
periodically to update the L_ACT of an agent.

G_ACT The upper agent can multicast its service information
to its lower agents periodically to update their
G_ACTs.

Periodic

C_ACT N/A
T_ACT When a resource changes, the local management in

the agent will inform the change to the T_ACT in the
coordination layer of the agent immediately.

L_ACT When one service information changes in a lower
agent, it will report the change to update the L_ACT
of an agent immediately.

G_ACT When one service information changes in the upper
agent, it will multicast the change to its lower agents
immediately to update their G_ACTs.

Data-
push

Event-
driven

C_ACT When a service discovery result is retuned to an
agent, the agent can update its C_ACT immediately.

Table 5.1 Service Advertisement and ACT Maintenance

From the methods described above, it is clear that most of the service

advertisement which occurs in an agent hierarchy happens only between nearby

agents. An agent can only advertise its service information to its upper agent or

lower agents. However, service information can also be spread to a large area

after many steps of advertisement over a period of time. This is an important

feature to make the system scalable and to avoid any communication bottlenecks.

The same principles are also applied to the service discovery processes.

5.4 Service Discovery

Each agent has different kinds of ACTs maintained by service advertisement. An

agent takes the contents in ACTs as its own knowledge, which is mainly used for

service discovery. A service discovery process is triggered by the arrival of a

request in an agent. A request is usually composed of several parts:

• Request information. These include details of services the user wants to

discover. This information may combine with service information in ACTs

CHAPTER 5 A4

- 76 -

to produce high-level performance information of corresponding

resources.

• Requirement. This includes required performance information from the

user, which may be used for matchmaking for agents to make decisions on

whether a resource can provide a capable service or not.

• Options. Additional options may be attached with each request, which may

include user control information for the service discovery. For example,

the user may limit time and scope of a discovery process.

An agent can act on a request in a number of ways, for instance:

• Yes. I can provide required service, so the discovery ends successfully.

• No. I cannot provide the required service. However, I know an agent,

which may have the capability to provide the required service. I can

transfer the request to it for further discovery.

• No. I have no idea of the required service. However, I can transfer the

request to lower or upper agents for further discovery.

• No. I have no idea of the required service, and there are also no other

agents that I can query. I am sorry that the discovery has failed.

5.4.1 ACT Lookup

The process of service discovery in an agent is the process of looking up the

ACTs. The general order for an agent to check different kinds of ACTs in turn is:

T_ACT, C_ACT, L_ACT, and finally G_ACT, which will be explained one by

one below.

An agent is a representative of its own resources in the large-scale environment.

When an agent receives a request from a user or another agent, it is natural that it

will check its own capabilities recorded in the T_ACT firstly. If an agent is aware

that it can provide the required service itself, the service discovery is successful

and the service information will be returned to where it came from.

CHAPTER 5 A4

- 77 -

If there is no required service information in the T_ACT, an agent may choose to

look up its C_ACT. Previous service discovery results are cached in the C_ACT,

which have more possibility to meet the requirements from the following requests.

If required service information is found in C_ACT, the agent will check whether

the service is still available. If so, the request will be dispatched to the

corresponding agent. Otherwise, the agent will update the C_ACT and process

other service discovery.

If there is no required service information in the C_ACT either, an agent may then

choose to look up its L_ACT. L_ACT records service information in local scope.

Most users prefer to find an available resource located as near as possible. So it is

reasonable to check L_ACT first instead of the G_ACT. If the required service

information is found in the L_ACT, the request will be dispatched to the

corresponding agent. Otherwise, additional service discovery will have to be

processed.

An agent can finally looks up its G_ACT. The G_ACT records service

information in a much wider scope and provides opportunities to find the required

service. If the required service information is found in G_ACT, the request will be

dispatched to the corresponding agent. Otherwise, the agent must make decisions

for the following action.

An agent may not maintain all of the above ACTs. T_ACT is generally

maintained in each agent. If an agent does not choose to cache previous discovery

results, there will be no need to look up the C_ACT. An agent can also choose not

to maintain L_ACT or G_ACT. If there is no L_ACT information and an agent

cannot find any information in its ACTs, it may choose to pass the request to one

of its lower agents.

If an agent looks up all of the ACTs and still does not get the required service

information, it may consider submitting the request to its upper agent. The upper

agent will follow the same procedure, but may maintain service information in a

larger scope, thus may be more possible to find an available service.

CHAPTER 5 A4

- 78 -

If an agent looks up all of the ACTs and does not get the required service

information, and there is no other agent it can contact for further discovery, the

service discovery ends as failed. For example, consider a broker that has no upper

agent. If a request reaches the broker of the agent hierarchy and the broker fails to

find required service information in its ACTs, the discovery has to end

unsuccessfully.

From the above description, a service discovery may end successfully or in a

failed state. Additional options may be attached with a request, which may

constrain the time or scope of service discovery. Such kinds of options may stop

and fail a discovery process even before the broker of the agent hierarchy has

been reached.

Each step for service discovery is processed between nearby agents, while many

agents can take part in one service discovery, which may lead to service discovery

in a large scope. This principle is the same as that has been applied in service

advertisement. Thus service advertisement and discovery in large-scale systems

are supported. It is clear that the cost for this is much more complex behaviours

for agents. In the next section, a simple example and a formal approach are

introduced to give a better understanding of the service discovery processes and

their relationship with service advertisement when the system is highly dynamic.

5.4.2 Formal Approach

 B

A1 A2 A3 …

User Resource Resource

Figure 5.3 An Example System

The example shown in Figure 5.3 is a simple agent system with two levels, one

broker with several agents below. Each agent maintains a T_ACT, a L_ACT, and

CHAPTER 5 A4

- 79 -

a G_ACT. The broker only has a T_ACT and a L_ACT. Consider a typical

process: User sends a request, s, through agent A1, and the service can be provided

by Resource. But the Resource just moved from agent A2 to A3.

Each T_ACT and L_ACT is maintained by an event-driven data-push method,

and the G_ACTs of these agents are updated using a periodic data-pull method. In

this situation, when the resource is moved, the related T_ACTs and L_ACTs are

all updated immediately, but when the request is sent out, the G_ACTs of these

agents have not been updated. How will the service discovery proceed?

The formal representation of the problem is summarised in Table 5.2, which

includes the definitions of agents, evaluations, and processes. This is the basis for

the rule-based reasoning of system dynamic processes.

Agents Ai, (i=1,……,n), one of the agents
s, a given service request

Evaluations t(s), evaluation result of s in T_ACT
l(s), evaluation result of s in L_ACT
g(s), evaluation result of s in G_ACT
t(s), l(s), g(s)∈{Ai (i=1,……,n), null}
null means no service information is available for the request s

Processes Ai(s), Ai processes the request s

Table 5.2 Formal Representation

We represent the process for an agent to require a service in a logical way. The

rules show the routes for a request from the original agent to reach the target agent

though the resource can be moved dynamically. Several basic rules are used,

which formalise the service discovery process described in the last section.

• Rule 1: Ai(s) � Ai → (t(s), l(s), g(s))Ai

The service discovery process in an agent is the process of looking up the

T_ACT, L_ACT and G_ACT (C_ACT is not used in this case).

• Rule 2: (Athis, * , *)this � ServiceFound

If an agent is aware that it can provide the required service itself, the

service discovery is successful.

CHAPTER 5 A4

- 80 -

• Rule 3: (null, Alower, *)this � Alower (s)

If the required service information cannot be found in the T_ACT but in

the L_ACT, the request will be dispatched to the lower agent.

• Rule 4: (null, null, Aanother)this � Aanother(s)

If the required service information cannot be found in the T_ACT or

L_ACT but in the G_ACT, the request will be dispatched to the

corresponding agent.

• Rule 5: (null, null, null)this � Aupper(s)

If an agent exhausts the ACTs, and does not obtain the required service

information, it will submit the request to its upper agent.

• Rule 6: (null, null)broker � NoService

If a broker (head of an agent hierarchy) exhausts the ACTs (G_ACT is not

maintained in a broker), the service discovery ends unsuccessful.

These rules can be organised together to reason about the route of the service

discovery process in the example system. The equations are shown below. For

each step, the evaluation results of all of the ACTs to the request s replace the

correspondent parts, (t(s), l(s), g(s))Ai, in the process automatically. The number at

the end of each line indicates the rule used for the transformation.

 A s A null null A A1 1 2 1
() (, ,)� → (1)

� →A A s1 2() (4)

� → →A A null null null A1 2 2
(, ,) (1)

� → →A A B s1 2 () (5)

� → → →A A B null A B1 2 3(, ,*) (1)

� → → →A A B A s1 2 3() (3)

� → → → →A A B A A A1 2 3 3 3
(,*,*) (1)

� → → → →A A B A ServiceFound1 2 3 (2)

Three connections are needed for the A1 to find the required service in A3. In the

G_ACT of A1 the service is still recorded to be within the capability of A2. A2 stil l

CHAPTER 5 A4

- 81 -

has to take part in the routing process. The routing process can be simplified if A2

can cache this routing result or the G_ACT of A1 can be updated some time later.

The system can have more than two levels and the services may be changed many

times. The system behaviours for service discovery may become much more

complex. Modelling and simulation tools can be developed to estimate the system

performance, as introduced in the following sections.

5.5 Performance Metrics

Unlike other service discovery infrastructures that focus on data models and

communication protocols, the A4 methodology focuses on performance issues

that arise from system dynamics. Two extreme situations can be considered:

• No service advertisement - results in complex service discovery. In this

situation no ACTs are maintained in the agents. Each agent has no

knowledge of the services offered by other agents. When a service is

requested, a service discovery process is required which may be complex

and may traverse a large number of agents in the system.

• Full service advertisement - requires no service discovery. In this situation,

each agent advertises as much as possible to the other agents. Hence each

agent has nearly complete knowledge of the available services in the

system and no discovery process is required. When a request is made, the

service is found in any agents ACT.

Different systems can use different optimisation to achieve high performance. For

example in static systems, where the frequency of change in the service

information is far less than the frequency of service requests, more service

advertisement can achieve high performance service discovery. In extremely

dynamic systems, where the frequency of change in the service information is far

greater than the request frequency, less service advertisement can achieve high

performance. Most practical systems will have characteristics in-between these

two extremes.

CHAPTER 5 A4

- 82 -

There are different kinds of performance criteria that can be used to describe the

service discovery performance part of the system. What is considered as high

performance depends on the system requirements. However, there are some

common characteristics of the system that are usually a concern to the system

developer. These include discovery speed, system efficiency, load balancing, and

success rate, which will be discussed below.

5.5.1 Discovery Speed

Each request from an agent can pass one or more agents in order to find a target

agent that can provide the required service. Fewer connections have a quick

discovery process, and higher system performance. In the whole system, there

may be simultaneous service requests. The average service discovery speed, v is

defined as:

d

r
v =

where r is the total number of requests during a certain period, and d is the total

number of connections made for the discovery.

The performance of the discovery process is mainly based on the number of

routing connections. The communication time for each connection is not

considered here to simplify the performance modelling and simulation of the

agent system.

5.5.2 System Efficiency

The cost for the service discovery also includes connections made for service

advertisement and data maintenance. Service advertisement may add additional

workload to the system. For each request to find a corresponding service, the total

number of connections, c, between agents includes those for the discovery

processes, d, and also those for the advertising processes, a.

adc +=

CHAPTER 5 A4

- 83 -

The efficiency of the system can be considered as the ratio of the total number of

requests, r, during a certain period, to the total number of connections c.

c

r
e=

5.5.3 Load Balancing

In some of the systems when the system resources are critical, load balancing may

be an important issue. In the A4 methodology, no agents are used only for service

discovery. There is no reason to have any agent with a higher discovery workload

than any other. For a system with n agents, the workload, wk, of each agent can be

described as

kkk iow +=)......1(nk =

where ok and ik are the outgoing and incoming connection times. We can use the

mean square deviation of the wk to describe the load balancing level of the system,

b:

()

n

ww
b kk

2
−Σ= where

n

w
w kkΣ

=

5.5.4 Success Rate

In some situations the discovery model cannot guarantee to find the target service

(that may actually exist in the system). However, in a general system a reasonable

service discovery success rate should always be achieved. The success rate, f,

describes successful service discovery:

%100×=
r

r
f f

CHAPTER 5 A4

- 84 -

Most of the time, these service discovery metrics may conflict, that is not all

metrics can be high at the same time. For example, a quick discovery speed does

not mean high efficiency, as sometimes quick discovery may be achieved through

the high workload encountered in service advertisement and data maintenance,

leading to low system efficiency. It is necessary to find the critical factors of a

practical system, and then to use the different agent configurations to reach high

performance.

5.6 A4 Simulator

Performance evaluation of service discovery in a large-scale multi-agent system is

a difficult task. Different configurations of agent behaviours on service

advertisement and discovery can make the overall system behaviours very

complex. In this section, a modelling and simulation environment, the A4

simulator, is introduced.

The A4 simulator has as input all of performance related information of the agent

system, it composes them into a performance model, simulates the service

advertisement and discovery processes step by step, and finally outputs all of the

statistical data on the four performance metrics described above.

Step-by-step
View

Accumulative
View

Agent
View

Log
View

S
im

ul
at

io
n

E
ng

in
e

Agent-level
Modelling

System-level
Modelling

M
od

el
 C

om
po

se
r

P

er
fo

rm
an

ce

M
od

el
 Agent Hierarchy

Requests

Services

Strategies

Agent Mobility

Request Distribution

Service Distribution

Global Strategies

Inputs GUI GUI Kernel Outputs

r

a

d
r f

v

e

b

f

Figure 5.4 A4 Simulator

The main structure of the A4 simulator is illustrated in Figure 5.4, which includes

a kernel and GUIs. The kernel part of the simulator performs the modelling and

CHAPTER 5 A4

- 85 -

simulation functions, while users can input related information and get simulation

outputs from the GUIs.

5.6.1 Inputs/Outputs

There are four kinds of information that affect the system performance and must

be input into the performance model. These include: the agent hierarchy, the

services, the requests, and the strategies for service advertisement and discovery.

The A4 simulator supports the modelling activity at both the agent level and the

system level. The only components that exist in the model are agents, so agent-

level modelling can be used to define all the model attributes for the simulation.

However, system-level modelling is also necessary to input information on agent

mobility, service and request distribution, and so on. These will be discussed in

detail below.

• Agent hierarchy. When a new agent is added into the model, its upper

agent should be defined. The upper agent is also configured to add a new

lower agent. The information is used to organise agents into a hierarchy in

the system model. No cycles are permitted in the hierarchy, which may

cause deadlock during the service discovery process.

• Requests. Each agent is configured to send different requests periodically.

A request item may include several parts of information: the required

service name, the relative required performance value, the sending

frequency, and the discovery scope.

• Services. Each agent is also configured to provide many services, whose

performance may vary over time. A service item may include several parts

of information, the service name, the relative performance value, the

performance changing frequency, service available time, and service

advertisement scope. The usage of these attributes will be introduced in

the simulator kernel section below.

• Strategies. Different strategies are defined in each agent to control its

behaviours on service advertisement and discovery. These strategies have

been discussed in detail in Section 5.3 and 5.4 respectively.

CHAPTER 5 A4

- 86 -

• Agent mobility. The agent mobility can be defined at the system level

only. An agent mobility item may include information on: the agent ID,

the new agent ID after the movement, the upper agent ID of the new agent,

and the step number when the movement will happen during the

simulation.

• Request distribution. System-level request definitions can ease the

modelling process. The same request item does not need to be defined in

different agents one by one. The A4 simulator provides a convenient way

to distribute a request definition to different agents once it is defined at the

system level.

• Service distribution. The same service with the same attributes can also be

provided by different agents. System-level service definitions allow many

agents to be configured with the same service at the time.

• Global strategies. A system-level strategy definition can affect all of the

agents in the model and ease the modelling process. Both global strategies

and individual strategies can be defined in each agent. However, agent-

level strategy definitions have a priority over the system-level ones.

The information above is input into the simulator. The outputs of the simulator are

all of the simulation results on four performance metrics. All of the details on

service advertisement and discovery are also recorded in a simulation log file for

further reference. The use of input information to produce outputs during the

modelling and simulation processes within the simulator kernel is introduced

below.

5.6.2 Simulator Kernel

The kernel of the simulator is composed of a model composer and a simulation

engine. The kernel will perform the main modelling and simulation functions and

transform the raw simulation data to statistical results to support the four

performance metrics.

CHAPTER 5 A4

- 87 -

The model composer organises the input information into a performance model

before the simulation process begins. During this phase, the system-level

information is transferred into an agent-level representation as much as possible.

For example, system-level requests and services will be used to configure a

certain percentage of agents. The global strategies are used to define the strategies

of each agent, except for agents that have already been defined with agent-level

strategies. After these, a performance model is composed and the simulator is

ready for evaluation. The information on agent movement can only be stored at

the system level and will not be used to configure any agent in the system.

The simulation engine will start a simulation process once a performance model

and a total number of simulation steps are defined. The whole process is

illustrated in Figure 5.5, which is divided into seven phases, five of which are

within the main simulation loop.

 Initialise simulation

Set service changes

Set agent movements

Advertise services

Send requests and service discovery

Calculate and visualise simulation results

Finalise simulation

N
ex

t s
te

p

Figure 5.5 Simulation Process of A4 Simulator

• Initialise simulation. Once a simulation process is started, the A4 simulator

will set up an environment for simulating service advertisement and

discovery. All of the GUIs for performance modelling are locked. The

performance model cannot be modified during the simulation. A copy of

the model is also made to prevent data loss due to the simulation being

CHAPTER 5 A4

- 88 -

irregularly interrupted. The simulation results are also initialised for

recording the outputs.

• Set service changes. This is performed at the beginning of each simulation

step. The availability and performance of a service may change at each

step. The service available time in each service item records the step

number when the corresponding service is available. After that, the service

will be deleted in all ACTs of all agents in the model. There is also the

frequency of change in performance of each service. The performance of

each service may or may not be changed at each step according to this

frequency.

• Set agent movements. Each agent mobility item contains a step number

when a movement will happen during the simulation. An agent movement

indicates not only the change of the agent hierarchy, but also the change of

related services. Additional service advertisement occurs when an agent is

moved, for example, old service information is announced for deletion,

and new service information should be advertised along the new agent

hierarchy. An agent is moved while its upper agent may or may not be

changed, which leads to different situation with different service

advertisement workload.

• Advertise services. Both event-driven and periodic service advertisement

are considered during this phase. Each agent acts on its ACTs according to

its strategy configurations. Each connection between agents for service

advertisement will be recorded in the simulation log file and will effect

corresponding simulation results.

• Send requests and service discovery. A request is decided to be sent

according to its frequency. Each agent that receives the request will look

up its ACTs in turn according to its strategy configuration for service

discovery. Every detail of a service discovery process is recorded in the

log file and related simulation results, such as agent connection times, are

recorded.

• Calculate and visualise simulation results. At the end of each simulation

step, the raw simulation data should be summarised, and corresponding

CHAPTER 5 A4

- 89 -

statistical results on the performance metrics calculated. These results are

shown on the simulator GUI dynamically to give the user a view of what is

going on during the simulation.

• Finalise simulation. After all simulation steps are completed the simulator

returns back to the modelling mode. All the modelling GUIs are unlocked.

The performance model is retrieved from the original copy. The GUIs for

visualising the simulation results will not be refreshed until the next

simulation begins, and can thus be used for further analysis.

The A4 simulator also supports the evaluation of multiple models simultaneously.

The user can use different configurations in different models, simulate them, and

compare the results.

5.6.3 User Interfaces

The A4 simulator is implemented using Java. It provides graphical user interfaces

for the modelling and simulation respectively.

(a) Main window

CHAPTER 5 A4

- 90 -

(b) Agent-level modelling (c) System-level modelling

Figure 5.6 A4 Simulator GUIs for Modelling

The user can add, edit and delete agents from the model via the main GUI window

shown in Figure 5.6(a). In the left column of the main window, all of the agents

are listed. A brief description of the selected agent is also shown below the agent

list. The text field above the agent list can be used to search an agent by its name.

The model can also be saved and reloaded for reuse later. The windows shown in

Figure 5.6(b) and Figure 5.6(c) can be used for agent-level and system-level

modelling respectively.

Some other GUIs in the A4 simulator are used to visualise simulation results to

the user, which are shown below in Figure 5.7.

(a) Step-by step view (b) Accumulative view

CHAPTER 5 A4

- 91 -

(c) Agent view

(d) Log view

Figure 5.7 A4 Simulator GUIs for Simulation

During each step in the simulation the results will be updated in each of the GUIs.

The simulator can provide multiple views of the simulation data, which are all

updated in real time. In the step-by-step view of the Figure 5.7(a), the simulation

data, r, a, d, rf, and the statistic data, v, e, b, f, in each step are shown. In the

accumulative view shown in Figure 5.7(b), the statistical data on the accumulative

steps are shown. In the agent view shown in Figure 5.7(c), the user can view the

contents of a selected agent, its operation at each step, accumulative and average

views of the data ok, ik, and wk. In Figure 5.7(d), the log view shows the

simulation log file, which records the details of all service advertisement and

discovery processes during simulation.

CHAPTER 5 A4

- 92 -

5.6.4 Main Features

The A4 simulator is developed to provide quantitative information of the

performance of service advertisement and discovery in large-scale multi-agent

systems with highly dynamic behaviours using the A4 methodology. The main

feature of the A4 simulator can be summarised as follows:

• Support for all of the performance metrics and strategy configurations

described in the A4 methodology;

• Support two levels of system modelling for easy and convenient

performance modelling of multi-agent systems;

• Support modelling of agent mobility and simulation of additional service

advertisement processes;

• Support multi-view and real-time display of simulation results;

• Support simultaneous simulation of multiple models and comparison of

results;

• Support simulation log management.

The use of the A4 simulator for a performance study is introduced in the next

section through a case study, and simulation results are included to show the

impact of agent mobility on the system service discovery performance.

Meanwhile, the A4 simulator kernel can also be used in practical multi-agent

systems to analyse and optimise system service discovery performance on-line,

which will be introduced in Chapter 7.

5.7 A Case Study

In Section 5.4.2, a simple example with a formal representation was given. A

resource in the system was moved, which results in more workload for service

discovery. In this section, the A4 simulator is used to study the impact of agent

mobility on system service discovery performance using a much more complex

example.

CHAPTER 5 A4

- 93 -

5.7.1 Performance Model

A simple multi-agent system model is shown in Figure 5.8, containing 26 agents.

The whole system is configured to have only one service named Print. The agent

that can provide the service is Printer now connected to till and later, during the

simulation, is moved to connect to sun with a new identity NewPrinter (this is not

shown in Figure 5.8). All the other agents may or may not request the Print

service with a different frequency (Note that the details of requests are not given

below).

Figure 5.8 Example Model: Agent Hierarchy

This experiment is used to show the impact of agent mobility on the service

discovery performance. Strategies are only defined at the system level, which

means that all of the agents in the model must use the same strategies for service

advertisement and discovery. The T_ACT, L_ACT and G_ACT are used in each

agent. T_ACTs and L_ACTs are maintained by event-driven service

advertisement. G_ACTs are updated once every 30 steps using a periodical data-

pull. The agent movement mentioned above takes place at the 100th simulation

step.

CHAPTER 5 A4

- 94 -

5.7.2 Simulation Results

Figure 5.9 shows the simulation results for 200 steps. A step can be designed as

an arbitrary number of seconds. The curves for discovery speed (v), and the

system efficiency (e) in the step-by-step view show the effect of the agent

mobility most clearly.

(a) Step-by-step View (b) Accumulative View

Figure 5.9 Simulation Results

CHAPTER 5 A4

- 95 -

We assume that the load balancing and discovery success rate are not critical in

this study. Attention is given to the discovery speed and the system efficiency.

The whole process can be divided into five phases, which are explained in detail

below.

• Learning phase. In the first 40 steps, the G_ACTs of the agents are

updated gradually, so the discovery speed and system efficiency increase.

This can be viewed as an agent learning process.

• Stable phase. After about 40 steps, the curves are flat at a higher level. All

G_ACTs of the agents have been updated and there are no service

changes, so the system runs in a steady state mode with high service

discovery speed and system efficiency.

• Agent mobility. The defined agent mobility happens at the 100th

simulation step. When the agent moves it must advertise to delete its

service information from the old agent hierarchy and to add the new

service information to the new agent hierarchy. This causes an increase of

the connections for service advertisements (a). The service information in

all the agents becomes out-of-date, which results in more workload for the

service discovery (d). So the average service discovery speed (v) and

system efficiency (e) decrease suddenly.

• New learning phase. This phase is the same as the previous learning phase.

The agents learn about the new identity of the service Print gradually via

the G_ACT updating.

• New stable phase. The agent mobility finally results in a stable state mode

with higher performance. This is because sun is the coordinator of a larger

sub-hierarchy than till is. When the service is moved, more requests

become local instead of remote, which reduces the discovery workload of

the system.

This is a small example model with only one agent movement. The system model

is not a large-scale one and the service in the system is static during most of the

simulation time. However, this simple case study gives an intuitive impression

that system dynamics has a great impact on the service discovery performance.

CHAPTER 5 A4

- 96 -

The A4 simulator enables such kinds of problems to be investigated

quantitatively.

5.8 A4 as a Global Framework

The aim of this work is the development of a grid resource management system.

In Section 4.4, we have introduced PACE functions that can be used for local

resource management in a grid environment. In this section, we discuss that the

A4 methodology can be applied as a global framework to implement meta-level

grid resource management.

Agents are the main abstractions in the A4 methodology. An agent can be used as

a representative of a local high performance resource in a grid environment. The

high performance computing capability that a local resource can provide is

modelled as a service. Each agent is a service provider of high performance

computing.

Each agent can also be equipped with PACE performance prediction capabilities

in its local resource management for scheduling parallel applications to available

local resources. PACE functions are also used in the coordination layer of agents

to provide QoS support for service discovery.

Each agent is responsible for local resource monitoring, and corresponding

service information is collected and stored in the T_ACT. An agent is also

responsible for advertising the service through the agent hierarchy, according to

different strategy configurations.

Grid users can send application execution requests to the grid environment, which

can be received by a nearby agent. Agents can cooperate with each other and

perform service discovery functions to find an available service for the requests.

When a target agent is found that can provide the requested service, the user can

contact the agent directly for application execution. Hence A4 can provide a

global framework and be coupled with PACE functions to implement grid

CHAPTER 5 A4

- 97 -

resource management. An initial implementation of an agent-based resource

management system for grid computing, ARMS, will be described in detail in the

next chapter.

- 98 -

CChhaapptteerr 66

AARRMMSS::

AAGGEENNTT--BBAASSEEDD RREESSOOUURRCCEE MMAANNAAGGEEMMEENNTT

SSYYSSTTEEMM FFOORR GGRRIIDD CCOOMMPPUUTTIINNGG

Resource management in the grid computing environments will rely on accurate

application performance prediction capabilities, as discussed in Chapter 4. An

agent-based methodology is also introduced in the last chapter to address the

challenges of scalability and adaptability. In this chapter, an initial

implementation of an agent-based resource management system for grid

computing, ARMS, is presented [Cao2001d], using a hierarchy of homogenous

agents [Cao2001b] coupled with the prediction capabilities of the performance

evaluation toolkit, PACE.

6.1 ARMS in Context

The relationship between ARMS and other concepts mentioned in this thesis is

shown in Figure 6.1. ARMS is a system, which builds a bridge between grid users

and resources to schedule applications to utilise the available grid resources.

PACE is used to provide quantitative data concerning the performance of

sophisticated applications running on local high performance resources. PACE

application tools (AT) are provided to grid users. A request to execute an

CHAPTER 6 ARMS

- 99 -

application by a user must be attached with a corresponding application model

developed using the AT. Meanwhile, PACE resource tools (RT) are embedded in

each grid resource to provide a corresponding resource model, which is an

important part of the service information of the resource. The PACE evaluation

engine (EE) is used in each agent in the ARMS for performance evaluation given

both the application and resource models.

At a metacomputing level, the A4 methodology is used for grid resource

management. Agents cooperate with each other and perform service

advertisement and discovery functions to schedule applications that need to utilise

the available resources. The behaviours of agents can be configured with different

strategies and steered with different policies to improve the system performance.

A performance monitor and advisor, PMA, is a special agent existing in the agent

system of ARMS. The main part in the PMA is the A4 simulator kernel. PMA

monitors the state of each agent, configures each agent with modelling and

simulation results, and steers the agent behaviours to implement the resource

management more efficiently. PMA will be introduced in detail in the next

chapter.

ARMS

Grid

Resources

Grid
Users

 A4

PACE

Application
Tools (AT)

Resource
Tools (RT)

Evaluation
Engine (EE)

A4 Simulator

PMA

Figure 6.1 ARMS in Context

CHAPTER 6 ARMS

- 100 -

6.2 ARMS Architecture

ARMS is an agent-based grid resource management system. An overview of the

ARMS architecture is illustrated in Figure 6.2. The main components in the

architecture include: grid users, grid resources, ARMS agents, and the ARMS

PMA. These will be discussed respectively in the following sections.

ACTs

ACTs

ACTs

ACTs

ACTs

ACTs

ACTs

AT

RT

RT
RT

RT

Application Models
Cost Models

EE

EE

EE

EE EE

EE

EE

Processors

Agents

Users

PMA

Resource Models

Figure 6.2 ARMS Architecture

6.2.1 Grid Users

There are different kinds of users of a grid computing environment. Grid

developers are responsible for implementing basic grid services. ARMS provides

grid resource management, which is a part of these services.

The developers of the tools, compilers, libraries, and so on implement the

programming models and services used by application developers. MPI and PVM

are included in these kinds of tools. Grid service and tool developers are a very

small group of grid users, which are not of concern in the context of this thesis.

CHAPTER 6 ARMS

- 101 -

Application developers comprise those who construct grid-enabled applications

using grid tools. There are different kinds of grid applications: distributed

supercomputing, high throughput, on demand, data intensive, and collaborative

applications. The applications mentioned in this work mainly refer to scientific

supercomputing applications, which are very large problems needing lot of CPU,

memory, etc, especially those written in MPI and PVM.

Most grid users, like most users of computers or networks today, will not write

programs. Instead, these end users will use grid-enabled applications that make

use of grid resources and services. In some situations, application developers are

also the end users of the applications they develop. The grid users in Figure 6.2

and mentioned in the following sections are considered to be scientists, who

develop scientific supercomputing applications and use them to solve large

problems in the grid environment.

As shown in Figure 6.2, grid user side software includes the PACE application

tools. When a parallel application is developed, the corresponding application

model should also be produced using PACE tools. As described earlier,

performance modelling using PACE is an easy process that can be used by non-

professional performance engineers. Each request to execute an application that is

sent to a grid environment should be attached with a corresponding PACE

application model.

Another component included in a grid request is the cost model, which describes

all information on a user’s requirements about the application execution, for

example, the deadline for the application execution to be finished. Though there

can be many metrics for application execution, we focus on application execution

time only here.

6.2.2 Grid Resources

A grid resource can provide high performance computing capabilities for grid

users. A resource can include Massive Parallel Processors (MPP), or a cluster of

CHAPTER 6 ARMS

- 102 -

many workstations, or even PCs. A grid resource can be considered as a service

provider of high performance computing capabilities.

PACE resource tools can be used in each grid resource to provide the model of the

resource. The computational and communication benchmark programs can be

controlled to execute on the resource to produce performance data for the models

dynamically. The PACE resource model is a part of service information of the

resource, which will be advertised across the agent hierarchy.

6.2.3 ARMS Agents

Agents are the main components in ARMS. Each agent is a representative of a

grid resource at the meta-level of resource management. As introduced in the A4

methodology, agents are organised into a hierarchy. The hierarchy of homogenous

agents provides a meta-level view of the grid resources. The service information

of each grid resource can be advertised in the hierarchy (both upwards and

downwards). Agents can also cooperate with each other to discover an available

resource for a request of application execution.

Two important components within each agent are also shown in Figure 6.2. As

mentioned in the A4 methodology, each agent has ACTs to record service

information of other agents. The service information contains all performance

related information of a grid resource, which can be used to estimate its

performance.

The PACE evaluation engine is also integrated into each agent. Its performance

prediction capabilities can be used for local resource management to schedule

parallel applications to available local processors. The PACE evaluation engine is

also used in the coordination layer of each agent to provide QoS support for

service discovery.

Each agent receives requests from grid users or other agents in the system. How

does an agent process to make service discovery decisions using the PACE

evaluation engine? How does an agent collect service information from its local

CHAPTER 6 ARMS

- 103 -

resource management? Such kinds of questions will be answered in Section 6.3,

where the structure and functions of each agent is described in detail.

6.2.4 ARMS Performance Monitor and Advisor

A special agent is introduced into the ARMS agent system. It is an agent acting as

a performance monitor and advisor (PMA). It contacts each agent in the hierarchy

as shown in Figure 6.2. The PMA uses the kernel of the A4 simulator, which aims

to improve ARMS service discovery performance. We will introduce the structure

and functions of the PMA separately in Chapter 7.

ARMS is implemented using the A4 methodology coupled with PACE functions.

All functions developed in ARMS correspond to elements of the A4 methodology.

However, the detailed implementation of each agent need also be described in the

next section.

6.3 ARMS Agent Structure

The agent structure in ARMS is shown in Figure 6.3, which corresponds to the

general A4 agent structure shown schematically in Figure 5.2. Each layer has

several modules, which cooperate with each other to perform service

advertisement and discovery functions.

The communication layer of each agent performs communication functions and

acts as an interface to the external environment. From the communication module,

an agent can receive both service advertisement and discovery messages. It

handles the contents in the message and submits them to corresponding modules

in the coordination layer of the agent. For example, an advertisement message

from other agents will be directly sent to the ACT manager in the agent

coordination layer. The communication module is also responsible for sending out

messages for service advertisement or discovery to other agents.

There are four components in the coordination layer of an agent: ACT manager,

PACE evaluation engine, scheduler, and matchmaker. They work together to

CHAPTER 6 ARMS

- 104 -

make decisions on how an agent should act on the received messages from the

communication layer. For example, the final response to a service discovery

message includes: application execution on the local resource or dispatching the

request to another agent.

To another agent Discovery Advertisement

Communication Module

ACT
Manager

PACE
Evaluation

Engine

Scheduler

Match
Maker

ACTs

Application Model

Eval. Results

R
es

ou
rc

e
In

fo
.

A
pp

lic
at

io
n

In
fo

.

Se
rv

ic
e

In
fo

.

C
os

t M
od

el

Sc
he

d.
 C

os
t

Resource
Monitoring

Resource
Allocation

Application
Management

Application Execution

Agent ID

C
oo

rd
in

at
io

n
L

ay
er

C

om
m

un
ic

at
io

n
L

ay
er

L

oc
al

M

an
ag

em
en

t
L

ay
er

 Figure 6.3 ARMS Agent Structure

The main functions for local resource management in an agent include application

management, resource allocation, and resource monitoring. An application

execution command is sent from the coordination layer to local management in an

agent, which includes the scheduling information for an application, such as its

starting time, and allocated processor IDs. Application management is responsible

for managing the queuing applications that have been scheduled to be executed on

local resources. When the starting time of an application arrives, it will be

dispatched to the resource allocation. Resource allocation has wrappers with

different application execution environments like MPI and PVM, and actually

implements application execution on scheduled processors. Another important

module for local resource management in an agent is resource monitoring. It is

responsible to control PACE benchmark programs to be executed on the local

CHAPTER 6 ARMS

- 105 -

resource and construct the corresponding resource models dynamically. The

resource monitoring is also responsible for contacting the application management

and resource allocation modules for other resource and application information. It

will organise all of the collected information about the local resource into service

information provided by the local resource and report it to the T_ACT in the

coordination layer of the agent.

We describe the agent functions above. As mention before, our work focuses on

the implementation of functions for the agent coordination layer. The four main

components will be introduced in detail below, and there will be no further

introduction to other modules for communication and local management in an

agent.

6.3.1 ACT Manager

The ACT manager controls the agent access to the ACT database, where service

information of grid resources are recorded. As mentioned in Section 5.3.1, an

ACT item contains three parts: agent ID, service information, and additional

options. The specific contents of service information in ARMS are shown in

Figure 6.4 and explained below.

 Service Info. Resource Info.

Application Info.

Processor 1 ID

Processor 2 ID

Type

PACE resource model

Type

PACE resource model

Processor n ID

…

Application 1 ID

Application 2 ID

Start time

End time

Start time

End time

Application m ID

…

Application-Resource Mapping

…

…

Figure 6.4 Service Information in ARMS

CHAPTER 6 ARMS

- 106 -

Service information of a grid resource should include all of the information about

a resource that has an impact on the performance of a resource and can be used to

evaluate its performance. Service information is basically composed of resource

information, application information, and the mapping between the applications

and the resources.

Consider a grid resource with n processors. Each processor Pi has its own type tyi,

such as Sun Ultra1 and SGI Origin2000. A PACE resource model can be used to

describe all the performance information of a processor. PACE resource models

of some typical processors can also be pre-installed into the evaluation engine in

each agent, instead of running benchmark programs on resources dynamically to

produce resource models. In this case, resource models cannot reflect dynamic

factors of the resource performance. However, if the workloads of grid resources

are not very heavy, it can still give a good approximation and greatly simplify the

system implementation. The resource information will also be simpler, and

referring to the processor type is sufficient. In some situations, the processors of a

grid resource are homogenous. In this case, there is no need to give a list of

processors. Just giving the number of processors and corresponding processor

type is enough. The processors of a grid resource can be expressed as follows:

{ }P P i ni= =| , ,......,12

{ }ty ty i ni= =| , ,......,12 .

Let m be the number of applications that are running, or being queued to be

executed on a grid resource. Existing applications on a resource will impact the

resource performance. If there are a lot of applications queued for a resource, the

resource may have little chance to meet requirements from future requests. The

application information includes a list of applications that are running or queued

on a resource. Each application Aj has two attributes: scheduled start time tsj, and

end time tej. The applications of a grid resource can be expressed as follows:

{ }A A j mj= =| , ,......,12

{ }ts ts j mj= =| , ,......,12

{ }te te j mj= =| , ,......,12 .

CHAPTER 6 ARMS

- 107 -

The application-resource mapping gives a map of how processors of a resource

are allocated to applications. Let MAj be the set of processors that are allocated to

application Aj:

{ }MA MA j mj= =| , ,......,12

{ }MA P l kj i jl
= =| , ,......,12 ,

where kj is the number of processors that are allocated to application Aj. Let M be

a 2D array, which describes the mapping relationships between resources and

applications using Boolean values.

{ }M M i n j mij= = =| , ,......, ; , ,......,12 12

M
if

if

P MA

P MAij

i j

i j

=
�� � ∈

∉
1

0

The contents of service information are described above. The ACT manager is

also responsible for maintenance of different kinds of ACTs according to different

strategies described in Table 5.1. The service advertisement in ARMS is

performed in the same way as described in the A4 methodology.

6.3.2 PACE Evaluation Engine

As mentioned in Section 5.4, a request is composed with request information,

requirements, and additional options. In ARMS, a request for service discovery is

to find an available grid resource for an application.

The request information is basically the PACE application model am, which

includes all of the performance related information of an application Ar. The

application model will be one of the inputs to the PACE evaluation engine in an

agent.

The requirements in ARMS are specified in a cost model, which can include many

metrics, for example, the deadline for the execution of an application to be

finished, treq. The cost model is one of the inputs to the matchmaker in an agent.

CHAPTER 6 ARMS

- 108 -

The PACE evaluation engine has two inputs, the application model from the

request, am, and the resource information from the ACT manager, ty. Using this

information, the PACE evaluation engine can produce performance prediction

information such as application execution time, exet, for the application to be

executed on the given resource.

()exet eval ty am= ,

Instead of running the application on all of processors of a grid resource P, an

application can choose to be executed on any subset of processors P (note that P

cannot be an empty set Φ), which can also be evaluated and expressed as follows:

()∀ ⊆ ≠ ⊆ ≠ =P P P ty ty ty exet eval ty am, , , , ,Φ Φ .

The output of the PACE evaluation engine, exet, is one of the inputs to the

scheduler of the agent. Another input to the scheduler is the application

information from an ACT item.

6.3.3 Scheduler

An ACT item acts as a vision of a grid resource that is remote to the agent.

However, an agent can still schedule the required application execution based on

this information of a resource. The function of the scheduler is to find the earliest

time for an application to be finished on the resource described by an ACT item,

tsched.

()t tesched
P P P

r=
∀ ⊆ ≠

min
, Φ

The application has the possibility of being allocated to any selection of

processors of a grid resource. The scheduler should consider all of these

possibilities and choose the earliest end time of the application execution. In any

of these situations, the end time is equal to the earliest possible start time plus the

execution time, which is described as follows:

CHAPTER 6 ARMS

- 109 -

te ts exetr r= + .

The earliest possible start time for application Ar on a selection of processors is

the latest free time of all of selected processors if there are still applications

running on the selected processors. If there is no application currently running on

the selected processors, application Ar can be executed on these processors

immediately. These can be expressed as follows:

()ts t tdr
i P P

i
i

=
��� ����

∀ ∈
max , max

,
,

where tdi is the latest free time of processor Pi. This equals to the maximum end

time of applications that are allocated to process Pi:

()td tei j M j
i j

=
∀ =
max

, 1
.

In summary, tsched can be calculated as follows:

()t t te exetsched
P P P i P P j M

j
i ij

=
��	
�����	
���

+
��	
� �

∀ ⊆ ≠ ∀ ∈ ∀ =
min max , max max

, , ,Φ 1
.

It is not necessarily the case that scheduling all processors to an application will

achieve higher performance. On the one hand, the start time of application

execution may be earlier if only a number of processors are selected; on the other

hand, with some applications, execution time may become longer if too many

processors are allocated.

The scheduling algorithm described above is used in the initial implementation of

ARMS. The complexity of the algorithm is determined by the number of possible

processor selections, which can be calculated as:

C C Cn n n
n n1 2 2 1+ + + = −......

CHAPTER 6 ARMS

- 110 -

It is clear that if the number of processors of a grid resource increases, the

complexity of the local resource scheduling algorithm will increase exponentially.

Though a local resource in a grid environment can only have limited number of

processors, this algorithm cannot scale well when the number of processors

increases. Another factor is that the scheduling policy of this algorithm is to meet

requirements from the user, instead of maximising the resource utilisation. There

is no rescheduling process for previously scheduled applications. New algorithms

need to be developed in a practical implementation of ARMS; this will be

discussed in Chapter 8.

We can also see the importance of the efficiency of the PACE evaluation engine.

During each scheduling process, the evaluation function can be called 2n-1 times.

Even in the situation where all the processors of a grid resource are of the same

type, the evaluation function still needs to be called n times. PACE evaluation can

be performed very quickly to produce prediction results on the fly, which is the

key feature for PACE to be used in ARMS to provide QoS support for service

discovery.

6.3.4 Matchmaker

The matchmaker in an agent is responsible for comparing the scheduling results

with the cost model attached to the request. The comparison results lead to

different decisions on agent behaviours according to service discovery strategies

described in Section 5.4.1.

In terms of application execution time, if treq ≥ tsched, the corresponding resource

can meet the user requirement. If the corresponding ACT item is in the T_ACT, a

local resource is available for application execution. The application execution

command will be sent to the local management in the agent. Otherwise, the agent

ID of the corresponding ACT item is returned, and the agent will dispatch the

request to that agent via the agent ID.

If treq < tsched, the corresponding resource cannot meet the requirement from the

user. The agent continues to look up other items in ACTs until the available

CHAPTER 6 ARMS

- 111 -

service information is found. The agent can look up different ACTs in turn. If

there is no available service information in ACTs any more, the agent may submit

or dispatch the request to its upper or lower agents for further discovery according

to its own strategy configurations for service discovery.

There may be many other metrics in the cost model from the user. The

corresponding evaluation mechanisms should also be provided in each agent.

Their implementation will be the same as the application execution time described

in this section. These will not be discussed in detail here.

6.4 ARMS Implementation

ARMS has been developed to demonstrate how the A4 methodology is coupled

with PACE functions to achieve grid resource management. Each ARMS agent is

composed with an agent kernel and some agent information browsers. A case

study is given and some experimental results are also included to show how

ARMS schedules applications onto available resources.

6.4.1 Agent Kernel

The kernel of each agent is developed in C/C++ and fulfils all of the main

functions described in the last sections. The agent kernel makes extensive use of

the file system, and a collection of various database files representing its complete

state at any particular instant in time.

The most important file in an agent is the log file. After an application execution

request is received in an agent, it undergoes a series of state changes, with each

state representing a particular stage in its lifetime. The various states for a request

to be processed in an agent include: queuing, discovering, waiting, running,

submitted, etc.

The agent hierarchy database file is used to record the contact IDs of the upper

and lower agents. There are also various database files used as agent ACTs. A

separate thread in an agent exists for service advertisement and ACT maintenance

CHAPTER 6 ARMS

- 112 -

according to the strategy configurations, which are also stored in a separate

database file.

At a local management level, resource and application information are represented

in different database files. As mentioned before, the system focuses on agent

coordination and meta-level service advertisement and discovery. Though there is

related information existing in the local management layer of each agent,

applications fake executing on corresponding resources, which does not impact on

the system performance being investigated and simplifies the system

implementation.

6.4.2 Agent Browser

One of the main goals of the initial implementation of ARMS is to make the state

of the system visible and enable the performance of the system to be investigated.

Agent browsers are developed using the X windows library and can be used to

show all contents of the database files within an agent described in the last

section. These are all illustrated in Figure 6.5.

Each agent has an operational platform, which includes a menu for activating

various agent browsers, shown in Figure 6.5(a). Figure 6.5(b) shows an example

of agent browsers, an application browser, which gives details of applications that

are running or queuing on the local resource. A Gantt chart is also designed to

give a graphical interface to visualise the make spans of all the applications shown

in the application browser, which is illustrated in Figure 6.5(c).

(a) Operational platform

CHAPTER 6 ARMS

- 113 -

(b) Application browser (c) Gantt chart

Figure 6.5 ARMS Agent Browsers

Agent browsers are updated in real time when the system is running. The user can

also change the strategies to configure the agent with a different behaviour for

service advertisement and discovery from the strategy browser. The agent

behaviours can also be configured using the PMA semi-automatically, which will

be discussed in Chapter 7.

6.5 A Case Study

Experiments have been designed using the initial implementation of ARMS.

There are two main parts in the design of the experiments. ARMS itself includes

agents, resources, and agent behaviour strategies used in the experiment. The

automatic users of the system are also designed to send application execution

requests to ARMS with different frequencies, which add different workloads onto

the system.

6.5.1 System Design

There are 8 agents in the experimental system. The agent hierarchy is shown in

Figure 6.6. The agent at the head of the hierarchy is gem, which has three lower

agents: sprite, origin, and tizer. The agent origin has no lower agents, while sprite

and tizer have two lower agents each.

CHAPTER 6 ARMS

- 114 -

coke burroughs budweiser

sprite origin tizer

rubbish

gem

Figure 6.6 ARMS Case Study: Agent Hierarchy

Each agent is a representative of a local grid resource. The information of the

resources is shown in Table 6.1. Each resource is composed with 16 processors

(for SGI) or hosts (for Sun), and each host has the same resource type. The SGI

multi-processor is the most powerful, followed by the Sun Ultra 10, 5, 1, and

SparcStation in turn.

Agent Resource Type #Processors/Hosts

gem SGI Origin 2000 16
origin SGI Origin 2000 16
sprite Sun Ultra 10 16
tizer Sun Ultra 10 16
coke Sun Ultra 1 16
budweiser Sun Ultra 5 16
burroughs Sun SPARCstation 2 16
rubbish Sun SPARCstation 2 16

Table 6.1 ARMS Case Study: Resources

In the experimental system, the T_ACT, L_ACT and G_ACT are used in each

agent. T_ACTs are maintained by the event-driven data-push service

advertisement. L_ACTs are updated once every 10 seconds using periodical data-

pull. G_ACTs are updated once every 30 seconds using periodical data-pull. All

of the agents use the same strategies except that gem is the head of the agent

hierarchy and does not maintain a G_ACT. The choice of different strategies

impacts on the service discovery performance of the overall system, which will be

discussed in detail in Chapter 7.

CHAPTER 6 ARMS

- 115 -

The agents and resources have been defined and configured above, while another

important design aspect of the experiment is the requests. To add workloads

automatically to ARMS, we design virtual users that send application execution

requests to the agent system.

6.5.2 Automatic Users

The applications that are used in the experiment are some typical scientific

computing programs, including sweep3d, fft, improc, closure, jacobi, memsort,

and cpi. Each application has been modelled and evaluated using the PACE

toolkit. The performance evaluation results against the SGI Origin2000 can be

found in Figure 6.7. The run time spent on other platforms is much more than that

on the SGI Origin2000, but the trend of the curve is almost the same, which is not

shown in details.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The Number of Processors

R
un

ni
ng

 T
im

e
on

 S
G

IO
ri

gi
n2

00
0

(s
ec

)

sweep3d

fft

improc

closure

jacobi

memsort

cpi

Figure 6.7 ARMS Case Study: Applications

CHAPTER 6 ARMS

- 116 -

Each request chooses one of the 7 applications randomly and is sent to one of 8

agents randomly. The required execution time for the application is also chosen

randomly from a given domain, which is described in Table 6.2.

Application Minimum Requirement (s) Maximum Requirement (s)

sweep3d 4 200
fft 10 100
improc 20 192
closure 2 36
jacobi 6 160
memsort 10 68
cpi 2 128

Table 6.2 ARMS Case Study: Requirements

The automatic users can be configured to send requests with different frequencies.

As shown in Table 6.3, four experiments are designed with different workloads

added to ARMS. The interval of requests sent in each experiment is chosen

randomly from a given domain, which results in a different average frequency.

For example, experiment No. 2 lasts about 7 minutes. During this period, 149

requests are sent to ARMS. There is one request sent every 3 seconds on average.

The experimental results will be discussed in the sections below.

Experiment No. 1 2 3 4

Minimum Request Interval (s) 1 1 1 1
Maximum Request Interval (s) 7 5 3 1
Average Frequency (s/application) 4 3 2 1
Experiment Last Time (min) 7 7 7 5
Total Application Number 109 149 215 293

Table 6.3 ARMS Case Study: Workloads

6.5.3 Experiment Results I

In this section, the detailed results of experiment No. 2 are given. In this

experiment, there are a total of 149 applications scheduled to be executed on 8

resources. The detailed results are listed in Appendix B, which can be illustrated

using both a user’s (global) view and agent (local) views.

CHAPTER 6 ARMS

- 117 -

A request is submitted by the user to ARMS with a requirement of execution time.

Agents in ARMS cooperate with each other to find an available resource that can

meet the user requirement. The service discovery process can be completed in 0,

1, or 2 steps. For example, in a 2-step service discovery, three agents are involved.

The first agent receives the request from the user, the corresponding resource is

found at the final agent, and the second acts as a go-between during the process.

The application execution results are returned, including the time spent on

discovery, waiting, execution, etc.

The experimental results shown in Appendix B also give a list of application

execution data in the local management layer of each agent. An agent schedules

the accepted application executions onto the local resource. The corresponding

information includes the start time, the end time, and the mapping between the

application and the processors/hosts. These can be illustrated clearly using Gantt

charts.

The detailed results of this single experiment show how ARMS uses agent-based

service advertisement and discovery to achieve grid resource management.

However, the capability and performance for agents to schedule applications onto

grid resources can be only illustrated by the comparison of the statistical data

from several experiments. These are discussed below.

6.5.4 Experiment Results II

In this section, some statistical data on the results of the four experiments is given.

Note that the detailed results for the other three experiments are not given and

only statistical data are included in the tables below.

The distributions of the application execution against agents for all the

experiments are summarised in Table 6.4. For example, in the experiment No. 2,

27 requests of the application execution are scheduled onto the resource of the

agent gem (this is conformed with the detail results shown in Appendix B.2),

which are 19 percent of the total 149 requests. 5 requests (3 percent of the total

CHAPTER 6 ARMS

- 118 -

requests) are not scheduled onto any resource and end unsuccessfully (this is

summarised from the data shown in Appendix B.1).

Experiment Number

1 2 3 4

Agent

No. % No. % No. % No. %

gem 13 12 27 19 45 21 45 15
origin 13 12 15 10 27 13 42 14
sprite 15 14 20 13 27 13 38 13
tizer 14 13 27 19 31 14 39 13
coke 10 9 15 10 20 9 28 10
budweiser 13 12 17 11 23 11 31 11
burroughs 14 13 12 8 16 7 26 9
rubbish 14 13 11 7 17 8 24 8
failed 3 2 5 3 9 4 20 7
Total 109 100 149 100 215 100 293 100

Table 6.4 ARMS Experiment Results: Application Execution

The distributions of the application execution against service discovery for all the

experiments are summarised in Table 6.5. For example, in the experiment No. 2,

the resources for 114 requests of the application execution are discovered

immediately at the agent they are submitted to, which are 77 percent of the total

149 requests. This can also be summarised from the data shown in Appendix B.1.

Experiment Number

1 2 3 4

#Step

No. % No. % No. % No. %

0-step 106 97 114 77 143 66 199 68
1-step 3 3 24 16 38 18 29 10
2-step 0 0 11 7 31 15 53 18
3-step 0 0 0 0 3 1 12 4
Total 109 100 149 100 215 100 293 100

Table 6.5 ARMS Experiment Results: Service Discovery

The statistical results shown in Tables 6.4 and 6.5 are also illustrated in Figures

6.8 and 6.9 respectively. The curves in the figures show trends of the application

CHAPTER 6 ARMS

- 119 -

distributions when the system workload increases. These are also discussed in

detail below.

0

5

10

15

20

25

1 2 3 4

Experiment Number

A
pp

lic
at

io
n

D
is

tr
ib

ut
io

n
ag

ai
ns

t A
ge

nt
s

(%
)

gem

origin

sprite

tizer

coke

budweiser

burroughs

rubbish

failed

Figure 6.8 ARMS Experiment Results: Application Execution

0

20

40

60

80

100

1 2 3 4

Experiment Number

A
pp

lic
at

io
n

D
is

tr
ib

ut
io

n
ag

ai
ns

t S
er

vi
ce

 D
is

co
ve

ry
 (

%
)

0-step

1-step

2-step

3-step

Figure 6.9 ARMS Experiment Results: Service Discovery

CHAPTER 6 ARMS

- 120 -

1. There is one request sent every 4 seconds on average in the experiment

No. 1. Application execution requests are sent to the agents randomly, so

each agent should receive the same number of requests from users. In this

experiment, the system workload is rather light in relative to the

capabilities of the resources (even to the resources of agent burroughs and

rubbish, which are not so powerful). The 97% 0-step discoveries show that

almost all the requests are met immediately at the first agent they arrive.

Almost no service discovery processes occur between agents. This results

in an average application distribution on the agents and the number of the

requests that end unsuccessfully is very small.

2. The local resources of agent burroughs and rubbish are clusters of Sun

SPARCstation 2, which is not as powerful as the other platforms existing

in other agents. In the experiment No. 2, when the system workload

becomes heavier, many requests that they cannot meet are submitted to

their upper agent, tizer, which leads to a very heavy workload on tizer

(19% of application executions). The resources of agent coke and

budweiser are a bit more powerful. However, they still cannot meet all of

the requests from users. Some of the requests are submitted to their upper

agent, sprite, which leads to a heavy workload on sprite, though not so

heavy as tizer. These result in the dramatic increase of the percent of 1-

step service discovery processes. The agent gem is the head of agent

hierarchy and has the most powerful platform, a multi-processor SGI

Origin2000. There are some application execution requests that have very

critical requirements. These requests can only be met using the SGI

Origin2000, so are submitted from tizer or sprite to gem. This leads to a

rather heavy application execution workload on gem and also an increase

of the processes for the 2-step service discovery. However, as shown in the

Gantt chart of gem in Appendix B.2, gem is so powerful that it is still not

fully utilised. The resource of another agent, origin, is as powerful as that

of gem, and can meet all of the requests it receives from users. However,

origin is a little far from the other agents. This results in the fact that

origin is far from utilised, which is also illustrated in the Gantt chart of

origin in Appendix B.3.

CHAPTER 6 ARMS

- 121 -

3. The system workload increases further. The dramatic decrease of the

percent of application executions on tizer indicates that the local resource

of tizer is fully utilised in this situation. Many requests submitted from

burroughs and rubbish have to be passed to gem, which leads to a

dramatic increase of the number of 2-step discovery processes. The

number of 1-step discovery processes increases too and a few 3-step

discovery processes appear. More application executions are scheduled

onto the agent origin. All of these indicate that service discovery among

the agents becomes active when the system workload increases.

4. The system workload becomes very heavy in this situation. The decrease

of the percent of application executions on gem indicates that the local

resource of gem also reaches its capability limitation, which results in a

dramatic increase of the number of the unsuccessful requests. The number

of 1-step discovery processes decreases, while 2-step and 3-step service

discovery processes occur more often. All of these indicate that the whole

system is fully utilised, so more complex service discovery processes

occur in order to find the available resources for the requests. However, in

this situation, the application executions show a very reasonable

distribution against agents. The order of the workload on the agents is the

same as that of the computing capabilities of their resources. The agent

gem and origin, which represent the most powerful resources in the

example system, have more applications executed, followed by sprite,

tizer, budweiser and coke. And only a small number of requests are met at

the agent burroughs and rubbish.

These experimental results show that the performance prediction driven agent-

based service advertisement and discovery is effective for the applications to be

scheduled at the meta level to utilise the grid resources. As we have mentioned in

Section 2.4, scalability and adaptability are two key challenges that the

implementation of grid resource management must address.

As shown in the experimental results, agents are organised into a hierarchy and

only process service advertisement and discovery with nearby agents. Once the

computing power in a scope cannot meet the requirements received, the additional

CHAPTER 6 ARMS

- 122 -

requests will be gradually dispatched to a larger scope, where the workload is not

so heavy compared with the computing capabilities. Note that the service

discovery is not processed in one step, but step by step, and may bypass many

intermediate agents. This key feature makes it possible for the system to scale

well when the grid environment becomes very large.

The PACE performance evaluation functions are used in the ARMS

implementation both locally and remotely. In order for an agent to make

decisions, the PACE evaluation engine will be called many times. The rapid

evaluation time of PACE without sacrificing accuracy is a very important feature

for the ARMS implementation.

Another important factor for ARMS to achieve high performance is the capability

for the agents to adjust their behaviours for service advertisement and discovery to

adapt to the highly dynamic grid environment. Though some of the strategies have

been introduced in the A4 methodology, and a PMA is also included in the ARMS

architecture, meta-level performance optimisation of ARMS using PMA is not

discussed in detail. In the next chapter, the implementation of PMA is described

to provide ARMS with high adaptability.

- 123 -

CChhaapptteerr 77

PPMMAA::

PPEERRFFOORRMMAANNCCEE MMOONNIITTOORR AANNDD

AADDVVIISSOORR FFOORR AARRMMSS

Performance issues arise from the dynamic nature of grid resources [Cao2001].

As we have mentioned in the A4 methodology, most practical systems must make

a balance between service advertisement and discovery. The PMA is a special

agent, which is capable of performance modelling and simulation about the agent

system and acts as a performance monitor and advisor in ARMS. In this chapter,

the structure for the PMA implementation is described along with details on

performance optimisation strategies and steering policies. A case study is also

used to show how different strategies and policies are used to improve the

performance of the ARMS agent system.

7.1 PMA Structure

The PMA was illustrated in Figures 6.1 and 6.2 previously. Unlike facilitators or

brokers in classical agent-based systems it is not central to the rest of the agents. It

neither controls the agent hierarchy nor serves as a communication centre in the

physical and symbolic sense. Instead, the PMA observes the communication

traffic of the agent system and tries to draw corresponding conclusions regarding

the agents’ behaviour with the intention of improving the performance of ARMS.

CHAPTER 7 PMA

- 124 -

If the PMA ceases to function, the agent system has no difficulty in surviving and

it continues with its ordinary life. The efficiency improvement consideration

would not be provided in ARMS unless some modelling and simulation

mechanism is built into the PMA. By introducing the PMA, we have tried to avoid

making ARMS unscalable by relying on a single agent, which otherwise becomes

a system bottleneck.

In this section, we will introduce the structure of the PMA and its relation with

other agents in ARMS, which is shown in Figure 7.1. The kernel of the A4

simulator is used in the PMA, including the model composer and simulation

engine. However, the PMA has a different way of input and output.

Monitoring

Reconfiguration

Model Composer

Simulation Engine

Statistical Data

Performance Model Strategies

Strategies

ARMS Agents PMA

Figure 7.1 PMA vs. ARMS

Statistical data is monitored from each of the ARMS agents and input to the PMA

for performance modelling. As introduced in Section 5.6.1, the statistical data that

are input into the model composer mainly concern the requests and services in the

system. These include:

• Relative request performance value. In ARMS, this value is the required

application execution time.

• Request sending frequency. An agent may receive the same request from a

user very frequently. The PMA sensors in the ARMS agents can analyse

the request information in the log file and calculate the average time a

request is received.

• Relative service performance value. In ARMS, the resource performance

is evaluated using the PACE toolkit and scheduling algorithms, which

makes the modelling and simulation very difficult. Some estimation on

CHAPTER 7 PMA

- 125 -

average application waiting and execution time can be used as a relative

service performance value.

• Service performance changing frequency. The grid resources are dynamic

and their performance varies over time. The PMA sensor in the ARMS

agents can monitor the updating frequency of T_ACT and estimate an

average performance changing frequency.

The statistical data and other relative information are composed into a

performance model. The performance model is put through the simulation engine

in the PMA. The optimisation strategies used in ARMS to improve service

discovery will be discussed in Section 7.2. New optimisation strategies can be

chosen to improve the performance metrics according to some steering policies,

which will be discussed in Section 7.3. The simulation can be performed many

times until a better solution is selected. The selected optimisation strategies are

returned and used to reconfigure the agents in ARMS.

7.2 Performance Optimisation Strategies

When the A4 methodology and the ARMS implementation were introduced

earlier, some strategies for ACT maintenance were discussed. However, the

impact of the choice of these strategies on the overall system performance is not

discussed in detail. There are also further performance optimisation strategies that

can be considered, which will be discussed in detail below.

7.2.1 Use of ACTs

T_ACT is always used in each agent and cannot be used for service discovery

performance optimisation, because the connections made between the local

resource and the T_ACT in the agent take place within an agent and have no

effect on communications between agents.

Caching previous service discovery results is a good strategy for performance

optimisation that assumes a request may be required more than once. Many

CHAPTER 7 PMA

- 126 -

current network applications use caches to optimise performance. Using cached

service information may result in direct service discovery in one step. However, if

the service information changes frequently compared to the request frequency,

using the cache may decrease the service discovery speed. So the efficiency of

using cache depends on the characteristics of the actual system.

Adding some local knowledge to an agent is also a performance optimisation that

assumes that services are often required by local agents. If an agent has the

service information of its lower agents, it need not traverse all of them for service

discovery and dispatch the request to the available lower agent directly. However,

additional data maintenance workload is needed for the L_ACT.

Adding some global knowledge to an agent is also a performance optimisation. A

request may need less connections to find the available service as the higher-level

agents need not take part in the discovery process. The system load can also be

reduced. Additional data maintenance workload is also needed for the G_ACT.

The efficiency of using L_ACT and G_ACT also depends on the characteristics of

the actual system. Balance must be made between service advertisement and

discovery when L_ACT and G_ACT are used in agents. How to steer the

performance optimisation process will be discussed in Section 7.3 and illustrated

using a case study in Section 7.4.

7.2.2 Limited Service Lifetime

Another performance optimisation strategy is to add a service lifetime limitation

to the attributes of the service information. This lifetime should be pre-estimated

before the service is advertised. The agent can check the ACTs frequently and

delete out-of-date service information. This can avoid unnecessary routing

processes and increase the speed of service discovery. There is also no additional

data maintenance workload. However, the lifetime of some services in the system

may be unpredictable.

CHAPTER 7 PMA

- 127 -

7.2.3 Limited Scope

The scope in which a service can be advertised and discovered can also be pre-

defined by attributes to the service information. The service need only be

advertised within a certain scope of the system, which can reduce the

advertisement and data maintenance workload. The search for a service can also

be limited to a certain scope, avoiding unnecessary discovery processes. However,

a prior knowledge about the service and its requests are needed to achieve

optimisation. Mismatches between the scope limitation of a service and of a

request may result in the low success rate of the service discovery.

7.2.4 Agent Mobility and Service Distribution

A good match between the requests and services in the system may lead to higher

performance service discovery. For example, in the grid environment, if a scope

with many requests has also many high performance computing resources, these

requests need not be routed far away to find an available resource, which

decreases the service discovery workload. However, request distribution is up to

the users and cannot be changed by the system. So agent mobility and service re-

distribution can be used to give a better match with the requests.

The case study in Section 5.7 provides a good illustration that agent movement

and service re-distribution can lead to a higher performance. When the service is

moved to a coordinator of a larger sub-hierarchy, more requests become local

instead of remote, which reduces the discovery workload of the system.

It is clear whether the strategies described above can be used to improve

performance is determined by the characteristics of the system. The performance

of the system may vary when the grid resources change. So the process for the

PMA to monitor and reconfigure the ARMS agent exists during the lifetime of the

system. When the system states change, the PMA is responsible for changing the

performance optimisation strategies and configuring the relative agent behaviours

to adapt to the new situation. Some performance steering policies can be used to

guide the changing of strategies and configure the agent behaviours to achieve

CHAPTER 7 PMA

- 128 -

higher service discovery performance gradually. These will be discussed in the

following sections.

7.3 Performance Steering Policies

There are four metrics that are used to characterise the performance of the system,

which were given in Section 5.5. The processes for the PMA to steer the

performance of the ARMS agents are driven by improving these metrics.

Different systems have different critical aspects and have different criteria of high

performance. In this section, we focus on load balance between the service

advertisement and discovery, which is commonly needed in most of the systems.

Discovery speed (v) and system efficiency (e) are two metrics that are used for

load balancing between the service advertisement and discovery. The system is in

very low performance mode when both discovery speed and system efficiency are

very low. In this situation, agents can be steered and configured with more service

advertisement. Reasonable service advertisement can lead to less workload on

service discovery and improve both discovery speed and system efficiency

simultaneously. However, too much service advertisement may decrease system

efficiency though increase discovery speed. Let’s consider each kind of ACT

maintenance approach.

Each agent maintains a T_ACT in its coordination layer, which includes the

service information of the local resource. Periodically updating T_ACT may save

update workload but cause delay on updating and unnecessary trouble for service

discovery. Maintenance of T_ACT does not add workload on agent

communication, so event-driven updating can be used to keep T_ACT in line with

resource changes in real time. Because event-driven data-pull updating of T_ACT

may increase service discovery time, it is better to use an event-driven data-push

approach to keep the T_ACT updated in real time. However, if the resource

changes very frequently and the number of requests is very small, an event-driven

data-pull approach can also be used.

CHAPTER 7 PMA

- 129 -

In most situations, cached information can improve the system performance to

some extent. Especially when system performance is very low and there is no

cached information maintained in each agent, adding C_ACT in each agent of the

system could result in obvious performance improvement. In general, C_ACT is

maintained using both event-driven data-pull and data-push approaches, which is

the same as other kinds of use of cache.

Keeping some service information of lower agents can always improve service

discovery performance if the system is not extremely dynamic. However, in

general only one of the four approaches can be chosen for L_ACT maintenance.

Two or more approaches applied at the same time may cause redundancy of

service advertisement. The service discovery may not benefit from the redundant

service information enough so that the system efficiency may decrease.

Use of G_ACT has the same policies as L_ACT. Note that data-push updating of

G_ACTs should be applied to the system carefully. Because the updating takes

place in all of the lower agents of an agent, the service advertisement workload

could increase greatly. However, the lower agents may not make good use of this

updated service information for service discovery, which leads to a low system

efficiency.

Another advantage of using G_ACT, is to avoid adding too much service

discovery workload to the coordinators or the broker in the agent hierarchy and

improve load balance of the agents. The success rate of the system can also be

improved using available limit service lifetime and scope configurations. This is

not discussed in detail here.

In fact, it is difficult to define obvious and efficient policies to guide the

performance optimisation processes used in PMA. There are too many factors that

have an impact on system performance and whether a strategy can be chosen to

improve performance depends heavily on the real situation of the system. The

system can be steered at a global level, which means that all of the agents are

configured with the same strategies. However, each agent can also be configured

with a different strategy. In this section, we only discuss the problem of

CHAPTER 7 PMA

- 130 -

performance steering initially. Further research is needed to give a deeper analysis

of the performance optimisation issues.

7.4 A Case Study

In this section, an example model is given and experiment results are included to

show how to steer the performance optimisation process using the PMA. Note that

the simulation results included in this section are actually produced using the A4

simulator.

7.4.1 Example Model

The attributes of an example model are shown in several tables. This is composed

of about 250 agents, each representing a high performance computing resource

that may provide a computing capability with a different performance. These

agents are organised in a hierarchy, which has three layers. The identity of the

root agent is gem. There are 50 agents registered to gem, four of which each also

have 50 lower agents. The hierarchy is illustrated in Table 7.1.

Agents Upper Agent

gem -
sprite~0……sprite~49 gem

tup~0……tup~49 sprite~9
cola~0……cola~49 sprite~19

tango~0……tango~49 sprite~29
pepsi~0……pepsi~49 sprite~39

Table 7.1 Example Model: Agents

To simplify the modelling processes, we define the services and requests in the

agents at the system level, which is shown in Table 7.2 and 7.3 respectively. The

name of the services and requests are all HPC, but with different relative

performance values. The frequency value of the service, 5, for example, means the

service performance will change between 0 and the performance value once every

5 steps during the simulation. The frequency value of the request, 5, for example,

CHAPTER 7 PMA

- 131 -

means a request will be sent once every 5 steps during the simulation. A step can

be designed as an arbitrary number of seconds. In ARMS, these values must be

monitored by the PMA while the system is operational. The performance

optimisation strategies of the lifetime and scope limitations are not used in the

model. The distribution value is used to define how many agents will be

configured with the corresponding service or request.

Name Relative
Performance

Freq Lifetime Scope Dist (%)

HPC 1000 5 Unlimited Top 20
HPC 600 10 Unlimited Top 40
HPC 200 20 Unlimited Top 60

Table 7.2 Example Model: Services

Name Relative
Performance

Freq. Scope Dist. (%)

HPC 100 5 Top 80
HPC 300 10 Top 60
HPC 500 20 Top 40
HPC 800 40 Top 20
HPC 1000 60 Top 10

Table 7.3 Example Model: Requests

Finally, the model must define how each agent uses the ACTs to optimise the

performance. In this case study six experiments have been considered, each of

which has the same configurations as described in Table 7.1 – 7.3, but has

different optimisation strategies as described in Table 7.4.

Experiment Number Performance Optimisation Strategies

1 2 3 4 5 6

T_ACT: event-driven data-push
C_ACT: event-driven data-push and data-pull

L_ACT: event-driven data-push
G_ACT: periodic data-pull every 10 steps
L_ACT: periodic data-pull every 10 steps

G_ACT: event-driven data-push

Table 7.4 Example Model: Strategies

CHAPTER 7 PMA

- 132 -

To simplify the experiments, we only define the strategies at the system level,

which means all of the agents in the model must use the same performance

optimisation strategies. A mixture of optimisation strategies is possible but is not

considered in these experiments. In the simulation results included in Section

7.4.2, a comparison of the different strategies is given by considering their impact

on the system performance.

7.4.2 Simulation Results

The simulation results for all of the experiments are summarised in Table 7.5.

Note that all values are accumulative results after 200 simulation steps. Each of

the six situations are described in detail below.

Experiment Number Metrics

1 2 3 4 5 6

r 12296 12355 12576 12560 12645 11715
a 0 0 5604 8051 10172 285148
d 65595 51113 7435 6901 6910 7056
v 0.18 0.24 1.69 1.82 1.82 1.84
e 0.18 0.24 0.96 0.84 0.74 0.04

Table 7.5 Simulation Results

1. Only T_ACTs are used in each agent. Each time the request arrives, a lot

of connections must be made and traversed in order to find the satisfied

service. In this situation, the discovery speed and system efficiency are

both rather low.

2. The cache is used in each agent, which needs no extra data maintenance

and improves the discovery speed and system efficiency a little. This is

because the dynamics of the services reduce the effects of the cached

information and so becomes unreliable.

3. L_ACT is added in each agent. Each time the service performance

changes, the corresponding agent will advertise the change upward in the

hierarchy. This adds additional data maintenance workload to the system,

CHAPTER 7 PMA

- 133 -

which decreases the discovery workload extremely. So the discovery

speed and the system efficiency are all improved.

4. G_ACT is also added. Each agent will get global service information from

its upper agent once every 10 simulation steps, which will add additional

data maintenance workload. From the simulation results, we can see this

improves the discovery speed further. But the system efficiency decreases

a little because of the additional data maintenance.

5. Another maintenance of the L_ACT is added. Each agent asks for service

information from its lower agents once every 10 steps. This doesn’t

improve the discovery speed any more and only adds more data

maintenance workload, which decreases the system efficiency further.

6. Another maintenance of the G_ACT is added. This improves the discovery

speed only a little, but adds further data maintenance workload, which

decreases the system efficiency extremely.

Figure 7.2 Choice of Optimisation Strategies

The impact of the choice of the optimisation strategies on the discovery speed and

the system efficiency is shown clearly in Figure 7.2. It can be seen that the fourth

experiment has a good balance between the discovery speed and the system

efficiency for this example model. It has a higher discovery speed in comparison

to the third, with only slight lower system efficiency.

Changing the G_ACT update frequency will also change the performance of the

model. Figure 7.3 shows the relation between the G_ACT update frequency and

the system performance. In these experiments, the strategies that are used are all

the same as described in the fourth experiment of Table 7.4. The only difference is

CHAPTER 7 PMA

- 134 -

the G_ACTs in the agents are updated with different frequencies, which may lead

to differences in the amount of system workload for service advertisement. The

best trade-off between discovery speed and system efficiency is once every 20

simulation steps in this example model.

0

20

40

60

80

100

120

140

160

180

200

1 2 5 10 20 30 40 80 Never

G_ACT Updating Frequency in Steps

v,
 e

 (
*1

00
)

v

e

Figure 7.3 Choice of G_ACT Update Frequency

In summary, the example model should use all of the ACTs. L_ACT should be

maintained by the real-time service advertisement. The G_ACT should be

maintained by updating once every 20 steps. In fact, the performance of the

example model can be improved further using agent level modelling. Different

agents can use a mixture of different strategies to achieve higher performance of

the whole system. This is not discussed in detail here.

The techniques of performance modelling and simulation are useful especially for

the current phase of research into grid computing. As mentioned, a practical grid

environment does not yet exist. In fact, there is not even a grid testbed that can be

used for research. In the last chapter, the example system is composed of only 8

resources, which is far from a grid size. The performance data cannot be produced

CHAPTER 7 PMA

- 135 -

in such a system for analysis, which makes a simulation environment very

valuable for this kind of research. The A4 simulator is such an attempt.

The PMA agent is used for online performance optimisation and steering for

ARMS, which is a further usage of the simulation techniques. The simulation

results are not only used for traditional performance analysis, but also feedback to

the system for performance improvement in real time. However, the research into

performance issues on service discovery in large-scale multi-agent system is just

beginning. More performance optimisation strategies and steering policies need to

be investigated further. A practical implementation of the ARMS and the PMA is

ongoing, and is summarised in the conclusion part of the thesis.

- 136 -

CChhaapptteerr 88

CCOONNCCLLUUSSIIOONNSS

The grid is an emerging infrastructure for high performance computing. Resource

management is the most important service for grid implementation. In this thesis,

the methodology, tools, and applications of agent-based resource management for

grid computing are presented. In this chapter, the main contents of the thesis are

summarised and future work is suggested.

8.1 Thesis Summary

The work in this thesis is based on previous work on a performance evaluation

toolkit, known as PACE. In this thesis, a new parallel application, Sweep3D, is

used to validate the capabilities of performance modelling, evaluation, and

prediction of the PACE system. The key features of PACE include rapid

evaluation time, reasonable accuracy, and easy comparison across different

platforms. The utilisation of PACE provides QoS support for grid resource

management.

While extremely well suited for managing a locally distributed resource, the

PACE functions do not map well onto a wide-area grid computing environment.

CHAPTER 8 CONCLUSIONS

- 137 -

A new methodology for building large-scale distributed software systems with

highly dynamic behaviours, A4 (Agile Architecture and Autonomous Agents), is

presented in this thesis. The main component in an A4 system is the agent. Agents

are both service requestors and providers. Services can be advertised and

discovered within the hierarchy among different agents. There are four

performance metrics for service discovery: discovery speed, system efficiency,

load balancing, and success rate. A simulator for A4 has been developed that can

be used for modelling and simulation to evaluate an A4 system performance.

The coupling of the A4 methodology with PACE functions leads to an initial

implementation of an agent-based resource management system for grid

computing, called ARMS. PACE is used to provide quantitative data concerning

the performance of sophisticated applications running on a local resource. At a

metacomputing level, agents cooperate with each other and perform resource

advertisement and discovery functions to schedule applications that need to utilise

the available resources. An ARMS agent includes: an ACT manager, the PACE

evaluation engine, a multi-processor scheduler, and a matchmaker.

A special agent, a PMA, is also developed as a performance monitor and advisor

in ARMS, which is capable of performance modelling and simulation of agent

service discovery. Some performance steering policies can be used to guide the

agents to choose different kinds of performance optimisation strategies, including

the use of ACTs, limited service lifetime, and limited scope of service

advertisement and discovery, etc, to improve system performance gradually.

The main contribution of this work includes: performance prediction driven QoS

support for grid resource management and scheduling, an agent-based hierarchical

model for service advertisement and discovery, and simulation-based performance

optimisation and steering of agent resource discovery.

The performance prediction capability provided by the PACE toolkit was used for

multi-processor scheduling, on-the-fly application steering, and traditional

performance analysis. In the work described in this thesis, it is first used for QoS

support of grid resource management. Most of the previous solutions to grid

CHAPTER 8 CONCLUSIONS

- 138 -

resource management include only soft QoS support. The key features of PACE

make it a more suitable toolkit than any other evaluation tools to provide detail

performance data rapidly without sacrificing the accuracy. This can be used to

provide the hard QoS support for grid resource management at a meta level. The

introduction of the PACE performance prediction technique to grid resource

management differentiates this work from any other existing solutions.

Agent technologies have been developing for more than ten years and are

becoming a mainstream software development technology. The development of

the grid software infrastructure can benefit from the trend of agent-based software

engineering in different ways. In this work, a hierarchy of homogenous agents is

used with capabilities of service advertisement and discovery to provide grid

resource management and scheduling at a meta level. Agents can be configured

with different behaviours, which provides a flexible way for the system to adapt to

the highly dynamic grid environment. The agent-based architecture not only

provides a clean and powerful high-level abstraction of the grid resource

management system described in this work, but can also be used as a framework

for new components or functions to be added into the system. ARMS is the first

prototype implementation of an agent-based resource management system for grid

computing with important features that do not exist in other solutions.

Unlike many other agent-based system implementations that focus mainly on data

representation and communication protocols, performance issues are the key

consideration in the development of ARMS described in this thesis. The high-

level performance evaluation and optimisation of service advertisement and

discovery in large-scale MAS are attempted in this work using performance

modelling and simulation techniques. Some performance metrics are defined and

some performance optimisation strategies and steering policies are explored.

Though performance issues on service discovery have been discussed in some

other work, to the authors’ knowledge, a quantitative analysis, that enables a MAS

performance of service discovery to be investigated, can be only found in the

work described in this thesis.

CHAPTER 8 CONCLUSIONS

- 139 -

In summary, all of above go together to provides an available methodology and

prototype implementation of an agent-based resource management system for grid

computing, which can be used as a fundamental framework for further

improvement and refinement.

8.2 Future Work

The main suggestion for future work is centred on the enhancement of ARMS.

The framework and methodology have been demonstrated using an initial

implementation of ARMS as described in this thesis. Many features can be added

to the new implementation.

8.2.1 Performance Evaluation

The PACE toolkit is used to supply performance evaluation data in ARMS. There

are still several aspects that can be improved for PACE to provide better QoS

support of grid resource management.

Current PACE models include too much detail of an application or a resource,

which need to be lightened for remote performance evaluation without sacrificing

accuracy. A new project is to focus on transaction-level performance evaluation of

Java applications [Spooner2001]. The detail of the operations in an application

can be encapsulated into transactions, and the performance specification can be

processed at a higher level. PACE models with lightweight application

characterisations will reduce the communication workload between agents when

service advertisement and discovery are processed, and hence improve the system

performance.

PACE resource models are currently static without consideration of dynamic CPU

workload and network traffic. The benchmark programs are executed off-line to

produce these models on different platforms. In future, Dynamic Performance

Measurement (DPM) can be applied to the ARMS implementation. The agents in

CHAPTER 8 CONCLUSIONS

- 140 -

ARMS can control the benchmark programs to be executed on the local resource

in real time and produce the corresponding resource models dynamically.

In the work described in this thesis, we focus on the evaluation of the application

execution time, which is the only cost metrics that is included in the cost model of

a request. In fact, more metrics (e.g. memory usage, execution environment, etc.)

can be added into the cost model and the corresponding evaluation engines can

also be added into each ARMS agent. This will provide a wider QoS support of

the grid resource management.

8.2.2 Multi-processor Scheduling

An advanced multi-processor scheduling algorithm should be developed to

include more consideration of dynamic information on resources and applications

and aim to both meet requirements from users and maximise the resource

utilisation.

A multi-processor scheduler, called TITAN, is under development at Warwick. A

Genetic Algorithm (GA) is used as the kernel of TITAN. A monitoring module is

also developed to collect dynamic information of the local processors. TITAN

also takes advantage of the performance prediction capability of PACE. The GA

in TITAN is an iterative heuristic process that can absorb slight changes of both

resources and applications. TITAN aims to maximise the resource utilisation via

calculating the penalty of the weighted idle time of the local processors and

minimising the global make span of the application executions. An extension of

the GA will aim to meet requirements from users as well.

TITAN will be an ideal local resource manager in the grid computing

environment. The new implementation of ARMS can integrate multiple TITANs

with agents to achieve grid resource management. TITAN can also be developed

using the APIs provided by standard grid toolkits like Globus so as to cooperate

with other kinds of local resource managers (e.g. Condor and AppLeS) in the grid

environment.

CHAPTER 8 CONCLUSIONS

- 141 -

8.2.3 Agent-based Resource Management

The A4 methodology and the ARMS agents can also be improved in a number of

ways. These are listed in detail below.

• An agent in the hierarchy may be permitted to register with multiple upper

agents, which will result in a more flexible and robust system architecture.

Once an agent leaves the system, its lower agents are still able to contact

the rest of the system via other upper agents. The cost of this would be

more complex system management.

• New performance metrics for the agent-based service discovery can be

developed concerning the communication time spent on the service

discovery, instead of just the number of connections made for the service

discovery. Benchmark programs can be developed to measure the

communication time between two agents, and measurement results can be

used for modelling the time spent in agent communication.

• New performance optimisation strategies and steering policies should be

developed for efficient implementation of service advertisement and

discovery in ARMS. The modelling and simulation techniques can be used

to evaluate different strategies and their impact on the system performance

• New protocols for service advertisement and discovery can be developed

to provide stronger QoS support. For example, multiple service support

will provide users and system management tools with a wider base of QoS

support. The agent-based grid resource discovery can also be designed to

be a negotiation process between the users and the ARMS agents.

• Current agent behaviours in ARMS can only be configured by the system

manager or the PMA. Further implementation of the ARMS agents should

be able to change the behaviours themselves according to the changing

requests and resources. The agent needs more capabilities to learn over

time and get useful knowledge from its historic information.

CHAPTER 8 CONCLUSIONS

- 142 -

8.2.4 Enhanced Implementation

The ARMS implementation can be enhanced using some existing standards,

languages, tools and protocols. For example, the ARMS agents and the PMA can

be developed using Java and an XML format for data representation. An agent

communication language (ACL) can be used to allow agents to communicate with

each other at a higher-abstracted knowledge level. A resource specification

language (RSL) can be used to give a formal representation of service information

in ARMS. Some network and database management protocols like LDAP and

SNMP can also be used in the implementation of ARMS.

The new implementation of ARMS is to be tested on a grid infrastructure that is

being built at Warwick. This includes clusters of Sun workstations, an SGI

Origin2000 and an IBM S/390, etc. All of the work introduced above will enhance

the applicability and usefulness of the implementation of ARMS towards a

practical system.

- 143 -

BBIIBBLLIIOOGGRRAAPPHHYY

Alkindi2001 A. M. Alkindi, D. J. Kerbyson, G. R. Nudd, and E.
Papaefstathiou, “Optimisation of Application Execution on
Dynamic Systems”, Future Generation Computer Systems,
Vol. 17, No. 8, Elsevier Science, pp. 941-949, 2001.

Amold1999 K. Amold, B. O’Sullivan, R. Scheifer, J. Waldo, and A.
Woolrath, The Jini Specification, Addison Wesley, 1999.

Arbab1993 F. Arbab, I. Herman, and P. Spilling, “An Overview of
Manifold and its Implementation” , Concurrency: Practice
and Experience, Vol. 5, No. 1, pp. 23-70, 1993.

Atkins1996 D. E. Atkins, W. P. Birmingham, E. H. Durfee, E. J. Glover,
T. Mullen, E. A. Rundensteiner, E. Soloway, J. M. Vidal, R.
Wallace, and M. P. Wellman, “Toward Inquiry-Based
Education Through Interacting Software Agents” , IEEE
Computer, Vol. 29, No. 5, pp. 69-76, 1996.

Bagrodia1998 R. Bagrodia, R. Meyer, M. Takai, Y.A Chen, X. Zeng, J.
Martin, and H.Y. Song, “Parsec: A Parallel Simulation
Environment for Complex Systems”, IEEE Computer, Vol.
31, No. 10, pp. 77-85, 1998.

Baker2001 M. Baker, R. Buyya, and D. Laforenza, “The Grid: A
Survey on Global Efforts in Grid Computing” , Technical
Report: 2001/92, Monash University, Australia, May 2001.

BIBLIOGRAPHY

- 144 -

Berman1996 F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao,
“Application-level Scheduling on Distributed
Heterogeneous Networks” , in Proc. of Supercomputing,
1996.

Boloni1999 L. Boloni, and D. Marinescu, “An Object-Oriented
Framework for Building Collaborative Network Agents” , in
A. Kandel et al, eds, Agents in Intelligent Systems and
Interfaces, Kluewer, 1999.

Bradshaw1997 J. M. Bradshaw, ed., Software Agents, The AAAI Press /
The MIT Press, 1997.

Bray2000 J. Bray, and C. Sturman, Bluetooth: Connect Without
Cables, Prentice Hall, 2000.

Brewington1999 B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko,
and D. Rus, “Mobile Agents for Distributed Information
Retrieval” , in M. Klusch, ed., Intelligent Information
Agents, Chapter 15, Springer-Verlag, 1999.

Brooks1997 C. Brooks, B. Tierney, and W. Johnston, “JAVA Agents for
Distributed System Management” , LBNL Report, 1997.

Buyya1999 R. Buyya, ed., “High Performance Cluster Computing” ,
Prentice Hall, 1999.

Buyya2000 R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An
Architecture for a Resource Management and Scheduling
System in a Global Computational Grid” , in Proc. Of 4th Int.
Conf. on High Performance Computing in Asia-Pacific
Region, Beijing, China, 2000.

Buyya2000b R. Buyya, S. Chapin, and D. DiNucci, “Architectural
Models for Resource Management in the Grid” , in Proc. of
1st IEEE/ACM Int. Workshop on Grid Computing, Lecture
Notes in Computer Science 1971, Springer-Verlag, pp. 18-
35, 2000.

Cao1996 J. Cao, “Analysis and Design of an Acknowledge
Subsystem of BMCST-MIS”, BEng Thesis, Tsinghua
University, 1996.

Cao1998 J. Cao, “Flexible Software Systems”, MSc Thesis, Tsinghua
University, 1998.

BIBLIOGRAPHY

- 145 -

Cao1999 J. Cao, Y. Fan, and C. Wu, “Research of Operation
Administration System Agents of Integration Platform”,
Computer Integrated Manufacturing Systems (CIMS), Vol.
5, No. 3, pp. 39-43, 1999.

Cao1999b J. Cao, Y. Fan, and C. Wu, “System Architecture of New
CIMS Application Integration Platform”, J. of Tsinghua
University, Vol. 39, No. 7, pp. 68-71, 1999.

Cao1999c J. Cao, and Y. Fan, “Concepts of Flexible Software
Systems”, Computer Science, Vol. 26, No. 2, pp. 74-77,
1999.

Cao1999d J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Modeling of ASCI High Performance Applications Using
PACE”, in Proc. of 15th Annual UK Performance
Engineering Workshop, Bristol, UK, pp. 413-424, 1999.

Cao2000 J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Performance Modelling of Parallel and Distributed
Computing Using PACE”, in Proc. of 19th IEEE Int.
Performance, Computing and Communication Conf.,
Phoenix, USA, pp. 485-492, 2000.

Cao2000b J. Cao, D. J. Kerbyson, and G. R. Nudd, “Dynamic
Application Integration Using Agent-Based Operational
Administration” , in Proc. of 5th Int. Conf. on Practical
Application of Intelligent Agents and Multi-Agent
Technology, Manchester, UK, pp. 393-396, 2000.

Cao2001 J. Cao, D. J. Kerbyson, and G. R. Nudd, “Performance
Evaluation of an Agent-Based Resource Management
Infrastructure for Grid Computing” , in Proc. of 1st IEEE Int.
Symp. on Cluster Computing and the Grid, Brisbane,
Australia, pp. 311-318, 2001.

Cao2001b J. Cao, D. J. Kerbyson, and G. R. Nudd, “Use of Agent-
Based Service Discovery for Resource Management in
Metacomputing Environment” , in Proc. of 7th Int. Euro-Par
Conf., Manchester, UK, Lecture Notes in Computer Science
2150, Springer-Verlag, pp. 882-886, 2001.

Cao2001c J. Cao, D. J. Kerbyson, and G. R. Nudd, “High Performance
Service Discovery in Large-scale Multi-agent and Mobile-
agent Systems”, to appear in Int. J. of Software Engineering
and Knowledge Engineering, Special Issue on Muti-Agent
Systems and Mobile Agents, World Scientific Publishing,
2001.

BIBLIOGRAPHY

- 146 -

Cao2001d J. Cao, D. J. Kerbyson, S. A. Jarvis, G. R. Nudd, D. P.
Spooner, and J. D. Turner, “ARMS: an Agent-based
Resource Management System for Grid Computing” , to
appear in Scientific Programming, Special Issue on Grid
Computing, IOS Press, 2001.

Carriero1989 N. Carriero, and D. Gelernter, “Linda in Context” ,
Communications of ACM, Vol. 32, No. 4, pp. 444-458,
1989.

Casanova1998 H. Casanova, and J. Dongarra, “Applying NetSolve’s
Network-Enabled Server” , IEEE Computational Science &
Engineering, Vol. 5, No. 3, pp. 57-67, 1998.

Case1988 J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple
Network Management Protocol” , RFC 1067, IETF Draft
Standard, 1988.

Chapin1999 S. J. Chapin, D. Katramatos, J. Karpovich, and A.
Grimshaw, “Resource Management in Legion” , Future
Generation Computer Systems, Vol. 15, No. 5, pp. 583-594,
1999.

Chen1996 H. Chen, A. Houston, J. Nunamaker, and J. Yen, “Toward
Intelligent Meeting Agents” , IEEE Computer, Vol. 29, No.
8, pp. 62-70, 1996.

Ciancarini1996 P. Ciancarini, “Coordination Models and Languages as
Software Integrators” , ACM Computing Surveys, Vol. 28,
No. 2, pp. 300-302, 1996.

Ciancarini1999 P. Ciancarini, and A. L. Wolf (eds.), Proc. of 3rd Int. Conf.
on Coordination Languages and Models, Lecture Notes on
Computer Science 1594, Springer Verlag, 1999.

Ciancarini2001 P. Ciancarini, and M. Wooldridge (eds.), Agent-Oriented
Software Engineering, Lecture Notes in Artificial
Intelligence, Vol. 1957, Springer Verlag, 2001.

Czajkowski1998 K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke, “A Resource
Management Architecture for Metacomputing Systems”, in
Proc. of IPPS/SPDP '98 Workshop on Job Scheduling
Strategies for Parallel Processing, 1998.

Davison1998 R. G. Davison, J. J. Hardwicke, and M. D. J. Cox,
“Applying the Agent Paradigm to Network Management” ,

BIBLIOGRAPHY

- 147 -

BT Technology Journal, Vol.16, No. 3, pp. 86-93, July
1998.

Denis2001 A. Denis, C. Pérez, and T. Priol, “Portable Parallel CORBA
Objects: An Approach to Combine Parallel and Distributed
Programming for Grid Computing” , in Proc. of 7th Int.
Euro-Par Conf., Manchester, UK, Lecture Notes in
Computer Science 2150, Springer-Verlag, pp. 835-844,
2001.

Deelman1998 E. Deelman, A. Dube, A. Hoisie, Y. Luo, R. L. Oliver, D.
Sundaram-Stukel, H. Wasserman, V. S. Adve, R. Bagrodia,
J. C. Browne, E. Houstis, O. Lubeck, J. Rice, P. J. Teller,
and M. K. Vernon, “POEMS: End-to-end Performance
Design of Large Parallel Adaptive Computational Systems”,
in Proc. of the 1st ACM Int. Workshop on Software and
Performance, pp. 18-30, 1998.

Dongarra1994 J. Dongarra, D. Walker, E. Lusk, et al., “Special Issue - MPI
- A Message-Passing Interface Standard” , Int. J. of
Supercomputer Applications and High Performance
Computing, Vol. 8, No. 3-4, 1994.

Fan1999 Y. Fan, W. Shi, and C. Wu, “Enterprise Wide Application
Integration Platform for CIMS Implementation” , J. of
Intelligent Manufacturing, Vol. 10, No. 6, pp. 587-601,
1999.

Fan2000 Y. Fan, and J. Cao, Object-oriented Modelling, Analysis
and Design of Complex Systems, Tsinghua University Press
/ Springer-Verlag, 2000.

Fan2001 Y. Fan, and J. Cao, Multi-Agent Systems: Theories,
Applications and Methods, to be published by Tsinghua
University Press / Springer-Verlag, 2001.

Fitzgerald1997 S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke, “A Directory Service for
Configuring High-Performance Distributed Computations” ,
in Proc. of 6th IEEE Symp. on High Performance
Distributed Computing, pp. 365-375, 1997.

Foster1997 I. Foster, and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit” , Int. J. Supercomputer Applications,
Vol. 11, No. 2, pp. 115-128, 1997.

Foster1998 I. Foster, and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan-Kaufmann, 1998.

BIBLIOGRAPHY

- 148 -

Foster1999 I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
and A. Roy. “A Distributed Resource Management
Architecture that Supports Advance Reservations and Co-
Allocation” , in Proc. of Int. Workshop on Quality of
Service, 1999.

Foster2000 I. Foster, “Internet Computing and the Emerging Grid” ,
Nature, Dec. 7, 2000.

Foster2001 I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations” , to be
published in Intl. J. Supercomputer Applications, 2001.

Frank1997 M. I. Frank, A. Agarwal, and M. K. Vernon, “LoPC:
Modelling Contention in Parallel Algorithms”, in Proc. of
6th ACM SIGPLAN Symp. on Principles and Practices of
Parallel Programming, Las Vegas, pp. 62-73, 1997.

Furmento2001 N. Furmento, S. Newhouse, and J. Darlington, “Building
Computational Communities from Federated Resources” , in
Proc. of 7th Int. Euro-Par Conf., Manchester, UK, Lecture
Notes in Computer Science 2150, Springer-Verlag, pp. 855-
863, 2001.

Garlan1993 D. Garlan, and M. Shaw, “An Introduction to Software
Achitecture” , in Advances in Software Engineering and
Knowledge Engineering, World Scientific, Vol. 1, 1993.

Geist1994 A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam, PVM: Parallel Virtual Machine: A Users’
Guide and Tutorial for Networked Parallel Computing, MIT
Press, 1994.

Gelernter1992 D. Gelernter, and N. Carriero, “Coordination Languages
and Their Significance”, Communications of the ACM,
Vol. 35, No. 2, pp. 96-107, 1992.

Goland1999 Y. Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright,
“Simple Service Discovery Protocol/1.0: Operating without
an Arbiter” , IETF Internet Draft, 1999.

Grimshaw1999 A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey,
“Wide-Area Computing: Resource Sharing on a Large
Scale” , IEEE Computer, Vol. 32, No. 5, pp. 29-37, 1999.

BIBLIOGRAPHY

- 149 -

Guttman1999 E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service
Location Protocol, Version 2” , RFC 2608, IETF Draft
Standard, 1998.

Hall1996 M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S. Liao, E. Bugnion, and M. S. Lam, “Maximizing
Multiprocessor Performance with the SUIF Compiler” ,
IEEE Computer, Vol. 29, No. 12, pp. 84-89, 1996.

Harper1999 J. Harper, D. J. Kerbyson, and G. R. Nudd, “Analytical
Modeling of Set-Associative Cache Behavior” , IEEE Trans.
on Computers, Vol. 48, No. 10, pp. 1009-1024, 1999.

Hey2001 T. Hey, “e-Science Core Programme”, in e-Science Core
Programme Town Meeting, London, UK, 2001.

Jennings1998 N. R. Jennings, and M. J. Wooldridge (eds), Agent
Technology: Foundations, Applications, and Markets,
Springer-Verlag, 1998.

Jennings2000 N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, and B.
Odgers, “Autonomous Agents for Business Process
Management” , Int. J. of Applied Artificial Intelligence, Vol.
14, No. 2, pp. 145-189, 2000.

Jennings2000b N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, B.
Odgers, and J. L. Alty, “Implementing a Business Process
Management System using ADEPT: A Real-World Case
Study” , Int. J. of Applied Artificial Intelligence, Vol. 14,
No. 5, pp. 421-465, 2000.

Jennings2001 N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C.
Sierra, and M. Wooldridge, “Automated Negotiation:
Prospects, Methods and Challenges”, Int. J. of Group
Decision and Negotiation, Vol. 10, No. 2, pp. 199-215,
2001.

Jennings2001b N. R. Jennings, “An Agent-based Approach for Building
Complex Software Systems”, Communications of the
ACM, Vol. 44, No. 4, pp. 35-41, 2001.

Jeon2000 H. Jeon, C. Petrie, and M. R. Cutkosky, “JATLite: A Java
Agent Infrastructure with Message Routing” , IEEE Internet
Computing, Vol. 4, No. 2, pp. 87-96, 2000.

Jini1999 “Jini Architectural Overview”, Sun Technical White
Paper, Jan. 1999.

BIBLIOGRAPHY

- 150 -

Kerbyson1998 D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Application Execution Steering Using On-the-fly
Performance Prediction” , in Proc. of Euro. Conf. on High
Performance Computing and Networking, Lecture Notes in
Computer Science 1401, Springer-Verlag, pp. 718-727,
1998.

Kerbyson2000 D. J. Kerbyson, J. S. Harper, E. Papaefstathiou, D. V.
Wilcox, and G. R. Nudd, “Use of Performance Technology
for the Management of Distributed Systems”, in Proc. of 6th
Int. Euro-Par Conf., Lecture Notes in Computer Science
1900, Springer-Verlag, pp. 149-159, 2000.

Koch1992 K. R. Koch, R. S. Baker, and R. E. Alcouffe, “Solution of
the First-Order Form of the 3-D Discrete Ordinates
Equation on a Massively Parallel Processor” , Trans. of the
Amer. Nuc. Soc., Vol. 65, No. 108, 1992.

Kon2000 F. Kon, R. Campbell, M. Mickunas, and K. Nahrstedt, “2K:
A Distributed Operating System for Dynamic
Heterogeneous Environments” , in Proc. of 9th IEEE Int.
Symp. on High Performance Distributed Computing, 2000.

Kraus1998 S. Kraus, K. Sycara, and A. Evenchik, “Reaching
Agreements through Argumentation: a Logical Model and
Implementation” , Artificial Intelligence, Vol. 104, pp. 1-69,
1998.

Krauter2000 K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy
and Survey of Grid Resource Management Systems”,
Technical Report: 2000/80, Monash University, Australia,
Nov. 2000.

Labrou1999 Y. Labrou, T. Finin, and Y. Peng, “Agent Communication
Languages: The Current Landscape”, IEEE Intelligent
Systems, Vol. 14, No. 2, pp. 45-52, 1999.

Lea2001 R. Lea, S. Gibbs, R. Gauba, and R. Balaraman, HAVi
Example By Example: Java Programming for Home
Entertainment Devices, Prentice Hall, 2001.

Leinberger1999 W. Leinberger, and V. Kumar, “Information Power Grid:
The New Frontier in Parallel Computing” , IEEE
Concurrency, Vol. 7, No. 4, pp. 75-84, 1999.

Lieberman1997 H. Lieberman, “Autonomous Interface Agents” , in CHI ’97
Conf. Proc. on Human Factors in Computing Systems, pp.
67-74, 1997.

BIBLIOGRAPHY

- 151 -

Litzkow1988 M. Litzkow, M. Livny, and Matt Mutka, “Condor - A
Hunter of Idle Workstations” , in Proc. of 8th Int. Conf. on
Distributed Computing Systems, pp. 104-111, June 1988.

Maes1995 P. Maes, “Artificial Life Meets Entertainment: Lifelike
Autonomous Agents” , Communications of the ACM, Vol,
38, No. 11, pp. 108-114, 1995.

Malone1994 T. W. Malone, and K. Crowston, “The Interdisciplinary
Study of Coordination” , ACM Computing Survey, Vol. 26,
No. 1, pp. 87-119, 1994.

Miller1995 B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam, and T. Newhall, “The Paradyn Parallel
Performance Measurement Tools” , IEEE Computer, Vol.
28, No. 11, pp. 37-46, 1995.

Miller1999 B. Miller, and R. Pascoe, “Mapping Salutation Architecture
APIs to Bluetooth Service Discovery Layer” , Bluetooth
White Paper, July 1999.

Nakada1998 H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M.
Sato, and S. Sekiguchi, “Utilizing the Metaserver
Architecture in the Ninf Global Computing System”, in
Proc. of High Performance Computing and Networking,
Lecture Notes on Computer Science 1401, Springer-Verlag,
pp. 607-616, 1998.

Nowak1997 D. A. Nowak, R. C. Christensen, “ASCI Applications” ,
LLNL Report 232247, Nov. 1997.

Nudd2000 G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry,
J. S. Harper, and D. V. Wilcox, “PACE – A Toolset for the
Performance Prediction of Parallel and Distributed
Systems”, Int. J. of High Performance Computing
Applications, Special Issues on Performance Modelling –
Part I, Sage Science Press, Vol. 14, No. 3, pp. 228-251, Fall
2000.

Nwana1998 H. S. Nwana, J. Rosenschein, T. Sandholm, C. Sierra, P.
Maes, and R. Guttmann, “Agent-Mediated Electronic
Commerce: Issues, Challenges and Some Viewpoints” in
Proc. of 2nd ACM Int. Conf. on Autonomous Agents, pp.
189-196, 1998.

BIBLIOGRAPHY

- 152 -

Papadopoulos1998 G. Papadopoulos, and F. Arbab, “Coordination Models and
Languages”, in Advances in Computers, Vol. 46: The
Engineering of Large Systems, Academic Press, 1998.

Papaefstathiou1994 E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J.
Atherton, “An Analysis of Processor Resource Models for
Use in Performance Prediction” , Research Report CS-RR-
279, Department of Computer Science, University of
Warwick, 1994.

Papaefstathiou1995 E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J.
Atherton, “An Overview of the CHIP³S Performance
Prediction Toolset for Parallel Systems”, in Proc. of 8th
ISCA Int. Conf. on Parallel and Distributed Computing
Systems, pp. 527-533, 1995.

Papaefstathiou1995b E. Papaefstathiou, “A Framework for Characterising
Parallel Systems for Performance Evaluation” , Ph.D.
Thesis, Department of Computer Science, University of
Warwick, 1995.

Papaefstathiou1998 E. Papaefstathiou, D. J. Kerbyson, G.R. Nudd, J. S. Harper,
S. C. Perry, and D. V. Wilcox, “A Performance Analysis
Environment for Life” , in Proc. of 2nd ACM SIGMETRICS
Symp. on Parallel and Distributed Tools, Oregon, USA,
1998.

Parunak1998 H. V. D. Parunak, “Practical and Industrial Applications of
DAI” , in G. Weiss (ed.), Introduction to Distributed
Artificial Intelligence, MIT Press, 1998.

Parunak2001 H. V. D. Parunak, A. D. Baker, and S. J. Clark, “AARIA
Agent Architecture: from Manufacturing Requirements to
Agent-based System Design” , J. of Integrated Computer-
Aided Engineering, Vol. 8, No. 1, pp. 45-58, 2001.

Pascoe2001 R. Pascoe, “Building Networks on the Fly” , IEEE
Spectrum, Vol. 38, No. 3, pp. 61-65, 2001.

Perry1992 D. E. Perry, and A. L. Wolf, “Foundations for the Studies of
Software Architecture” , ACM SIGSOFT Software
Engineering Notes, Vol. 17, No. 4, 1992.

Perry1999 S. C. Perry, J. S. Harper, D. J. Kerbyson, and G. R. Nudd,
“Theory and Operation of the Warwick Multiprocessor
Scheduling System”, Research Report CS-RR-363, Dept. of
Computer Science, University of Warwick, 1999.

BIBLIOGRAPHY

- 153 -

Perry2000 S. C. Perry, R. H. Grimwood, D. J. Kerbyson, E.
Papaefstathiou, and G. R. Nudd, “Performance
Optimisation of Financial Option Calculations” , Parallel
Computing, Vol. 26, No. 5, pp. 623-639, 2000.

Qin1991 B. Qin, H. A. Sholl, and R. A. Ammar, “Micro Time Cost
Analysis of Parallel Computations” , IEEE Trans. on
Computers, Vol. 40, No. 5, pp. 613-628, 1991.

Raman1998 R. Raman, M. Livny, and M. Solomon, “Matchmaking:
Distributed Resource Management for High Throughput
Computing” , in Proc. of 7th IEEE Int. Symp. on High
Performance Distributed Computing, Chicago, USA, July
1998.

Rana2000 O. F. Rana, and D. W. Walker, “The Agent Grid: Agent-
Based Resource Integration in PSEs”, in Proc. of 16th
IMACS World Congress on Scientific Computation,
Applied Mathematics and Simulation, Lausanne,
Switzerland, 2000.

Richard2000 G. G. Richard III, “Service Advertisement and Discovery:
Enabling Universal Device Cooperation” , IEEE Internet
Computing, Vol. 4, No. 5, pp. 18-26, 2000.

Sato1998 M. Sato, H. Tezuka, A. Hori, Y. Ishikawa, S. Sekiguchi, H.
Nakada, S. Matsuoka, and U. Nagashima, “Ninf and PM:
Communication Libraries for Global Computing and High-
performance Cluster Computing” , Future Generation
Computer Systems, Vol. 13, No. 4-5, pp. 349-359, 1998.

Schopf1997 J. M. Schopf, “Structural Prediction Models for High-
Performance Distributed Applications” , in Proc. of 1997
Cluster Computing Conf., 1997.

Segal2000 B. Segal, “Grid Computing: The European Data Grid
Project” , in Proc. of IEEE Nuclear Science Symp. and
Medical Imaging Conf., Lyon, France, 2000.

Sevilla2001 D. Sevilla, J. M. García, and A. Gómez, “CORBA
Lightweight Components: A Model for Distributed
Component-Based Heterogeneous Computation” , in Proc.
of 7th Int. Euro-Par Conf., Manchester, UK, Lecture Notes
in Computer Science 2150, Springer-Verlag, pp. 845-854,
2001.

BIBLIOGRAPHY

- 154 -

Singh1998 M. P. Singh, “Agent Communication Languages:
Rethinking the Principles” , IEEE Computer, Vol. 31, No.
12, pp. 40-47, 1998.

Slama1999 D. Slama, J. Garbis, and P. Russell, Enterprise Corba,
Prentice Hall, 1999.

Smith1990 C. U. Smith, Performance Engineering of Software
Systems, Addison Wesley, 1990.

Spooner2001 D. P. Spooner, J. D. Turner, J. Cao, S. A. Jarvis, and G. R.
Nudd, “Application Characterisation Using a Lightweight
Transaction Model” , in Proc. of 17th Annual UK
Performance Engineering Workshop, Leeds, UK, pp. 215-
225, 2001.

Tecuci1998 G. Tecuci, Building Intelligent Agents: An Apprenticeship
Multistrategy Learning Theory, Methodology, Tool and
Case Studies, Academic Press, 1998.

Tierney2000 B. Tierney, W. Johnston, J. Lee, and M. Thompson, “A
Data Intensive Distributed Computing Architecture for Grid
Applications” , Future Generation Computer Systems, Vol.
16, No. 5, pp 473-481, 2000.

Tierney2001 B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R.
Wolski, and M. Swany, “A Grid Monitoring Service
Architecture” , White Paper, Grid Performance Working
Group, Global Grid Forum, 2001.

UPnP2000 “Understanding Universal Plug and Play” , Microsoft White
Paper, Jun. 2000.

Uysal1998 M. Uysal, T. M. Kurc, A. Sussman, and J. Saltz, “A
Performance Prediction Framework for Data Intensive
Applications on Large Scale Parallel Machines” , in Proc. of
4th Workshop on Languages, Compilers and Run-time
Systems for Scalable Computers, 1998.

Wolfram1991 S. Wolfram, Mathematica: a System for Doing Mathematics
by Computer, Second Edition, Addison Wesley, 1991.

Wooldridge1999 M. J. Wooldridge, and N. R. Jennings, “Software
Engineering with Agents: Pitfalls and Pratfalls” , IEEE
Internet Computing, Vol. 3, No. 3, pp. 20-27, 1999.

BIBLIOGRAPHY

- 155 -

Yeong1995 W. Yeong, T. Howes, and S. Kille, “Lightweight Directory
Access Protocol” , RFC 1777, IETF Draft Standard, 1995.

- 156 -

AAppppeennddiixx AA

PPSSLL CCOODDEE FFOORR SSWWEEEEPP33DD

This section gives a list of all the PSL source code for Sweep3D. Each software

object is included in a separate section. There are totally 9 objects: 1 application

object, 4 subtask objects, and 4 parallel template objects.

A.1 Application Object: sweep3d

(*
 * SWEEP3D model
 *)

application sweep3d {

 include hardware;

 include source;
 include sweep;
 include fixed;
 include flux_err;

 var numeric:
 Nproc = 6,
 npe_i = 2,
 npe_j = 3,
 mk = 10,
 mmi = 3,
 it_g = 50,
 jt_g = 50,
 kt = 50,
 mm = 6,
 isct = 1,
 epsi = -12,
 ibc = 0,
 jbc = 0,

APPENDIX A PSL CODE FOR SWEEP3D

- 157 -

 kbc = 0,
 do_dsa = 1,
 ifixups = -7,
 it,
 jt,
 it_dsa,
 jt_dsa,
 kt_dsa,
 jt_ibc,
 kt_ibc,
 mm_ibc,
 it_jbc,
 kt_jbc,
 mm_jbc,
 it_kbc,
 jt_kbc,
 mm_kbc,
 nk,
 ndiag,
 nm;

 link {
 hardware:
 Nproc = Nproc;
 source:
 it = it,
 jt = jt,
 kt = kt,
 isct = isct,
 ifixups = ifixups,
 epsi = epsi;
 sweep:
 it = it,
 jt = jt,
 kt = kt,
 do_dsa = do_dsa,
 it_dsa = it_dsa,
 jt_dsa = jt_dsa,
 kt_dsa = kt_dsa,
 ibc = ibc,
 jbc = jbc,
 kbc = kbc,
 mm = mm,
 mmi = mmi,
 nk = nk,
 mk = mk,
 ndiag = ndiag,
 nm = nm,
 epsi = epsi,
 ifixups = ifixups,
 npe_i = npe_i,
 npe_j = npe_j;

 flux_err:
 it = it,
 jt = jt,
 kt = kt;
 }

 option {
 hrduse = "SunUltra1";
 }

 proc exec init {
 var numeric:
 i,tmp;

 if (Nproc == 1)
 {
 npe_i = 1;
 npe_j = 1;
 }
 else if (Nproc == 2)
 {
 npe_i = 1;
 npe_j = 2;

APPENDIX A PSL CODE FOR SWEEP3D

- 158 -

 }
 else if (Nproc == 3)
 {
 npe_i = 1;
 npe_j = 3;
 }
 else if (Nproc == 4)
 {
 npe_i = 2;
 npe_j = 2;
 }
 else if (Nproc == 5)
 {
 npe_i = 1;
 npe_j = 5;
 }
 else if (Nproc == 6)
 {
 npe_i = 2;
 npe_j = 3;
 }
 else if (Nproc == 7)
 {
 npe_i = 1;
 npe_j = 7;
 }
 else if (Nproc == 8)
 {
 npe_i = 2;
 npe_j = 4;
 }
 else if (Nproc == 9)
 {
 npe_i = 3;
 npe_j = 3;
 }
 else if (Nproc == 10)
 {
 npe_i = 2;
 npe_j = 5;
 }
 else if (Nproc == 11)
 {
 npe_i = 1;
 npe_j = 11;
 }
 else if (Nproc == 12)
 {
 npe_i = 3;
 npe_j = 4;
 }
 else if (Nproc == 13)
 {
 npe_i = 1;
 npe_j = 13;
 }
 else if (Nproc == 14)
 {
 npe_i = 2;
 npe_j = 7;
 }
 else if (Nproc == 15)
 {
 npe_i = 3;
 npe_j = 5;
 }
 else if (Nproc == 16)
 {
 npe_i = 4;
 npe_j = 4;
 }

 if (isct == 0) nm=1;
 else if (isct == 1) nm=4;

 it = it_g / npe_i ;
 jt = jt_g / npe_j + 1 ;

APPENDIX A PSL CODE FOR SWEEP3D

- 159 -

 if(mk > kt) mk = kt;

 if (do_dsa == 1)
 {
 it_dsa = it + 1;
 jt_dsa = jt + 1;
 kt_dsa = kt + 1;
 }
 else
 {
 it_dsa = 1;
 jt_dsa = 1;
 kt_dsa = 1;
 }

 if (ibc != 0)
 {
 jt_ibc = jt;
 kt_ibc = kt;
 mm_ibc = mm;
 }
 else
 {
 jt_ibc = 1;
 kt_ibc = 1;
 mm_ibc = 1;
 }

 if (jbc!=0)
 {
 it_jbc = it;
 kt_jbc = kt;
 mm_jbc = mm;
 }
 else
 {
 it_jbc = 1;
 kt_jbc = 1;
 mm_jbc = 1;
 }

 if (kbc != 0)
 {
 it_kbc = it;
 jt_kbc = jt;
 mm_kbc = mm;
 }
 else
 {
 it_kbc = 1;
 jt_kbc = 1;
 mm_kbc = 1;
 }

 tmp = kt;
 i = 1;
 while (tmp > mk)
 {
 tmp = tmp - mk;
 i = i + 1;
 }

 nk = kt / i;
 ndiag = (nk+jt+i+mmi)*jt / (nk+jt);

 for(i = 1; i <= -epsi; i = i + 1)
 {
 call source;
 call sweep;
 call fixed;
 call flux_err;
 }
 }
}

APPENDIX A PSL CODE FOR SWEEP3D

- 160 -

A.2 Subtask Object: source

subt ask sour ce {
 i nc l ude async;
 i nc l ude har dwar e;

 var numer i c :
 i t = 25,
 j t = 17,
 k t = 50,
 i sct = 1,
 i f i xups = - 7,
 epsi = - 12,
 p1,
 p2;

 l i nk {
 async: Tx = sour ce_comp() ;
 }

 pr oc exec i ni t {
 i f (i f i xups > 0)
 {
 p1 = 1;
 p2 = 0;
 }
 i f (i f i xups == 0)
 {
 p1 = 0;
 p2 = 1;
 }
 i f (i f i xups < 0)
 {
 p1 = 0;
 p2 = 0;
 }

 }

(*
 * CHI P3S
 * Appl i cat i on Char act er i sat i on Tool
 * Sour ce : sour ce. c
 * RUV Type: c l c
 *)

 (* Cal l s : *)
 pr oc cf l ow sour ce_comp { (* Def i ned at sour ce. c: 1 *)
 comput e <i s c l c , FCAL, 2* POL1, AI LL, TI LL, CMLL>;
 case (<i s c l c , I FBR>) {
 1- i sct :
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, kt) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 7* ARD3, MFDL, AFDL, 2* TFDL, SFDL
 , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 1- (1- i sct) :
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, kt) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 19* ARD3, 4* MFDL, AFDL, 5* TFDL
 , 4* SFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;

APPENDIX A PSL CODE FOR SWEEP3D

- 161 -

 }
 comput e <i s c l c , I NLL>;
 }
 }
 comput e <i s c l c , SI LL, CMLL>;
 case (<i s c l c , I FBR>) {
 p1:
 comput e <i s c l c , SI LL>;
 1- (p1) :
 comput e <i s c l c , CMLL>;
 case (<i s c l c , I FBR>) {
 p2:
 comput e <i s c l c , SI LL>;
 1- (p2) :
 comput e <i s c l c , SI LL, POL1, CMLL>;
 case (<i s c l c , I FBR>) {
 (- epsi +i f i xups) / (- epsi) :
 comput e <i s c l c , SI LL>;
 }
 }
 }
 } (* End of sour ce_comp *)

}

A.3 Subtask Object: sweep

subt ask sweep {
 i nc l ude har dwar e;
 i nc l ude pi pel i ne;

 var numer i c :
 i t = 26,
 j t = 18,
 k t = 50,
 do_dsa = 1,
 mm = 6,
 mk = 10,
 mmi = 3,
 i t _dsa = 26,
 j t _dsa = 18,
 k t _dsa = 51,
 i bc = 0,
 j bc = 0,
 kbc = 0,
 nk = 9,
 ndi ag = 17,
 nm = 4,
 npe_i = 2,
 npe_j = 3,
 epsi = - 12,
 i f i xups = - 7,
 p1,
 p2,
 p3;

 l i nk {
 pi pel i ne:
 Tx_sweep_i ni t = sweep_i ni t () ,
 Tx_oct ant = oct ant () ,
 Tx_get _di r ect = get _di r ect () ,
 Tx_pi pel i ne_i ni t = pi pel i ne_i ni t () ,
 Tx_kk_l oop_i ni t = kk_l oop_i ni t () ,
 Tx_el se_ew_r cv = el se_ew_r cv() ,
 Tx_comp_f ace = comp_f ace() ,
 Tx_el se_ns_r cv = el se_ns_r cv() ,
 Tx_wor k = wor k() ,
 Tx_el se_ew_snd = el se_ew_snd() ,
 Tx_el se_ns_snd = el se_ns_snd() ,
 Tx_l ast = l ast () ,
 mm = mm,
 mmi = mmi ,
 i t = i t ,
 j t = j t ,

APPENDIX A PSL CODE FOR SWEEP3D

- 162 -

 k t = kt ,
 mk = mk,
 npe_i = npe_i ,
 npe_j = npe_j ;
 }

 pr oc exec i ni t {
 i f (kbc == 0)
 p1 = 1;
 el se
 p1 = 0. 5;
 i f (i bc == 0)
 p2 = 1;
 el se
 p2 = 0. 5;
 i f (j bc == 0)
 p3 = 1;
 el se
 p3 = 0. 5;
 }

(*
 * CHI P3S
 * Appl i cat i on Char act er i sat i on Tool
 * Sour ce : sweep. c
 * RUV Type: c l c
 *)

 (* Cal l s : *)
 pr oc cf l ow sweep_i ni t { (* Def i ned at sweep. c: 2 *)
 comput e <i s c l c , FCAL, 6* ARD1, 6* SFDL>;
 case (<i s c l c , I FBR>) {
 do_dsa:
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, 3) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, kt _dsa) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, j t _dsa) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t _dsa) {
 comput e <i s c l c , CMLL, ARD3, SFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 }
 comput e <i s c l c , POL1, SI LL>;
 } (* End of sweep_i ni t *)

 (* Cal l s : *)
 pr oc cf l ow oct ant { (* Def i ned at sweep. c: 74 *)
 comput e <i s c l c , FCAL, CMLL>;
 case (<i s c l c , I FBR>) {
 1/ 8:
 comput e <i s c l c , 9* POL1, 6* TI LL, 3* SI LL>;
 1- (1/ 8) :
 comput e <i s c l c , CMLL>;
 case (<i s c l c , I FBR>) {
 1/ 7:
 comput e <i s c l c , 9* POL1, 5* TI LL, 4* SI LL>;
 1- (1/ 7) :
 comput e <i s c l c , CMLL>;
 case (<i s c l c , I FBR>) {
 1/ 6:
 comput e <i s c l c , 9* POL1, 5* TI LL, 4* SI LL>;
 1- (1/ 6) :
 comput e <i s c l c , CMLL>;
 case (<i s c l c , I FBR>) {
 1/ 5:
 comput e <i s c l c , 9* POL1, 4* TI LL, 5* SI LL>;
 1- (1/ 5) :
 comput e <i s c l c , CMLL>;
 case (<i s c l c , I FBR>) {

APPENDIX A PSL CODE FOR SWEEP3D

- 163 -

 1/ 4:
 comput e <i s c l c , 9* POL1, 4* SI LL, 5* TI LL>;
 1- (1/ 4) :
 comput e <i s c l c , CMLL>;
 case (<i s c l c , I FBR>) {
 1/ 3:
 comput e <i s c l c , 9* POL1, 5* SI LL, 4* TI LL>;
 1- (1/ 3) :
 comput e <i s c l c , CMLL>;
 case (<i s c l c , I FBR>) {
 1/ 2:
 comput e <i s c l c , 9* POL1, 5* SI LL, 4* TI LL>;
 1- (1/ 2) :
 comput e <i s c l c , 9* POL1, 6* SI LL, 3* TI LL>;
 }
 }
 }
 }
 }
 }
 }
 comput e <i s c l c , POL1, CMLL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , POL1, SI LL>;
 1- (0. 5) :
 comput e <i s c l c , POL1, SI LL>;
 }
 comput e <i s c l c , POL1, CMLL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , POL1, SI LL>;
 1- (0. 5) :
 comput e <i s c l c , POL1, SI LL>;
 }
 comput e <i s c l c , POL1, CMLL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , POL1, SI LL>;
 1- (0. 5) :
 comput e <i s c l c , POL1, SI LL>;
 }
 } (* End of oct ant *)

 (* Cal l s : *)
 pr oc cf l ow get _di r ect { (* Def i ned at sweep. c: 202 *)
 comput e <i s c l c , FCAL, CMLL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , 3* TI LL, MI LL>;
 1- (0. 5) :
 comput e <i s c l c , 3* TI LL, MI LL>;
 }
 comput e <i s c l c , CMLL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , 3* TI LL, MI LL>;
 1- (0. 5) :
 comput e <i s c l c , 3* TI LL, MI LL>;
 }
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, mm) {
 comput e <i s c l c , CMLL, 9* ARD1, 6* MI LL, 3* TFDL, I NLL>;
 }
 } (* End of get _di r ect *)

 (* Cal l s : *)
 pr oc cf l ow pi pel i ne_i ni t { (* Def i ned at sweep. c: 296 *)
 comput e <i s c l c , FCAL, AI LL, MI LL, TI LL, 2* CMLL, ANDL>;
 case (<i s c l c , I FBR>) {
 p1:
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {

APPENDIX A PSL CODE FOR SWEEP3D

- 164 -

 comput e <i s c l c , CMLL, ARD3, SFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 1- (p1) :
 case (<i s c l c , I FBR>) {
 do_dsa:
 comput e <i s c l c , SFDL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 6* ARD3, 3* TFDL, 4* ARD1
 , 4* MFDL, 2* AFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 1- (do_dsa) :
 comput e <i s c l c , SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 3* ARD3, 2* TFDL, 3* ARD1
 , 3* MFDL, AFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 }
 }
 comput e <i s c l c , 2* AI LL, DI LL, TI LL>;
 } (* End of pi pel i ne_i ni t *)

 (* Cal l s : mi n max *)
 pr oc cf l ow kk_l oop_i ni t { (* Def i ned at sweep. c: 410 *)
 comput e <i s c l c , FCAL, CMLL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , 4* AI LL, MI LL, TI LL>;
 cal l c f l ow mi n;
 comput e <i s c l c , 2* TI LL, 2* AI LL>;
 1- (0. 5) :
 comput e <i s c l c , 4* AI LL, MI LL, TI LL>;
 cal l c f l ow max;
 comput e <i s c l c , 2* TI LL, 2* AI LL>;
 }
 comput e <i s c l c , 6* AI LL, 4* MI LL, 2* TI LL>;
 } (* End of kk_l oop_i ni t *)

 (* Cal l s : s i gn *)
 pr oc cf l ow el se_ew_r cv { (* Def i ned at sweep. c: 471 *)
 comput e <i s c l c , FCAL, 2* CMLL, ANDL>;
 case (<i s c l c , I FBR>) {
 p2:
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, ARD3, SFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 1- (p2) :

APPENDIX A PSL CODE FOR SWEEP3D

- 165 -

 comput e <i s c l c , SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, AI LL>;
 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, 3* ARD3, 2* TFDL, 3* ARD1, 3* MFDL
 , AFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 }
 } (* End of el se_ew_r cv *)

 (* Cal l s : s i gn *)
 pr oc cf l ow comp_f ace { (* Def i ned at sweep. c: 550 *)
 comput e <i s c l c , FCAL>;
 case (<i s c l c , I FBR>) {
 do_dsa:
 comput e <i s c l c , AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, AI LL>;
 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, 3* ARD3, ARD1, MFDL, AFDL, TFDL
 , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 }
 } (* End of comp_f ace *)

 (* Cal l s : s i gn *)
 pr oc cf l ow el se_ns_r cv { (* Def i ned at sweep. c: 620 *)
 comput e <i s c l c , FCAL, 2* CMLL, ANDL>;
 case (<i s c l c , I FBR>) {
 p3:
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, ARD3, SFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 1- (p3) :
 comput e <i s c l c , SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, AI LL>;
 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 3* ARD3, 2* TFDL, 3* ARD1, 3* MFDL
 , AFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;

APPENDIX A PSL CODE FOR SWEEP3D

- 166 -

 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 }
 } (* End of el se_ns_r cv *)

 (* Cal l s : s i gn mi n max *)
 pr oc cf l ow wor k { (* Def i ned at sweep. c: 697 *)
 comput e <i s c l c , FCAL>;
 case (<i s c l c , I FBR>) {
 do_dsa:
 comput e <i s c l c , AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, AI LL>;
 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 3* ARD3, ARD1, MFDL, AFDL, TFDL
 , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 }
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, ARL1, SI LL, I NLL>;
 }
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, j t +nk- 1+mmi - 1) {
 comput e <i s c l c , 4* AI LL, CMLL, SI LL, TI LL>;
 l oop (<i s c l c , LFOR>, mmi - 1) {
 comput e <i s c l c , CMLL, 3* ARL1, 2* TI LL, AI LL, I NLL>;
 }
 comput e <i s c l c , 2* AI LL>;
 cal l c f l ow mi n;
 cal l c f l ow mi n;
 cal l c f l ow mi n;
 cal l c f l ow max;
 comput e <i s c l c , 2* ARL1, 2* TI LL, AI LL, 2* SI LL>;
 l oop (<i s c l c , LFOR>, ndi ag) {
 comput e <i s c l c , CMLL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi - 1) {
 comput e <i s c l c , 2* AI LL, CMLL, ARL1, TI LL, I NLL>;
 }
 comput e <i s c l c , 2* TI LL, 3* AI LL>;
 cal l c f l ow mi n;
 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , TI LL, 3* AI LL>;
 cal l c f l ow max;
 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , 3* TI LL, 2* AI LL, ABSI , 5* ARD1, 2* MFDL, 4* TFDL
 , ARD3, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, ARD3, ARD1, TFDL, I NLL>;
 }
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, nm- 1) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 2* ARD1, 2* ARD3, MFDL, AFDL, TFDL
 , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 case (<i s c l c , I FBR>) {
 (- i f i xups) / (- epsi) :
 comput e <i s c l c , TI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , 4* CMLL, 3* ANDL, 8* ARD1, 8* MFDL, 9* TFDL
 , 7* ARD3, 9* AFDL, DFDL, AI LL, TI LL>;
 }

APPENDIX A PSL CODE FOR SWEEP3D

- 167 -

 1- ((- i f i xups) / (- epsi)) :
 comput e <i s c l c , TI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , 4* CMLL, 3* ANDL, 7* ARD1, 8* MFDL, 8* TFDL
 , 5* ARD3, 9* AFDL, DFDL, SI LL, CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , 2* AFDL, 4* TFDL, DFDL, 3* MFDL, ARD1
 , SFDL, CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , ARD1, MFDL, ARD3, AFDL, TFDL>;
 }
 comput e <i s c l c , CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , ARD1, MFDL, ARD3, AFDL, TFDL>;
 }
 comput e <i s c l c , SI LL>;
 }
 comput e <i s c l c , CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , 2* AFDL, 4* TFDL, DFDL, 3* MFDL, ARD3
 , ARD1, SFDL, CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , ARD1, MFDL, ARD3, AFDL, TFDL>;
 }
 comput e <i s c l c , CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , ARD1, MFDL, AFDL, TFDL>;
 }
 comput e <i s c l c , SI LL>;
 }
 comput e <i s c l c , CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , 2* AFDL, 4* TFDL, DFDL, 3* MFDL, ARD3
 , ARD1, SFDL, CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , ARD1, MFDL, AFDL, TFDL>;
 }
 comput e <i s c l c , CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , ARD1, MFDL, ARD3, AFDL, TFDL>;
 }
 comput e <i s c l c , SI LL>;
 }
 comput e <i s c l c , 4* TFDL, ARD1, 2* ARD3, 2* AI LL, 2* TI LL>;
 }
 }
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 2* ARD3, 2* ARD1, MFDL, AFDL, TFDL
 , I NLL>;
 }
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, nm- 1) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 3* ARD3, 2* ARD1, 2* MFDL, AFDL
 , TFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 case (<i s c l c , I FBR>) {
 do_dsa:
 comput e <i s c l c , SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 8* ARD3, 4* ARD1, 3* MFDL, 3* AFDL
 , 3* TFDL, I NLL>;
 }
 }

APPENDIX A PSL CODE FOR SWEEP3D

- 168 -

 comput e <i s c l c , ARD3, TFDL, I NLL>;
 comput e <i s c l c , 2* POL1, AI LL, TI LL, I NLL>;
 }
 }
 } (* End of wor k *)

 (* Cal l s : s i gn *)
 pr oc cf l ow el se_ew_snd { (* Def i ned at sweep. c: 996 *)
 comput e <i s c l c , FCAL, 2* CMLL, ANDL>;
 case (<i s c l c , I FBR>) {
 1- p2:
 comput e <i s c l c , SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, AI LL>;
 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, 3* ARD3, 2* TFDL, 3* ARD1, 3* MFDL
 , AFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 1- (1- p2) :
 comput e <i s c l c , SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, AI LL>;
 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, 3* ARD1, ARD3, 3* MFDL, AFDL, TFDL
 , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 }
 } (* End of el se_ew_snd *)

 (* Cal l s : s i gn *)
 pr oc cf l ow el se_ns_snd { (* Def i ned at sweep. c: 1082 *)
 comput e <i s c l c , FCAL, 2* CMLL, ANDL>;
 case (<i s c l c , I FBR>) {
 1- p3:
 comput e <i s c l c , SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, AI LL>;
 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 3* ARD3, 2* TFDL, 3* ARD1, 3* MFDL
 , AFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 1- (1- p3) :
 comput e <i s c l c , SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, nk) {
 comput e <i s c l c , CMLL, AI LL>;

APPENDIX A PSL CODE FOR SWEEP3D

- 169 -

 comput e <i s c l c , AI LL>;
 cal l c f l ow s i gn;
 comput e <i s c l c , TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 3* ARD1, ARD3, 3* MFDL, AFDL, TFDL
 , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 }
 } (* End of el se_ns_snd *)

 (* Cal l s : *)
 pr oc cf l ow l ast { (* Def i ned at sweep. c: 1178 *)
 comput e <i s c l c , FCAL, 2* CMLL, ANDL>;
 case (<i s c l c , I FBR>) {
 1- p1:
 comput e <i s c l c , SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 3* ARD3, 2* TFDL, 3* ARD1, 3* MFDL
 , AFDL, I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 1- (1- p1) :
 comput e <i s c l c , SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, mmi) {
 comput e <i s c l c , CMLL, AI LL, TI LL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, 3* ARD1, ARD3, 3* MFDL, AFDL, TFDL
 , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , 2* ARD1, AFDL, TFDL>;
 }
 } (* End of l ast *)

 (* Cal l s : *)
 pr oc cf l ow max { (* Def i ned at sweep. c: 1263 *)
 comput e <i s c l c , FCAL, 2* FARD, CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <0>;
 1- (0. 5) :
 comput e <0>;
 }
 r et ur n;
 } (* End of max *)

 (* Cal l s : *)
 pr oc cf l ow mi n { (* Def i ned at sweep. c: 1264 *)
 comput e <i s c l c , FCAL, 2* FARD, CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <0>;
 1- (0. 5) :
 comput e <0>;
 }
 r et ur n;
 } (* End of mi n *)

 (* Cal l s : *)

APPENDIX A PSL CODE FOR SWEEP3D

- 170 -

 pr oc cf l ow s i gn { (* Def i ned at sweep. c: 1265 *)
 comput e <i s c l c , FCAL, 2* FARD, CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , ABSD>;
 1- (0. 5) :
 comput e <i s c l c , ABSD>;
 }
 r et ur n;
 } (* End of s i gn *)

}

A.4 Subtask Object: fixed

subt ask f i xed {
 i nc l ude har dwar e;
 i nc l ude gl obal sum;

 l i nk {
 gl obal sum:
 Tx_sum = sum_f i xed () ,
 Tx_comp = comp_f i xup () ;
 }

(*
 * CHI P3S
 * Appl i cat i on Char act er i sat i on Tool
 * Sour ce : f i xed. c
 * RUV Type: c l c
 *)

 (* Cal l s : *)
 pr oc cf l ow sum_f i xed { (* Def i ned at f i xed. c: 1 *)
 comput e <i s c l c , FCAL, 2* POL1, AI LL, TI LL>;
 } (* End of sum_f i xed *)

 (* Cal l s : *)
 pr oc cf l ow comp_f i xup { (* Def i ned at f i xed. c: 8 *)
 comput e <i s c l c , FCAL, AI LL, TI LL>;
 } (* End of comp_f i xup *)
}

A.5 Subtask Object: flux_err

subt ask f l ux_er r {
 i nc l ude har dwar e;
 i nc l ude gl obal max;

 var numer i c :
 i t = 25,
 j t = 17,
 k t = 50;

 l i nk {
 gl obal max:
 Tx_comp = comp_f l ux_er r () ,
 Tx_max = max_f l ux_er r () ;
 }

(*
 * CHI P3S
 * Appl i cat i on Char act er i sat i on Tool
 * Sour ce : f l ux_er r . c
 * RUV Type: c l c
 *)

 (* Cal l s : max *)
 pr oc cf l ow comp_f l ux_er r { (* Def i ned at f l ux_er r . c : 1 *)

APPENDIX A PSL CODE FOR SWEEP3D

- 171 -

 comput e <i s c l c , FCAL, POD1, SFDL, SI LL>;
 l oop (<i s c l c , LFOR>, kt) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, j t) {
 comput e <i s c l c , CMLL, SI LL>;
 l oop (<i s c l c , LFOR>, i t) {
 comput e <i s c l c , CMLL, ARD3, CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <i s c l c , 3* ARD3, AFDL, DFDL, ABSD, TFDL, POD1>;
 cal l c f l ow max;
 comput e <i s c l c , POD1, TFDL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 comput e <i s c l c , I NLL>;
 }
 } (* End of comp_f l ux_er r *)

 (* Cal l s : max *)
 pr oc cf l ow max_f l ux_er r { (* Def i ned at f l ux_er r . c : 37 *)
 comput e <i s c l c , FCAL, POD1>;
 cal l c f l ow max;
 comput e <i s c l c , POD1, TFDL>;
 } (* End of max_f l ux_er r *)

 (* Cal l s : *)
 pr oc cf l ow max { (* Def i ned at f l ux_er r . c : 43 *)
 comput e <i s c l c , FCAL, 2* FARD, CMDL>;
 case (<i s c l c , I FBR>) {
 0. 5:
 comput e <0>;
 1- (0. 5) :
 comput e <0>;
 }
 r et ur n;
 } (* End of max *)

}

A.6 Parallel Template Object: async

(*
 * async. l a - Sequent i al ' par al l el ' t empl at e
 *)

par t mp async {

 i nc l ude har dwar e;

 var comput e: Tx;

 opt i on {
 nst age = 1,
 seval = 0
 }

 pr oc exec i ni t {
 s t ep cpu {
 conf dev Tx;
 }
 }
}

A.7 Parallel Template Object: pipeline

#i nc l ude <mpi def s. h>
par t mp pi pel i ne {

APPENDIX A PSL CODE FOR SWEEP3D

- 172 -

 i nc l ude har dwar e;
 i nc l ude Eval ;

 var comput e:
 Tx_sweep_i ni t ,
 Tx_oct ant ,
 Tx_get _di r ect ,
 Tx_pi pel i ne_i ni t ,
 Tx_kk_l oop_i ni t ,
 Tx_el se_ew_r cv,
 Tx_comp_f ace,
 Tx_el se_ns_r cv,
 Tx_wor k,
 Tx_el se_ew_snd,
 Tx_el se_ns_snd,
 Tx_l ast ;

 var numer i c :
 mm = 6,
 mmi = 3,
 i t = 26,
 j t = 18,
 k t = 50,
 mk = 10,
 npe_i = 2,
 npe_j = 3;

 opt i on {
 nst age = 1,
 seval = 0;
 }

 pr oc exec Get _i 2
 var phase;
 {
 var numer i c :
 i 2;
 i f (phase <= 4) i 2 = - 1;
 el se i 2 = 1;
 r et ur n i 2;
 }

 pr oc exec Get _j 2
 var phase;
 {
 var numer i c :
 j 2;
 i f (phase == 1) j 2 = - 1;
 el se i f (phase == 2) j 2 = - 1;
 el se i f (phase == 3) j 2 = 1;
 el se i f (phase == 4) j 2 = 1;
 el se i f (phase == 5) j 2 = - 1;
 el se i f (phase == 6) j 2 = - 1;
 el se i f (phase == 7) j 2 = 1;
 el se j 2 = 1;
 r et ur n j 2;
 }

 pr oc exec Get _myi d
 var x , y ;
 {
 var numer i c :
 myi d;
 myi d = npe_i * (y - 1) + x;
 r et ur n myi d;
 }

 pr oc exec West
 var x , y ;
 {
 var numer i c :
 west ;
 west = 0;
 i f (x ! = 1) west = Get _myi d(x- 1, y) ;
 r et ur n west ;
 }

APPENDIX A PSL CODE FOR SWEEP3D

- 173 -

 pr oc exec East
 var x , y ;
 {
 var numer i c :
 east ;
 east = 0;
 i f (x ! = npe_i) east = Get _myi d(x+1, y) ;
 r et ur n east ;
 }

 pr oc exec Sout h
 var x , y ;
 {
 var numer i c :
 sout h;
 sout h = 0;
 i f (y ! = 1) sout h = Get _myi d(x , y- 1) ;
 r et ur n sout h;
 }

 pr oc exec Nor t h
 var x , y ;
 {
 var numer i c :
 nor t h;
 nor t h = 0;
 i f (y ! = npe_j) nor t h = Get _myi d(x , y+1) ;
 r et ur n nor t h;
 }

 pr oc exec Get _ew_r cv
 var phase, x , y ;
 {
 var numer i c :
 i 2, ew_r cv;

 i 2 = Get _i 2(phase) ;
 i f (i 2 > 0)
 ew_r cv = West (x , y) ;
 el se
 ew_r cv = East (x , y) ;
 r et ur n ew_r cv;
 }

 pr oc exec Get _ns_r cv
 var phase, x , y ;
 {
 var numer i c :
 j 2, ns_r cv;

 j 2 = Get _j 2(phase) ;
 i f (j 2 > 0)
 ns_r cv = Sout h(x , y) ;
 el se
 ns_r cv = Nor t h(x , y) ;
 r et ur n ns_r cv;
 }

 pr oc exec Get _ew_snd
 var phase, x , y ;
 {
 var numer i c :
 i 2, ew_snd;

 i 2 = Get _i 2(phase) ;
 i f (i 2 > 0)
 ew_snd = East (x , y) ;
 el se
 ew_snd = West (x , y) ;
 r et ur n ew_snd;
 }

 pr oc exec Get _ns_snd
 var phase, x , y ;
 {
 var numer i c :

APPENDIX A PSL CODE FOR SWEEP3D

- 174 -

 j 2, ns_snd;

 j 2 = Get _j 2(phase) ;
 i f (j 2 > 0)
 ns_snd = Nor t h(x , y) ;
 el se
 ns_snd = Sout h(x , y) ;
 r et ur n ns_snd;
 }

 pr oc exec i ni t {
 var numer i c :
 phase,
 i ,
 j ,
 x ,
 y ,
 myi d,
 mmo,
 kb,
 ni b,
 nj b,
 ew_r cv,
 ns_r cv,
 ew_snd,
 ns_snd;

 mmo = mm/ mmi ;
 kb = (k t + mk - 1) / mk;
 ni b = (j t +1) * (mk+1) * (mmi +1) ;
 nj b = (i t +1) * (mk+1) * (mmi +1) ;

 s t ep cpu {
 conf dev Tx_sweep_i ni t ;
 }

 f or (phase = 1; phase <= 8; phase = phase + 1)
 {
 s t ep cpu {
 conf dev Tx_oct ant ;
 }

 s t ep cpu {
 conf dev Tx_get _di r ect ;
 }

 f or (i = 1; i <= mmo; i = i + 1)
 {
 s t ep cpu {
 conf dev Tx_pi pel i ne_i ni t ;
 }

 f or (j = 1; j <= kb; j = j + 1)
 {
 s t ep cpu {
 conf dev Tx_kk_l oop_i ni t ;
 }

 f or (x = 1; x <= npe_i ; x = x + 1)
 f or (y = 1; y <= npe_j ; y = y + 1)
 {
 myi d = Get _myi d(x , y) ;
 ew_r cv = Get _ew_r cv(phase, x , y) ;
 i f (ew_r cv ! = 0)
 {
 s t ep mpi r ecv {

conf dev ew_r cv, myi d,
ni b, MPI _Packed;

 }
 }
 el se
 {
 s t ep cpu on myi d {
 conf dev Tx_el se_ew_r cv;
 }
 }

APPENDIX A PSL CODE FOR SWEEP3D

- 175 -

 }

 s t ep cpu {
 conf dev Tx_comp_f ace;
 }

 f or (x = 1; x <= npe_i ; x = x + 1)
 f or (y = 1; y <= npe_j ; y = y + 1)
 {
 myi d = Get _myi d(x , y) ;
 ns_r cv = Get _ns_r cv(phase, x , y) ;
 i f (ns_r cv ! = 0)
 {
 s t ep mpi r ecv {

conf dev ns_r cv, myi d,
nj b, MPI _Packed;

 }
 }
 el se
 {
 s t ep cpu on myi d {
 conf dev Tx_el se_ns_r cv;
 }
 }

 }

 s t ep cpu {
 conf dev Tx_wor k;
 }

 f or (x = 1; x <= npe_i ; x = x + 1)
 f or (y = 1; y <= npe_j ; y = y + 1)
 {
 myi d = Get _myi d(x , y) ;
 ew_snd = Get _ew_snd(phase, x , y) ;
 i f (ew_snd ! = 0)
 {
 s t ep mpi send {

conf dev myi d, ew_snd,
ni b, MPI _Packed;

 }
 }
 el se
 {
 s t ep cpu on myi d {
 conf dev Tx_el se_ew_snd;
 }
 }

 }

 f or (x = 1; x <= npe_i ; x = x + 1)
 f or (y = 1; y <= npe_j ; y = y + 1)
 {
 myi d = Get _myi d(x , y) ;
 ns_snd = Get _ns_snd(phase, x , y) ;
 i f (ns_snd ! = 0)
 {
 s t ep mpi send {

conf dev myi d, ns_snd,
nj b, MPI _Packed;

 }
 }
 el se
 {
 s t ep cpu on myi d {
 conf dev Tx_el se_ns_snd;
 }
 }

 }

 }

 s t ep cpu {

APPENDIX A PSL CODE FOR SWEEP3D

- 176 -

 conf dev Tx_l ast ;
 }
 }
 }
 }
}

A.8 Parallel Template Object: globalsum

#i ncl ude <mpi def s. h>
par t mp gl obal sum {

 i nc l ude har dwar e;

 var comput e:
 Tx_sum,
 Tx_comp;

 opt i on {
 nst age = 1,
 seval = 0
 }

 pr oc exec i ni t {
 var numer i c : i , j ;

 f or (i = 2; i <= har dwar e. Npr oc; i = i + 1)
 {
 s t ep mpi send {
 conf dev i , 1, 1, MPI _Packed;
 }

 s t ep mpi r ecv {
 conf dev i , 1, 1, MPI _Packed;
 }
 s t ep cpu on 1 {
 conf dev Tx_sum;
 }
 }

 f or (i = 2; i <= har dwar e. Npr oc; i = i + 1)
 {
 s t ep mpi send {
 conf dev 1, i , 1, MPI _Packed;
 }

 s t ep mpi r ecv {
 conf dev 1, i , 1, MPI _Packed;
 }

 }

 s t ep cpu {
 conf dev Tx_comp;
 }
 }
}

A.9 Parallel Template Object: globalmax

#i nc l ude <mpi def s. h>
par t mp gl obal max {

 i nc l ude har dwar e;

 var comput e:

APPENDIX A PSL CODE FOR SWEEP3D

- 177 -

 Tx_max,
 Tx_comp;

 opt i on {
 nst age = 1,
 seval = 0;
 }

 pr oc exec i ni t {
 var numer i c : i ;

 s t ep cpu {
 conf dev Tx_comp;
 }

 f or (i = 2; i <= har dwar e. Npr oc; i = i + 1)
 {
 s t ep mpi send {
 conf dev i , 1, 1, MPI _Packed;
 }

 s t ep mpi r ecv {
 conf dev i , 1, 1, MPI _Packed;
 }
 s t ep cpu on 1 {
 conf dev Tx_max;
 }
 }

 f or (i = 2; i <= har dwar e. Npr oc; i = i + 1)
 {
 s t ep mpi send {
 conf dev 1, i , 1, MPI _Packed;
 }

 s t ep mpi r ecv {
 conf dev 1, i , 1, MPI _Packed;
 }

 }
 }
}

- 178 -

AAppppeennddiixx BB

AARRMMSS EEXXPPEERRIIMMEENNTT RREESSUULLTTSS

The ARMS experiment results are included in this section. There are totally 149

application execution requests sent to the agent system, 144 of them are executed

and 5 of them are failed for resource discovery.

The user view of the results is shown in Section B.1, which includes all the

applications requests (including application ID, application name, and required

time) and their execution details (including discovery agents, discovery time,

waiting time, execution time, and the number of processors used) during the

experiment.

There are 8 agents in the experimental system. The agent views of the results are

shown in Section B.2 – B.9 respectively. In each agent view, there is an

application browser and a correspondent Gantt chart. Note that each agent

identifies an incoming application using a new unique ID, which may be not same

as those shown in the user view. And also note that the Gantt chart only gives a

graphical view of up to latest 16 applications that are scheduled on an agent.

APPENDIX B ARMS EXPERIMENT RESULTS

- 179 -

B.1 Experiment Results @ Users

ID Application Name RT Discovery Agents DT WT ET #P

52420 /dcs/vlsi/junwei/a4/arms/memsort 30 origin-->found 0 0 10 8
52422 /dcs/vlsi/junwei/a4/arms/cpi 3 tizer-->gem-->found 5 0 2 12
52425 /dcs/vlsi/junwei/a4/arms/improc 138 sprite-->found 0 0 40 8
52426 /dcs/vlsi/junwei/a4/arms/fft 24 rubbish-->tizer-->found 3 0 20 16
52430 /dcs/vlsi/junwei/a4/arms/jacobi 47 coke-->found 0 0 19 15
52432 /dcs/vlsi/junwei/a4/arms/memsort 27 tizer-->gem-->found 4 0 10 8
52433 /dcs/vlsi/junwei/a4/arms/cpi 120 origin-->found 0 0 2 12
52436 /dcs/vlsi/junwei/a4/arms/sweep3d 94 burroughs-->found 0 0 14 15
52439 /dcs/vlsi/junwei/a4/arms/fft 98 burroughs-->found 0 11 36 16
52441 /dcs/vlsi/junwei/a4/arms/jacobi 38 coke-->found 0 8 19 15
52445 /dcs/vlsi/junwei/a4/arms/fft 40 tizer-->found 0 4 20 16
52448 /dcs/vlsi/junwei/a4/arms/memsort 45 budweiser-->found 0 0 24 8
52451 /dcs/vlsi/junwei/a4/arms/jacobi 56 origin-->found 0 0 6 15
52455 /dcs/vlsi/junwei/a4/arms/cpi 2 tizer-->gem-->failed 11 - - -
52458 /dcs/vlsi/junwei/a4/arms/sweep3d 120 tizer-->found 0 11 8 15
52459 /dcs/vlsi/junwei/a4/arms/sweep3d 55 rubbish-->found 0 0 16 15
52461 /dcs/vlsi/junwei/a4/arms/closure 26 rubbish-->found 0 14 8 15
52463 /dcs/vlsi/junwei/a4/arms/jacobi 76 burroughs-->found 0 23 21 15
52467 /dcs/vlsi/junwei/a4/arms/improc 59 burroughs-->tizer--

>found
6 16 40 8

52469 /dcs/vlsi/junwei/a4/arms/jacobi 116 tizer-->found 0 8 12 15
52473 /dcs/vlsi/junwei/a4/arms/improc 160 burroughs-->found 0 34 72 8
52477 /dcs/vlsi/junwei/a4/arms/cpi 55 sprite-->found 0 0 4 12
52480 /dcs/vlsi/junwei/a4/arms/cpi 113 gem-->found 0 0 2 12
52484 /dcs/vlsi/junwei/a4/arms/jacobi 123 origin-->found 0 0 6 15
52486 /dcs/vlsi/junwei/a4/arms/closure 9 sprite-->found 0 0 4 15
52490 /dcs/vlsi/junwei/a4/arms/sweep3d 172 coke-->found 0 0 12 15
52491 /dcs/vlsi/junwei/a4/arms/fft 38 burroughs-->tizer--

>found
6 0 36 8

52496 /dcs/vlsi/junwei/a4/arms/memsort 38 rubbish-->tizer-->gem--
>found

10 0 10 8

52497 /dcs/vlsi/junwei/a4/arms/improc 75 coke-->found 0 5 64 8
52499 /dcs/vlsi/junwei/a4/arms/sweep3d 12 sprite-->found 0 0 8 15
52500 /dcs/vlsi/junwei/a4/arms/jacobi 40 origin-->found 0 0 6 15
52503 /dcs/vlsi/junwei/a4/arms/improc 102 gem-->found 0 0 20 8
52505 /dcs/vlsi/junwei/a4/arms/cpi 46 sprite-->found 0 2 4 12
52506 /dcs/vlsi/junwei/a4/arms/jacobi 14 sprite-->gem-->sprite--

>found
13 0 12 15

52510 /dcs/vlsi/junwei/a4/arms/closure 7 gem-->sprite-->found 4 0 4 15
52514 /dcs/vlsi/junwei/a4/arms/closure 31 rubbish-->found 0 0 8 15
52517 /dcs/vlsi/junwei/a4/arms/closure 15 rubbish-->found 0 5 8 15

APPENDIX B ARMS EXPERIMENT RESULTS

- 180 -

52521 /dcs/vlsi/junwei/a4/arms/memsort 52 budweiser-->found 0 0 24 8
52525 /dcs/vlsi/junwei/a4/arms/jacobi 48 budweiser-->found 0 20 14 15
52529 /dcs/vlsi/junwei/a4/arms/sweep3d 77 budweiser-->found 0 30 9 15
52532 /dcs/vlsi/junwei/a4/arms/improc 130 sprite-->found 0 0 40 8
52533 /dcs/vlsi/junwei/a4/arms/sweep3d 149 burroughs-->found 0 0 54 8
52535 /dcs/vlsi/junwei/a4/arms/improc 74 rubbish-->tizer-->found 2 0 40 8
52536 /dcs/vlsi/junwei/a4/arms/fft 30 budweiser-->sprite--

>gem -->found
8 0 10 16

52538 /dcs/vlsi/junwei/a4/arms/sweep3d 56 rubbish-->found 0 0 16 15
52542 /dcs/vlsi/junwei/a4/arms/cpi 39 tizer-->found 0 0 14 8
52545 /dcs/vlsi/junwei/a4/arms/cpi 83 burroughs-->found 0 42 7 12
52546 /dcs/vlsi/junwei/a4/arms/fft 65 rubbish-->found 0 8 40 16
52550 /dcs/vlsi/junwei/a4/arms/improc 150 burroughs-->found 0 44 72 8
52551 /dcs/vlsi/junwei/a4/arms/closure 31 burroughs-->tizer--

>found
9 0 12 7

52554 /dcs/vlsi/junwei/a4/arms/improc 173 budweiser-->found 0 14 48 8
52558 /dcs/vlsi/junwei/a4/arms/cpi 8 gem-->found 0 0 2 12
52561 /dcs/vlsi/junwei/a4/arms/improc 110 gem-->found 0 0 20 8
52563 /dcs/vlsi/junwei/a4/arms/jacobi 131 coke-->found 0 3 19 15
52565 /dcs/vlsi/junwei/a4/arms/closure 11 gem-->found 0 0 6 7
52567 /dcs/vlsi/junwei/a4/arms/sweep3d 166 sprite-->found 0 5 8 15
52571 /dcs/vlsi/junwei/a4/arms/memsort 16 gem-->found 0 0 10 8
52572 /dcs/vlsi/junwei/a4/arms/memsort 57 rubbish-->tizer-->found 2 0 20 8
52576 /dcs/vlsi/junwei/a4/arms/fft 40 tizer-->found 0 1 36 8
52578 /dcs/vlsi/junwei/a4/arms/fft 46 coke-->found 0 7 32 16
52582 /dcs/vlsi/junwei/a4/arms/improc 87 gem-->found 0 0 20 8
52586 /dcs/vlsi/junwei/a4/arms/memsort 37 tizer-->found 0 8 20 8
52589 /dcs/vlsi/junwei/a4/arms/fft 43 rubbish-->tizer-->found 5 20 20 16
52593 /dcs/vlsi/junwei/a4/arms/cpi 55 origin-->found 0 0 2 12
52596 /dcs/vlsi/junwei/a4/arms/improc 94 rubbish-->found 0 0 80 8
52598 /dcs/vlsi/junwei/a4/arms/improc 98 sprite-->found 0 0 40 8
52599 /dcs/vlsi/junwei/a4/arms/sweep3d 112 budweiser-->found 0 17 9 15
52602 /dcs/vlsi/junwei/a4/arms/closure 4 tizer-->gem-->found 5 0 2 15
52606 /dcs/vlsi/junwei/a4/arms/memsort 18 budweiser-->sprite--

>gem-->found
9 0 10 8

52609 /dcs/vlsi/junwei/a4/arms/memsort 45 budweiser-->found 0 16 24 8
52613 /dcs/vlsi/junwei/a4/arms/closure 2 origin-->gem-->failed 8 - - -
52617 /dcs/vlsi/junwei/a4/arms/jacobi 68 gem-->found 0 8 6 15
52621 /dcs/vlsi/junwei/a4/arms/improc 167 tizer-->found 0 13 40 8
52624 /dcs/vlsi/junwei/a4/arms/improc 89 gem-->found 0 7 20 8
52628 /dcs/vlsi/junwei/a4/arms/memsort 35 budweiser-->found 0 0 24 8
52633 /dcs/vlsi/junwei/a4/arms/sweep3d 110 gem-->found 0 0 15 8
52637 /dcs/vlsi/junwei/a4/arms/improc 91 rubbish-->found 0 0 80 8
52641 /dcs/vlsi/junwei/a4/arms/sweep3d 117 tizer-->found 0 0 30 8
52645 /dcs/vlsi/junwei/a4/arms/memsort 53 sprite-->found 0 0 20 8
52648 /dcs/vlsi/junwei/a4/arms/improc 91 origin-->found 0 0 20 8
52649 /dcs/vlsi/junwei/a4/arms/memsort 23 coke-->sprite-->found 5 0 20 8

APPENDIX B ARMS EXPERIMENT RESULTS

- 181 -

52652 /dcs/vlsi/junwei/a4/arms/memsort 17 burroughs-->tizer--
>gem-->found

17 0 10 8

52654 /dcs/vlsi/junwei/a4/arms/memsort 26 rubbish-->tizer-->gem--
>found

9 0 10 8

52658 /dcs/vlsi/junwei/a4/arms/sweep3d 121 origin-->found 0 0 4 15
52660 /dcs/vlsi/junwei/a4/arms/sweep3d 77 burroughs-->found 0 6 14 15
52661 /dcs/vlsi/junwei/a4/arms/fft 80 coke-->found 0 0 32 16
52664 /dcs/vlsi/junwei/a4/arms/fft 86 origin-->found 0 8 10 16
52666 /dcs/vlsi/junwei/a4/arms/closure 13 burroughs-->tizer--

>found
6 2 4 15

52671 /dcs/vlsi/junwei/a4/arms/improc 91 sprite-->found 0 0 40 8
52673 /dcs/vlsi/junwei/a4/arms/closure 25 rubbish-->tizer-->found 2 3 4 15
52677 /dcs/vlsi/junwei/a4/arms/closure 3 sprite-->gem-->failed 12 - - -
52678 /dcs/vlsi/junwei/a4/arms/closure 8 sprite-->budweiser--

>found
16 0 4 15

52680 /dcs/vlsi/junwei/a4/arms/fft 91 gem-->found 0 0 10 16
52684 /dcs/vlsi/junwei/a4/arms/improc 190 tizer-->found 0 0 40 8
52688 /dcs/vlsi/junwei/a4/arms/fft 30 origin-->found 0 0 10 16
52691 /dcs/vlsi/junwei/a4/arms/jacobi 37 coke-->found 0 2 19 15
52694 /dcs/vlsi/junwei/a4/arms/sweep3d 58 coke-->found 0 18 12 15
52695 /dcs/vlsi/junwei/a4/arms/cpi 10 coke-->budweiser--

>found
13 0 4 12

52696 /dcs/vlsi/junwei/a4/arms/improc 174 tizer-->found 0 0 40 8
52697 /dcs/vlsi/junwei/a4/arms/closure 4 rubbish-->tizer-->gem--

>found
9 0 2 15

52702 /dcs/vlsi/junwei/a4/arms/improc 140 origin-->found 0 0 20 8
52703 /dcs/vlsi/junwei/a4/arms/fft 69 sprite--> found 0 8 20 16
52704 /dcs/vlsi/junwei/a4/arms/memsort 10 tizer-->gem-->failed 15 - - -
52709 /dcs/vlsi/junwei/a4/arms/jacobi 46 origin-->found 0 0 15 8
52711 /dcs/vlsi/junwei/a4/arms/memsort 19 budweiser-->sprite--

>gem-->found
11 0 10 8

52713 /dcs/vlsi/junwei/a4/arms/improc 167 sprite--> found 0 18 40 8
52715 /dcs/vlsi/junwei/a4/arms/memsort 57 budweiser-->found 0 0 24 8
52716 /dcs/vlsi/junwei/a4/arms/closure 27 gem-->found 0 0 2 15
52718 /dcs/vlsi/junwei/a4/arms/sweep3d 153 origin-->found 0 6 4 15
52724 /dcs/vlsi/junwei/a4/arms/closure 11 coke-->found 0 0 6 15
52729 /dcs/vlsi/junwei/a4/arms/closure 25 origin-->found 0 0 2 15
52731 /dcs/vlsi/junwei/a4/arms/cpi 2 burroughs-->tizer--

>gem-->failed
24 - - -

52732 /dcs/vlsi/junwei/a4/arms/cpi 47 tizer-->found 0 4 4 12
52737 /dcs/vlsi/junwei/a4/arms/improc 191 burroughs-->found 0 0 72 8
52738 /dcs/vlsi/junwei/a4/arms/cpi 88 gem-->found 0 0 2 12
52740 /dcs/vlsi/junwei/a4/arms/cpi 83 budweiser-->found 0 0 4 12
52745 /dcs/vlsi/junwei/a4/arms/cpi 31 coke-->found 0 0 6 12
52747 /dcs/vlsi/junwei/a4/arms/memsort 21 coke-->sprite-->gem--

>found
14 0 10 8

52749 /dcs/vlsi/junwei/a4/arms/closure 5 budweiser-->found 0 0 4 15

APPENDIX B ARMS EXPERIMENT RESULTS

- 182 -

52751 /dcs/vlsi/junwei/a4/arms/cpi 98 sprite--> found 0 0 14 8
52754 /dcs/vlsi/junwei/a4/arms/sweep3d 79 coke-->found 0 0 12 15
52756 /dcs/vlsi/junwei/a4/arms/closure 25 budweiser-->found 0 0 4 15
52759 /dcs/vlsi/junwei/a4/arms/sweep3d 62 tizer-->found 0 0 8 15
52763 /dcs/vlsi/junwei/a4/arms/closure 34 rubbish-->found 0 0 8 15
52765 /dcs/vlsi/junwei/a4/arms/jacobi 34 coke-->found 0 1 19 15
52769 /dcs/vlsi/junwei/a4/arms/fft 58 coke-->found 0 16 32 16
52770 /dcs/vlsi/junwei/a4/arms/improc 45 sprite--> found 0 0 40 8
52774 /dcs/vlsi/junwei/a4/arms/cpi 80 sprite--> found 0 0 14 8
52775 /dcs/vlsi/junwei/a4/arms/memsort 35 origin-->found 0 0 10 8
52777 /dcs/vlsi/junwei/a4/arms/jacobi 31 rubbish-->found 0 0 24 15
52781 /dcs/vlsi/junwei/a4/arms/fft 79 budweiser-->found 0 0 24 16
52782 /dcs/vlsi/junwei/a4/arms/jacobi 153 tizer-->found 0 0 12 15
52787 /dcs/vlsi/junwei/a4/arms/memsort 67 burroughs-->found 0 0 36 8
52790 /dcs/vlsi/junwei/a4/arms/sweep3d 139 budweiser-->found 0 15 9 15
52792 /dcs/vlsi/junwei/a4/arms/closure 15 tizer-->found 0 2 4 15
52795 /dcs/vlsi/junwei/a4/arms/memsort 42 burroughs-->tizer--

>found
5 0 20 8

52798 /dcs/vlsi/junwei/a4/arms/memsort 50 sprite--> found 0 0 20 8
52800 /dcs/vlsi/junwei/a4/arms/closure 30 gem-->found 0 0 2 15
52802 /dcs/vlsi/junwei/a4/arms/closure 3 tizer-->gem-->found 7 0 2 15
52807 /dcs/vlsi/junwei/a4/arms/cpi 93 sprite--> found 0 11 4 12
52809 /dcs/vlsi/junwei/a4/arms/closure 13 burroughs-->tizer--

>found
5 6 4 15

52811 /dcs/vlsi/junwei/a4/arms/closure 13 budweiser-->found 0 3 4 15
52814 /dcs/vlsi/junwei/a4/arms/sweep3d 152 rubbish-->found 0 0 16 15
52816 /dcs/vlsi/junwei/a4/arms/jacobi 7 coke-->sprite-->gem--

>found
16 0 6 15

52820 /dcs/vlsi/junwei/a4/arms/memsort 45 tizer-->found 0 4 20 8
52822 /dcs/vlsi/junwei/a4/arms/closure 9 burroughs-->found 0 1 7 15
52825 /dcs/vlsi/junwei/a4/arms/sweep3d 153 burroughs-->found 0 5 14 15
52828 /dcs/vlsi/junwei/a4/arms/improc 55 rubbish-->tizer-->found 3 0 40 8
52831 /dcs/vlsi/junwei/a4/arms/cpi 121 coke-->found 0 0 6 12

RT: Required Time
DT: Discovery Time
WT: Waiting Time
ET: Execution Time
#P: The Number of Processors Used

APPENDIX B ARMS EXPERIMENT RESULTS

- 183 -

B.2 Experiment Results @ gem

APPENDIX B ARMS EXPERIMENT RESULTS

- 184 -

B.3 Experiment Results @ origin

APPENDIX B ARMS EXPERIMENT RESULTS

- 185 -

B.4 Experiment Results @ sprite

APPENDIX B ARMS EXPERIMENT RESULTS

- 186 -

B.5 Experiment Results @ tizer

APPENDIX B ARMS EXPERIMENT RESULTS

- 187 -

B.6 Experiment Results @ coke

APPENDIX B ARMS EXPERIMENT RESULTS

- 188 -

B.7 Experiment Results @ budweiser

APPENDIX B ARMS EXPERIMENT RESULTS

- 189 -

B.8 Experiment Results @ burroughs

APPENDIX B ARMS EXPERIMENT RESULTS

- 190 -

B.9 Experiment Results @ rubbish

