AGENT-BASED RESOURCE
MANAGEMENT FOR GRID COMPUTING

Junwel Cao

A Thesis Submitted to the University of Warwick for
the Degree of Doctor of Philosophy

Department of Computer Science
University of Warwick
October 2001

CONTENTS

CONMEENES ...ttt e e e e e e e e e e e e emmeeme e e e enn |
LISt OF FIOUIES ...ttt eeeeeeeeee e eeeeeeneeenneeennsennnnee VI
LISt OFf TADIES ...ttt ee e e eeeneeenneeennsennn Vil
ACKNOWIEAOEIMIENES ...ttt eeeeeeeeeeeeeenneeennsennnan I X
DOCIAIAION ...ttt eeeeeeeee e eene e eennseenneennneennseens X
GUOSSAIY ...ttt et e e e eee e e e e e e e e e e e e e eennennn Xl
AADSITACE ...ttt e e eeee e e e eeeeeneeennseeneennseennnennn X1V
Chapter L INtrOQUCTION.cve.eieeeeeee et eeeeeeeeeeeeeeeeneeeneennseennsennnnen 1
1.1 Grid COMPULINGvveeeeiiiiiieeeeiiee et e e e e e e e e e e e e e e e e snsaeeeeennnns 2
1.2 SOftWAIE AQENES.....eeiie ittt e e e e e e e e e e e e nnees 5
1.3 ThESIS CONIIDULIONS.eeee ettt e e e e e et e e e ee e e e eeeeeeeenaesesnesennns 7
L4 TESI S OULIINE ..ottt e e e e e et e e et e e e e e e e eeeeeenareesaeennns 8

CONTENTS

Chapter 2 Resource Management for Grid Computing..................... 11
2.1 Performance EValUBLIONccceiiiiiiiiiiiieieie e 11
2.2 PACE MethOdOIOgYcccoiiuiiiieiiiiiie ettt 14

2.2.1 Layered FrameworK..........couviii i 14
2.2.2 ObjeCt DEfINItION.....c..iiiee e 16
2.2.3MOEl CreatioN.c.eeieiiiieeiiee et 17
2.2. 4 Mapping REIGLIONS.........ccooiiiiie e 18
2.2.5 EValuation ENQINE.........ooiiiiiiiee ettt e 18
2.2.6 PACE TOOIKITcuviiiieiieiecie ettt 19
2.3 Grid Resource Managementceeeeieeeeeeiiieeeeeiiree e esrree e e ssnee e e 21
2.3.1 DaAlaManagemMENt.........ccccuiiiiiiiee et 25
2.3.2 Communication ProtOCOoIS.............ooiiiiiiiiiiniie e 27
2.3.3 Resource Advertisement and DISCOVEIYcuuvveiiiiieeeiiiiiee e 28
2.3.4 QOS SUPPOITevtreeiieeeeeeiiitrteeee e e e e e st e e e e e s e s sssbaa e e e e e e e e e s sssraneeeeeas 29
2.3.5 ResoUrce SChedUliNgcccveiie i 30
2.3.6 Resource Allocation and MONItOriNg.........ccoccveeeeiiiieeeeesiiieeeesiieeeens 31
A S 11 01007 PO PREEPR 32

Chapter 3 Service Discovery in Multi-Agent Systems..........c........... 34

3.1 MUItI-AQENE SYSEEIMS. ...t ee e 34
3.1.1 Knowledge Representationueeeeicieeeeiiiieie e ciiiee e e siaeee e 37
3.1.2 Agent COmMMUNICALION..........eeeeeiiiiieeeeiiiee et e e e et e e s e e e eaaee e 38
3. 1.3 Agent NEQOLIELION.........ceeiiiiiiee et e e 38
3.1.4 Agent CoordiNationccuvieeeiiuieeeeeiiieeeesree e e s e e e e e e e e enaee e 39

3.2 Service Advertisement and DISCOVENYccccvveeeiiiiiieeeeiiieee e 41
3.2.1 SEIVICE REJISIIY...cei ettt e e 44
3.2.2 Service AQVEITISEMENTcooviieiieie e 45
3.2.3 SEIVICE DISCOVEIY ...ttt e e 46
3.2.4 INtErOPErabilitycccciciiiee e 47

3.3 Use of Agent Technologiesin Grid Development............ccccceeeviveeeeccinnen. 438

G IS 11 01007 PP EERPR 49

Chapter 4 Sweep3D:

CONTENTS

Performance Evaluation Using the PACE ToolKitccccvveeeinnneen. 51
4.1 0OVErVIEW Of SWEEP3D.....cci ittt 51
4.2 SWEEP3D MOUEISc.eeeiieieee et 53

4.2.1 MOdel DESCIIPLIONc.eviiie ettt e e 53
4.2.2 Application Model Creation...........cccveeeviieee e v 55
4.2.3 Resource Model Creation...........ooueeeieeeiieie e 58
4.2, 4 Mapping REGIONS..........cooiiiiiie e 61
4.3 Validation EXPerimentS..........ceeiiiiiiee e 62
4.3.1 Validation Results on SGI Origin2000............ccccveeiiiieeeeeriieee e 62
4.3.2 Validation Results 0N SUN CIUSLENS........cooviiiiiiieiiie e 64
4.4 PACE asaloca Resource Managerccocvveeeeeiiiieeeeciieeeessineee e 66

Chapter 5 A4:

Adile Architecture and Autonomous AQeNntS.......ccccvvecveeeeeiiiieeeenn. 68
5.1LAQENt HIETArCNY ...ttt 69
5.2 A0ENE SITUCIUME ...ttt e e e e e eannnees 71
5.3 SarVice AQVEITISEMENT......cooiiii it 72

5.3.1 Agent Capability Tablescccooiiiie i 72
5.3.2 ACT MaAINTENANCE......eeiiiiieitiieeieieeriteeesieee e sitee e e see e sne e e sneeesneeeas 74
5.4 SEVICE DISCOVENYuvviiie ittt e e e e e e e e et e e e e ennaee s 75
5.4 1 ACT LOOKUP ..ttt ettt a e s s e e e snaeae e 76
5.4.2 FOrmal APPrOaCh........uviee ittt 78
5.5 Performance MELTICSooiiiiiiiiie e 81
5.5.1 DiSCOVEIY SPEEU......c.eiiiee ittt 82
5.5.2 SystemM EffiCIENCYevveeeiiieie et 82
5.5.3L0ad BalanNCiNg........ccouuiiiiiiiiiee e 83
5.5.4 SUCCESS RELE.......ceeiiiiiiiie e e e 83
5.6 A4 SIMUIBLOT ...ttt e e anee s 84
5.6.1 INPUETOULPULSoeeiiiiiiee ettt e e e e e e s e e e e snaeeeeaa 84
5.6.2 SIMUIALOr KEINED ... 86
5.6.3USEr INLEITACES.coiiiiieiiiie e 89
5.6.4 MaAIN FEALUIES.......cccueiiiiiiie ittt nnnee s 92
5.7 A CBSE SEUAY.....eeeee ettt e e e e e e e e e et e e e e nnnneeas 92

CONTENTS

B5.7.1PerformanCeMOE]ooeeeeeeeeeeeee e 93

B.7.2SIMUIEtiON RESUIES.o 93

5.8A4a5aGIobal FramEWOIK oot 96
Chapter 6 ARMS:

Aqgent-based Resource M anagement System for Grid Computing.... 98

6.1 ARMS IN CONLEXL......coiiiieiiiieiiiee ettt 98
6.2 ARMS AIChItECLUNE.......eeiiiiiie e 100
B.2.1 Grit USEN'S ..ottt e e nne s 100
6.2.2 GIid RESDUITES.......eeieiiiie ettt 101
B.2.3 ARMS AQENES ...cviiiieiecie ettt sreenne e 102
6.2.4 ARMS Performance Monitor and AdViSOr..........cccceveeeniieeenciieennen. 103
6.3 ARMS AQENE SITUCLUIceeeei ittt e e 103
B.3. L ACT MANAGENcueeivieieiiesteeseeseetesee e steeste e e sseesneeaesneesneenneas 105
6.3.2 PACE Evaluation ENgINe...........ccciueieeiiiiiiie et 107
6.3.3 SCREAUIEN ..ottt nre e 108
6.3.4 MALCHMAKEeeiiiiiee e 110
6.4 ARMS IMpIementation.............cccuueeeiiiieeee e 111
6.4. 1 AQENt KEINELoviieiiieiie e 111
6.4.2 AQENE BIOWSEYeviiiiiiieiieiiitteee e e e e st e e e e e e e e e ssnan e e e e e e e s snssnnees 112
B.5 A CASE SUAYc.eeieeieieciieeteeste ettt nreene e 113
B.5.1 SYSIEM DESION...c.vveiieieciieciee sttt e e nrea 113
6.5.2 AULOMALIC USEIS ...ttt 115
6.5.3 EXperiment RESUILS |ccocviiee e 116
6.5.4 Experiment RESUILS Tccuvvieeiieee e 117

Chapter 7 PMA:

Performance Monitor and Advisor for ARMS.......ccccoevcvvveeeiinnnen. 123
T L PMA SITUCLUIE ...t 123
7.2 Performance Optimisation Strat@gi€sS.........cccvveeeeiivieeeeeiiiieeeesrree e 125

7.2 L USE Of ACT Sttt ettt sneenne s 125
7.2.2Limited Service LIfetime ... 126
7.2.3 LIMITEA SCOPE....ceeiiiiiieeiiiieie ettt e e e e e e 127

-1V -

CONTENTS

7.2.4 Agent Mobility and Service Distribution..........ccccccveeeiiiiieecccciieeee, 127

7.3 Performance Steering POlICIEScoocvviee i 128
T4 A CSE SHUAY....ceveeiieeiieiiie ettt ee et eaaeesseeeseesnseennee s 130
TA.LEXamPIe MOAELoooeiiiiiie e 130
7.4.2 SIMUIELION RESUILS......coeiiiiiiie e 132
Chapter 8 CONCIUSIONS.ccuiiiiiiiiiiiiiiiiiiei st essiee s 136
8.1 ThESIS SUMMEAIYeiiiee ittt e e e 136
.2 FULUIE WOTK ...ttt ettt et e e e e 139
8.2.1 Performance Evaluation............c.cccuvveeiiiiiie e 139
8.2.2 Multi-processor Schedulingccvvveeiiiiiee e 140
8.2.3 Agent-based Resource Managementccccceveeviiveeeecciieee e e, 141
8.2.4 Enhanced Implementation............ccccceeiviieeeeiciiiee e 142
Bibliography........cccccouiiiiiiiiiiiieisciee ettt 143
Appendix A PSL Code for Sweep3D.......cceeeeeiiivveiiiiiiiiiiieeisien, 156
Appendix B ARMS Experiment ResultS.........cccccoeveeeiicieeneiisnnnen, 178

LIST OF FIGURES

Figure 2.1 The PACE Layered FrameworK..........ccccceeeiiiiiieeeeiiiiiee e esiieeee 15
Figure 2.2 Software ODJECt SEFUCLUEcovvveeeciiiee et 16
Figure 2.3 Hardware ODbject SITUCIUIE...........eeeiiiiiiiee e 17
Figure 2.4 Model Creation PrOCESS..........cociuiiieiiiiieee e esiiee et ssaeee e 17
Figure 2.5 Mapping REGONScccuiiiiiiiiie e 18
Figure 2.6 Evaluation Process of PACE ModelS..........cccovveiiiiiiiii i 19
Figure 2.7 The PACE TOOIKIL.......ccciiiiiiie et 20
FIgure 2.8 Grid RESOUICES..........uviieiiiiiiee et eeieee e et e e e et e e e e snsa e e e e e snaeeeeans 25
Figure 3.1 Research Topics in Multi-Agent SyStems........cccooccveeeeeviiieeeccicineeeens 37
Figure 3.2 Knowledge Representation............eveiiiveeeiciiiiec e 38
Figure 3.3 Coordination Models: Control-driven vs. Data-driven 40
Figure 4.1 Data Decomposition of the Sweep3D Cube..........ccccceevviiieeiiiiiieneens 52
Figure 4.2 Sweep3D Object Hierarchy (HLFD Diagram)ccccceeevvveeeeeiiiieneenns 54
Figure 4.3 Sweep3D Application ODJECEcccoviiiieieiiiieee e 55
Figure 4.4 SGI Origin2000 Hardware ODJECtcccooviiieeeiiiiiee e 58
Figure 4.5 Creating Hardware Communication Models Using Mathematica....... 60
Figure 4.6 Mapping between Sweep3D Model Objects and C Source Code........ 61
Figure 4.7 PACE Model Validation on an SGI Origin2000ccccceeeviiiveneenns 64
Figure 4.8 PACE Model Validation on a Cluster of SunUltral Workstations......65

-VI -

LiST OF FIGURES

Figure 5.1 Agent HIErarChycoeeiiiiiee ettt 69
Figure 5.2 Layered Agent SETUCIUIE..........cocvviieiiiiiie et 71
Figure 5.3 An EXample SYySteM ...t 78
FIQUrEe 5.4 A4 SIMUIBLOTccciiiiiiee ettt e e e e e 84
Figure 5.5 Simulation Process of A4 SIMUIELOTcccveeeeiiiiiee e 87
Figure 5.6 A4 Simulator GUIsfor Modellingcooovviiieieiiiiiee e 90
Figure 5.7 A4 Simulator GUISfor SImulationccccveeeeiiiieeeciciieee e 91
Figure 5.8 Example Model: Agent Hierarchycccooocveeiiiiiiee e 93
Figure 5.9 SImulation RESUIEScccociiiiee e 94
Figure 6.1 ARMS iN CONEEXL.......cceeiiiiiiieeciiiiie e ciiiee e e eriree et e e et e e e snne e e 99
Figure 6.2 ARMS ArChiteCUre...........vveee i 100
Figure 6.3 ARMS Agent SETUCIUIEcceeiiiiiee et 104
Figure 6.4 Service Information IN ARMS. ... 105
Figure 6.5 ARMS AQENt BrOWSEIS.......cceiiiiiiieeiiiiiie e ciieee e e eiree e sinee e e snaeea e 113
Figure 6.6 ARMS Case Study: Agent Hierarchy..........ccccceeeviiieeeiiiiiee e 114
Figure 6.7 ARMS Case Study: AppliCations...........cccoviiieeeiiiiieeeesiiiee e 115
Figure 6.8 ARMS Experiment Results: Application Execution...............cc.c...... 119
Figure 6.9 ARMS Experiment Results: Service DiSCOVEYccoovvvvveeeiiiieneenn, 119
FiIgure 7.1 PMA VS. ARMS ...ttt 124
Figure 7.2 Choice of Optimisation Stra@gi€sScccoviveeeeeiiveeeeesiieeeeesiieeeeans 133
Figure 7.3 Choice of G_ACT Update FreqUueNCYcccveeeviuveeeeeiiiieeeesiiieeeens 134

- VII -

LIST OF TABLES

Table 2.1 Overview of Performance Evaluation TOOIS...........ccooceeiviieeniiieinieenns 13
Table 2.2 Overview of Grid Projects and their Resource Management 24
Table 3.1 Overview of Multi-Agent Systems. Applicationsand Tools................ 36
Table 3.2 Overview of Distributed System Infrastructures with Service Discovery

(@F= 072 o)1 11 TS PSPPSRI 44
Table 4.1 PACE Model Validation on an SGI Origin2000...........ccccceeeevivveeeeennee. 63
Table 4.2 PACE Model Validation on a Cluster of SunUltral Workstations....... 65
Table 5.1 Service Advertisement and ACT Maintenance...........ccceeveeeeerieeenieenns 75
Table 5.2 Formal Representation...........ccccuvieeiiiiiiee e 79
Table 6.1 ARMS Case Study: RESOUICES.........c.uvieeeiiiiiieeeiiieee e e siree e snaeee e 114
Table 6.2 ARMS Case Study: ReqQUIremMentsS.........coocvveeeiviiieeeeciieee e 116
Table 6.3 ARMS Case Study: Workloads............cccoevviiieiiiiiiie e, 116
Table 6.4 ARMS Experiment Results: Application Execution.............cc.ce....... 118
Table 6.5 ARMS Experiment Results: Service DISCOVENYccovvveveeiiciieeeeennee 118
Table 7.1 Example Model: AQENES........ccviiieiiieie e 130
Table 7.2 Example Model: SErVICES........cuuve it 131
Table 7.3 Example Model: REQUESESccooiiiiieiiiiiiiee e 131
Table 7.4 Example Model: Strategi€s.........cueeiiiiieeiiiiiie e 131
Table 7.5 SIMUlation RESUILS.........cc.eiiiiieiiee s 132

ACKNOWLEDGEMENTS

| would like to thank my supervisor, Prof. Graham R. Nudd, for offering me a
great environment, plenty of opportunities, and freedom to be creative. | would
like to thank my advisors, Dr. Darren J. Kerbyson and Dr. Stephen A. Jarvis, for

giving me many detailed instructions on the ideas presented in this thesis.

| would also like to thank the members of High Performance Systems Group, for
their help: Efstathios Papaefstathiou, John Harper, Stewart Perry, Daniel Spooner,
James Turner, Ahmed Alkindi, Sirma Cekirdek, Dechao Wang, and Jiang Chen.

| would like to give special thanks to Prof. Malcolm McCrae and Dr. Li Xu.
Without their efforts, | would not be able to get the opportunity to study at the

University of Warwick.

Finally, 1 would like to thank my wife, Ms. Yu Han. Her love can always give

inspirations for me to make progress on my work.

DECLARATION

This thesis is presented in accordance with the regulations for the degree of
Doctor of Philosophy. It has been composed by myself and has not been
submitted in any previous application for any degree. The work described in this

thesis has been undertaken by myself except where otherwise stated.

The various aspects concerning the PACE methodology have been published in
[Can2000]. Parts of the content in Chapters 4 — 7, concerning Sweep3D, A4,
ARMS, and PMA, have been published in [Ca01999d], [Can2000b], [Can2001b]
and [Cap2001] respectively. The detail introductions to the A4 methodology and
the ARMS implementation have been accepted for journal publications in
[Can2001c] and [Can2001d].

A4
AARIA
ACL
ACT
ADEPT
API
AppLeS
ARMS
ASCI
AT

C ACT
CIMS
CORBA
CORBA-LC
DHCP
DPM
DPSS
EE

FTP

GLOSSARY

Agile Architecture and Autonomous Agents
Autonomous Agents at Rock Island Arsenal

Agent Communication Language

Agent Capability Table

Advanced Decision Environment for Process Tasks
Application Programming Interface
Application-Level Scheduler

Agent-based Resource Management System (for Grid Computing)
Accelerated Strategic Computing I nitiative

(PACE) Application Tools

Cached Agent Capability Table

Computer Integrated Manufacturing System
Common Object Request Broker Architecture
CORBA Lightweight Components

Dynamic Host Configuration Protocol

Dynamic Performance Measurement
Distributed-Parallel Storage System

(PACE) Evaluation Engine

File Transfer Protocol

- X] -

G_ACT
GA
GRACE
GUI
GUSTO
HAVi
HLFD
HMCL
HTC
HTTP
IETF
JATLIite
KQML
L_ACT
LDAP
MACIP
MAS
MDS
MPI
OAS
OMG
PACE
PMA
POEMS
PSE
PSL
PVM
QoS
RMI
RMS
RSL

RT

SDD
SDP

GLOSSARY

Global Agent Capability Table

Genetic Algorithm

Grid Architecture for Computational Economy
Graphical User Interface

Globus Ubiquitous Supercomputing Testbed
Home Audio-Video interoperability
Hierarchical Layered Framework Diagram
Hardware Model Configuration Language
High Throughput Computing

Hypertext Transfer Protocol

Internet Engineering Task Force

Java Agent Template, Lite

Knowledge Query and Manipulation Language
Local Agent Capability Table

Lightweight Directory Access Protocol

CIMS Application Integration Platform
Multi-Agent Systems

Metacomputing Directory Service

Message Passing I nterface

Operational Administration System

Object Management Group

Performance Analysis and Characterisation Environment
Performance Monitor and Advisor
Performance Oriented End-to-end Modelling System
Problem Solving Environment

Performance Specification Language

Parallel Virtual Machine

Quality of Service

Remote Method Invocation

Resource Management System

Resource Specification Language

(PACE) Resource Tools

Self Device Describing

Service Discovery Protocol

- XII -

SLA
SLP
SMP
SNMP
SPE
SSDP
SUIF
T_ACT
TCPIIP
UPnP
XML

GLOSSARY

Service Level Agreement

Service Location Protocol

Symmetric Multiprocessor

Simple Network Management Protocol
Software Performance Engineering
Simple Service Discovery Protocol
Stanford University I ntermediate Format
This Agent Capability Table
Transmission Control Protocol/Internet Protocol
Universal Plug and Play

Extensible Makeup Language

- XIHI -

ABSTRACT

A computational grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to high-end
computational capability. An ideal grid environment should provide access to the
available resources in a seamless manner. Resource management is an important
infrastructural component of a grid computing environment. The overall aim of
resource management is to efficiently schedule applications that need to utilise the
available resources in the grid environment. Such goals within the high

performance community will rely on accurate performance prediction capabilities.

An existing toolkit, known as PACE (Performance Analysis and Characterisation
Environment), is used to provide quantitative data concerning the performance of
sophisticated applications running on high performance resources. In thisthesis an
ASCI (Accelerated Strategic Computing Initiative) kernel application, Sweep3D,
is used to illustrate the PACE performance prediction capabilities. The validation
results show that a reasonable accuracy can be obtained, cross-platform
comparisons can be easily undertaken, and the process benefits from a rapid
evaluation time. While extremely well-suited for managing a locally distributed
multi-computer, the PACE functions do not map well onto a wide-area

environment, where heterogeneity, multiple administrative domains, and

- X1V -

ABSTRACT

communication irregularities dramatically complicate the job of resource
management. Scalability and adaptability are two key challenges that must be
addressed.

In thisthesis, an A4 (Agile Architecture and Autonomous Agents) methodology is
introduced for the development of large-scale distributed software systems with
highly dynamic behaviours. An agent is considered to be both a service provider
and a service requestor. Agents are organised into a hierarchy with service
advertisement and discovery capabilities. There are four main performance
metrics for an A4 system: service discovery speed, agent system efficiency,

workload balancing, and discovery success rate.

Coupling the A4 methodology with PACE functions, results in an Agent-based
Resource Management System (ARMS), which is implemented for grid
computing. The PACE functions supply accurate performance information (e.g.
execution time) as input to alocal resource scheduler on the fly. At a meta-level,
agents advertise their service information and cooperate with each other to
discover available resources for grid-enabled applications. A Performance
Monitor and Advisor (PMA) is also developed in ARMS to optimise the

performance of the agent behaviours.

The PMA is capable of performance modelling and simulation about the agentsin
ARMS and can be used to improve overall system performance. The PMA can
monitor agent behaviours in ARMS and reconfigure them with optimised
strategies, which include the use of ACTs (Agent Capability Tables), limited
service lifetime, limited scope for service advertisement and discovery, agent

mobility and service distribution, etc.

The main contribution of this work is that it provides a methodology and
prototype implementation of a grid Resource Management System (RMS). The
system includes a number of original features that cannot be found in existing

research solutions.

- XV -

Chapter 1

INTRODUCTION

In fifty years, the raw speed of individual computers has increased by around one
million times. However, they are till too dow for more and more scientific
problems. For example, in some physics applications, data is produced by the
fastest contemporary supercomputer, and it is clear that the analysis of this data

would need much more computing power.

One solution to the computing power challenge leads to the research on Cluster
Computing [Buyyal999]. Multiple individual computers can be linked into each
other and work together to provide high computing capabilities. For example, the
ASCI white system at Lawrence Livermore National Laboratory in the USA
currently is the No. 1 supercomputer in the TOP500 list. This consists of SMP
(Symmetric Multi-Processor) nodes, each containing 16 processors and clustered
together using a high performance interconnect. Although clustering technologies
enable a great deal of progress in providing computing power, a cluster remains a
separate machine, dedicated to a specific purpose, and not being able to scale
across organisation boundaries, which limits how large such a system can
become.

CHAPTER 1 INTRODUCTION

With the rapid development of communication technologies, Internet Computing
[Foster2000] provides another atempt towards supplying computing power in a
more decentralised way. There are millions of powerful PCs around the world,
however, most of them are idle much of the time. It is thought possible to harness
these free CPU cycles so that scientists could solve important problems via the
Internet. However, the real requirements may become much more complex. Email
and the Web can only provide basic mechanisms for scientists to work together.
Scientists may also want to link their data, their computers, and other resources
together to provide a virtual laboratory [Foster2001]. The so-caled Grid
Computing technologies seek to make this possible.

1.1 Grid Computing

Civilisation has benefited from many successful infrastructures developed during
20" century. These include road systems, railways, the power grid, the telephone
system, and the Internet. Once you press a light switch in a room, the light turns
on. One can use it without knowing where the power comes from. The Internet is
the latest important infrastructure, which is often referred to as the information
highway. Given a domain name, you can get the information you want from your
computer without knowing where the information comes from and how it reaches

youl.

The emerging concepts such as “The network is the computer”, “world-wide
computer”, and “information power grid” [Leinberger1999] enable researchers in
the high performance community to seek a new infrastructure that can provide not
only information, but also high-end computing capabilities through networks.
Once connected via your resource-short notebook to the network, it would be
possible to run large scientific programs without worrying where the computing
power comes from and whether it is a supercomputer in the US, Europe, or Japan

that is actually doing computation for you.

A computational grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end

CHAPTER 1 INTRODUCTION

computational capability [Foster1998]. It provides the protocols, services, and
software development kits needed to enable flexible, controlled resource sharing
on a large scale. The main components in the grid architecture include
[Baker2001]:

» Grid Fabric - Comprising global resources geographically distributed and
accessible from anywhere on the Internet. These resources might include
computers (such as PCs and workstations running operating systems such
as UNIX or Windows NT), supercomputers, clusters (running cluster
operating systems or resource management systems), databases, and other

gpecial scientific instruments.

» Grid Services - Offering core services, such as information,
communication, naming, resource management, performance analysis,

visualisation, security and authentication, accounting, etc.

* Grid Tools - Providing high-level services allow programmers to develop
grid applications. These services include languages, libraries, APIs, SDKs,

debuggers, web tools, etc.

* Grid Applications - Grid-enabled applications developed using grid tools.
There are many kinds of potential grid applications, such as wide-area
distributed supercomputing, high-throughput computing, data-intensive

computing, on-demand computing, etc.

The research into grid computing technologies can be split into three main phases:

* Exploration phase (- 1998). Several early attempts, which are now
considered to be the classical projects in grid research, started with
different motivation and together build an umbrella termed
“Computational Grids’. The key sign during this phase is the emergence
of the GUSTO (Globus Ubiquitous Supercomputing Testbed), a prototype
for future computational grids. Also the publication of the book in 1998,
“The GRID - Blueprint for a New Computing Infrastructure’
[Foster1998], indicate that the concept of the grid comes into being.

CHAPTER 1 INTRODUCTION

» Spreading phase (1998 - 2001). During this period, the concept of the grid
has spread very rapidly. Researchers from the high performance
community and others give annotations to the concepts from different
views. Many projects begin to fit their research backgrounds into this new
context. The key sign of this phase is that in March 2001, 360 researchers
from USA, Europe, and Japan attended the first global grid forum (GGF1)
held in Amsterdam (with 60 people having registration refused), and in
May about 200 researchers from all over the world attended the first
IEEE/ACM international symposium on cluster computing and the grid
(CCGrid2001) held in Brisbane, Australia.

* Exploding phase (2001 -). Entering the new millennium, grid computing is
considered to be an active research field with great potential and well
known by most of computer scientists. Researchers from different fields of
computer science will contribute work in this context. Companies support
related activities on grid research. Governments begin to make plans to
support native grid research and development. For example, the European
Union gives 9.8 million euros funding over three years in support of the
DataGrid project [Segal2000]. The UK Department of Industry also

earmarked a large sum of money for their e-Science activities [Hey2001].

However, a practical grid environment does not yet exist. It is clear that the grid
software infrastructure will be a large-scale distributed software system that is
perhaps more complex than any existing software system. The most essential parts
of the grid are its services, which act as middleware between grid resources and
grid-enabled applications. Currently many grid-oriented software systems are
being developed separately with different motivations, methodologies and tools.
Many new ideas in them are important to accelerate the grid development. In
order to integrate existing efforts and put the grid into practice, advanced software
engineering methodology and technologies should be applied for the grid

infrastructure development.

CHAPTER 1 INTRODUCTION

1.2 Software Agents

Software agents are becoming an important software development technology.
The key sign of thistrend is the emergence of diverse applications and approaches
in many different areas [Bradshaw1997], including intelligent user interfaces
[Lieberman1997], industry [Parunak1998], electronic commerce [Nwanal99§],
business process management [Jennings2000], digital libraries [Atkins1996],
electronic meeting [Chen1996], entertainment [Maes1995], network management

[Davison1998], and so on.

Agents are computer systems, capable of flexible, autonomous action in dynamic,
unpredictable, typically multi-agent domains. Autonomy is the most essential
feature, which differentiate the agent from other smple programs. Unfortunately,
as mentioned in [Jennings1998], autonomy is a difficult concept to pin down
precisely, but we mean it simply in the sense that the system should be able to act
without the direct intervention of humans (or other agents), and should have

control over its own actions and internal state.

There are basically two different ways for agents to achieve autonomy:
intelligence and social ability. Intelligence means that an agent can achieve the
autonomy by an Al approach within the ability of itself, such as personality,
emotion, self-learning, life-like, knowledge reasoning, etc. Social ability means
that an agent achieves its autonomy by relationships with the other agents in a
Multi-Agent System (MAS), such as communication via an Agent
Communication Language (ACL), coordination, negotiation, evolution, self-

organisation, market mechanism, and mobility, etc.

For any new technology to be considered to be useful, it must offer either the
ability to solve problems that have hitherto not been solved or the ability to solve
problems that can already be solved in a significantly better (cheaper, more
natural, easier, more efficient, or faster) way [Jennings2001b]. Software agents

can be used to develop three classes of system:

CHAPTER 1 INTRODUCTION

* Open systems. An open system is one in which the structure of the system
itself is capable of dynamically changing. The characteristics of such a
system are that its components are not known in advance, can change over
time, and may be highly heterogeneous. The best-known example of a
highly open software environment is the Internet; and the grid is likely to
also be an open system on a scale possibly larger than the Internet. The
functionality is almost certain to require techniques based on negotiation

or cooperation, which lie very firmly in the domain of MAS.

* Complex systems. The most powerful tools for handling complexity in
software development are modularity and abstraction. Agents represent a
powerful tool for making systems modular. They can provide a useful
abstraction in just the same way those procedures, abstract data types, and
objects provide abstractions. They alow a software developer to
conceptualise a complex software system as a society of cooperating
autonomous problem solvers. For many applications, this high-level view

is simply more appropriate than the alternatives.

» Ubiquitous computing systems. Interaction between computer and user
must become an equal partnership. The machine should not just act as a
dumb receptor of task descriptions, but should cooperate with the user to
achieve their goal. These considerations give rise to the idea of an agent
acting as an expet assistant with respect to some application,
knowledgeable about both the application itself and the user, and capable

of acting with the user in order to achieve the user’s goals.

Software agents have been accepted as a powerful high-level abstraction for the
modelling of complex software systems like the grid software infrastructure.
However, though in current grid-oriented software systems agent technology has
been used in different ways, many new techniques developed in agent research
have not yet been applied. The work described in this thesis integrates agent,
performance, and scheduling technologies to implement one of the most important

grid services, resource management.

CHAPTER 1 INTRODUCTION

1.3 Thesis Contributions

In this work the methodology, tools and implementation of agent-based resource

management for grid computing are introduced. The performance prediction

capabilities are used to provide quantitative data concerning the performance of

sophisticated applications running on local high performance resources. At a

metacomputing level, agents cooperate with each other and perform resource

advertisement and discovery functions to schedule applications that need to utilise

the available resources. The performance of the agent system can be also

monitored, smulated, steered, and improved. The main contributions of this thesis

include:

Performance prediction driven QoS (Quality of Service) support of
resource management and scheduling. Existing performance evaluation
technologies can provide accurate prediction information regarding the
execution of parallel and distributed applications. In this work, we
integrate these performance prediction capabilities into resource
management for grid computing. This is a key feature that differentiates

thiswork from other solutions.

Agent-based hierarchical model for service discovery. Agent hierarchies
can be found in other agent applications [Ciancarini1999]. In this work, a
hierarchy of homogenous agents with service advertisement and discovery
capabilities is defined at a meta-level of a grid computing environment.
This provides the first scalable agent-based resource management system

for grid computing.

Simulation-based performance optimisation and steering of agent-based
service discovery. Most current grid resource management infrastructures
focus on the implementation of data models and communication protocols.
Performance issues have not been the key consideration of these systems.
In our work, we focus more on performance optimisation of agent
behaviours for service discovery. Several optimisation strategies and

steering policies are provided and simulation tools and results are included

CHAPTER 1 INTRODUCTION

to show their impact on the overall system performance. To the authors

knowledge, this cannot be found in any of other works.

In summary, all of the above provide an available methodology and prototype
implementation of agent-based resource management for grid computing, which
can be used as a fundamental framework for further improvement and refinement.
However, there are still some limitations on the system implementation aspect of

thiswork.

* An existing PACE toolkit is used to provide performance prediction
capabilities. For example, the PACE application performance modelling is
based on the source code analysis, and a PACE resource model includes

only static performance information of a resource.

* In the implementation of the agent-based grid resource management
system, grid applications refer to only scientific computing applications
that are computing intensive rather than data intensive, and grid resources
are considered to be providers of high performance computing power

rather than storage capabilities.

* While the performance monitoring and optimisation of agent behaviours
are described as automatic processes, this is not implemented in the system
described in this work. The use of the performance optimisation strategies

and steering policies must be supervised by a system manager.

1.4 Thesis Outline

The introduction to agent-based resource management is divided into four parts.
The PACE performance prediction capabilities are described using a parallel
benchmarking program, Sweep3D. The agent hierarchy is included in the
introduction of an A4 methodology. An initial implementation of the agent-based
resource management for grid computing, ARMS, is given in an individual
chapter. And the following chapter gives details of performance optimisation
issues and an implementation of a performance monitor and advisor (PMA) in the
ARMS.

CHAPTER 1 INTRODUCTION

The remaining parts of the thesis is organised in the following way:

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

reviews existing performance techniques for parallel and
distributed applications. The PACE toolkit, developed at the
University of Warwick, is presented in greater detail.
Several current solutions to grid resource management are
also described and compared. Current challenges are then

summarised.

reviews existing agent infrastructure and service discovery
techniques. The state of the art of agent technologies for

grid computing is also summarised.

introduces Sweep3D, a case study of performance
evaluation using the PACE toolkit. The PACE performance
model for Sweep3D is given in some detail. Validation
results on different platforms with different data sizes are
also included to show the prediction capabilities of PACE.

presents the A4 methodology, agile architecture and
autonomous agents, which can be used to build large-scale
distributed systems that exhibit highly dynamic behaviour.
The main issues include agent hierarchy, agent structure,
agent capability tables, service advertisement and
discovery, performance metrics. A simulator for A4 has
been developed and is used to illustrate these issues.

describes an implementation of an agent-based resource
management system for grid computing, ARMS, which
integrates PACE functions using the A4 methodology. The
ARMS architecture and agent structure are presented in
detail. The main modules in an ARMS agent include a
communication module, an ACT (Agent Capability Tables)

manager, a scheduler and a matchmaker. Experiments are

Chapter 7

Chapter 8

CHAPTER 1 INTRODUCTION

also included to show the grid resource management
capabilities of ARMS.,

discusses performance optimisation issues that arise from
the agent system of ARMS. A special agent, PMA, actsas a
performance monitor and advisor for ARMS, which is
capable of performance modelling and simulation for agent
resource discovery. Some optimisation strategies are
suggested, including use of ACTSs, limit resource lifetime,

limit scope for resource advertissment and discovery, etc.

draws conclusions from the work presented in this thesis
and offers suggestions for future improvement to the

methodology, tools, and implementation.

-10-

Chapter 2

RESOURCE MANAGEMENT FOR
GRID COMPUTING

The grid, composed of distributed and often heterogeneous computing resources,
is becoming the platform-of-choice for many performance-challenged
applications. Proof-of-concept implementations have demonstrated that the grid
environment has the potential to provide great performance benefits to paralel
and distributed computing applications. The current research into grid computing
aims to provide access to a multitude of processing systems in a seamless fashion.
That is, from a user’s perspective, applications may be executed on such a grid
without the need to know which systems are being used, or where they are
physically located. The overall aim of resource management is to efficiently
schedule applications that need to utilise the available resources in the grid
environment. Such goals within the high performance community will rely on

accurate performance evaluation, analysis and scheduling.

2.1 Performance Evaluation

An increasing number of applications are being developed to run on parallel
systems. An underlying goal in the use of high performance systems is to apply

complex systems to achieve rapid application execution times. Whether there will

-11-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

be impressive gains in cost-performance make performance a key issue in parallel
computing. For decades, the quantitative evaluation of computer performance has
been applied to the entire life cycle of a system. These methods assist in the

prediction, analysis, scheduling, and tuning of the performance of computers.

Numerous methodologies have been developed to evaluate the performance of
computer systems. These can be organised into four main groups. benchmarking,
analytical modelling, simulation, and monitoring. In benchmarking pre-defined
workloads are run on systems to obtain performance measurements, which can be
used as a basis for performance comparisons. Modelling methodologies require
the construction of a mathematical or logical relationship that represents the
behaviour of the system. The evaluation of this representation is performed by
either analytical based techniques or by simulation. Monitoring tools can also be
used to measure and analyse the performance of paralel systems. Performance
studies often use more than one technique simultaneously to validate and verify

the results of each other.

The techniques and tools that are being developed for the performance evaluation
of parallel and distributed computing systems are many-fold, each having their
own motivation and methodology. The main research projects currently in
progress in this area are summarised in Table 2.1. A more detailed overview of
previous performance evaluation methods and tools can be found in
[Papaefstathiou1995b].

Name Unit Description
AppLeS | Grid Computing | This is an application-level scheduler using expected
[Berma | Lab., performance as an aid. Performance predictions are
n1996] | Dept. of Computer | generated from structural models, consisting of
Science and | components that represent the performance activities
Engineering, of the application.
Univ. of California,
San Diego

CHAOS | High Peformance | A part of this work is concerned with the
[Uysall | Systems Software | performance prediction of large-scale data intensive

998] Lab., applications on large-scale paralle machines. It
Dept. of Computer | includes a simulation-based framework to predict the
Science, performance of these applications on existing and

-12-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

Univ. of Maryland

future paralld machines.

PACE High Performance | PACE is a performance prediction toolkit suitable for
[Nudd2 | SystemsLab., a non-performance expert. PACE supports the
000] Dept. of Computer | development of performance prediction models for
Science, sequential and parallel applications running on high
Univ. of Warwick, | performance systems. It is based on a layered
UK characterisation methodology, and is an analytical
approach that organises a performance mode into
three separate layers: application, parallelisation, and
hardware.
Paradyn | Paradyn Group, Paradyn is a peformance measurement tool for
[Millerl | Dept. of Computer | paralld and distributed programs. Paradyn scales to
995] Science, Univ. of | long running programs (hours or days) and large
Wisconsin- (thousand node) systems, and automates much of the
Madison search for performance bottlenecks. It can provide
precise performance data down to the procedure and
statement level. Paradyn is based on a dynamic
notion of peformance instrumentation and
measurement. Unmodified executablefiles are placed
into execution and then performance instrumentation
is inserted into the application program and modified
during execution.
Parsec | Paralle Computing | Thisisa paralld simulation environment for complex
[Bagrod | Lab., systems, which includes a C-based simulation
ia1998] | Dept. of Computer | language, a GUI (Pave), and a portable run-time
Science, system that implements the simulation operations.
Univ. of California,
Los Angeles
POEMS | Paralldl Computing | The aim of this work is to create a problem-solving
[Dedm | Lab.,, environment for end-to-end performance modelling
an1998] | Dept. of Computer | of complex parald and distributed systems. This
Science, spans application software, run-time and operating
Univ. of California, | system software, and hardware architecture. The
Los Angeles, project supports evaluation of component
etc. functionality through the use of analytica models
and discrete-event simulation at multiple levels of
detail. The analytica models include deterministic
task graph analysis, and LogP, LoPC models
[Frank1997].
GMA Performance The goal of the development of a Grid Monitoring
[Tierne | Working Group, | Architecture is to describe a common architecture
y2001] | Global Grid Forum | with all the major components and their essential

interactions in just enough detail that Grid
Monitoring systems that follow the architecture can
easily devise common APIs and wire protocols.

Table 2.1 Overview of Performance Evaluation Tools

-13-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

The motivation behind the development of the Performance Anaysis and
Characterization Environment (PACE) at the University of Warwick was to
provide quantitative data concerning the performance of sophisticated applications
running on high performance systems [Ca02000]. The framework of PACE is a
methodology based on a layered approach that separates software and hardware
system components through the use of a paralelisation template. This is a
modular approach that leads to readily reusable models, which can be

interchanged for experimental analysis.

Each of the modules in PACE can be described at multiple levels of detail in a
similar way to POEMS, thus providing a range of result accuracies but at varying
costs in terms of prediction evaluation time. PACE is aimed to be used for pre-
implementation analysis, such as design or code porting activities as well as for
on-the-fly use in scheduling systems in similar manner to that of AppLeS.
AppLeS is not originally motivated for grid computing but being improved to be
utilised in a grid environment. In this work, PACE is integrated into an agent-
based architecture to evaluate performance of grid applications. GMA is the only
project that is developed in context of grid computing, however, it focuses more
on performance monitoring than evaluation. The PACE methodology and toolkit
are described in greater detail below.

2.2 PACE Methodology

The main concepts behind PACE include a layered framework and the use of
associative objects as a basis for representing system components. An initial
implementation of PACE supports performance modelling of parallel and
distributed applications from object definition, through to model creation and

result generation. These factors are described further below.

2.2.1 Layered Framework

Many existing techniques, particularly for the analysis of serial machines, use

Software Performance Engineering (SPE) methodologies [Smith1990], to provide

-14-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

a representation of the whole system in terms of two modular components,
namely a software execution model and a system model. However, for high
performance computing systems, which involve concurrency and parallelism, the
model must be enhanced. The PACE layered framework is an extension of SPE
for the characterisation of parallel and distributed systems. It supports the
development of three types of models. software model, parallelisation model and
system (hardware) model. It allows the separation of the software and hardware
model by the addition of the intermediate parallelisation model.

The framework and layers can be used to represent entire systems, including: the

application, parallelisation and hardware aspects, as illustrated in Figure 2.1.

/Application Domain N
| Applicaiion Layer |

S | Subtask Layer |)

- v 4 ~
| Parallel Template Layer |

\ ; : J
| HardwareLayer |

(. J

Figure 2.1 The PACE Layered Framework

The functions of the layers are:

* Application Layer — describes the application in terms of a sequence of
parallel kernels or subtasks. It acts as the entry point to the performance
study and includes an interface that can be used to modify parameters of a

performance study.

» Application Subtask Layer — describes the sequential part of every subtask
within an application that can be executed in parallel.

» Parallel Template Layer — describes the parallel characteristics of subtasks
in terms of expected computation-communication interactions between

[processors.

 Hardware Layer — collects system specification parameters, micro-
benchmark results, statistical models, analytical models, and heuristics to

-15-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

characterise the communication and computation abilities of a particular

system.

According to the layered framework, a performance model is built up from a
number of separate objects. Each object is of one of the following types:
application, subtask, parallel template, and hardware. A key feature of the object
organisation is the independent representation of computation, parallelisation, and

hardware. Thisis possible due to grict object interaction rules.

All objects have a similar structure, and a hierarchical set of objects representing
the layers of the framework is built up into the complete performance model. An
example of a complete performance model, represented by a Hierarchical Layered

Framework Diagram (HLFD), is shown in Figure 4.2.

2.2.2 Object Definition

Each software object (application, subtask, or parallel template) is comprised of
an internal structure, options, and an interface that can be used by other objects to
modify its behaviour. A schematic representation of a software object is shown in

Figure 2.2.

/

Type [Identity \/{ Object 1 (lower)

Include &1 Object 2 (lower))
External Var. |Obiect 3 (higher)]
)
]

A

Link » Object 1 (lower)
Options \‘[Obiect 2 (lower)

\ Procedures /

Figure 2.2 Software Object Structure

Each hardware object is subdivided into many smaller component hardware
models, each describing the behaviour of individual parts of the hardware system.
An example is shown in Figure 2.3 illustrating the main subdivision currently
considered involving a distinction between computation, communication, memory
[Harper1999] and I/O models.

-16-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

/ Hardware Object \
(CPU [aic] [ic] [sif] [t] |
[Memory["Cache] [Cache | [Main] |
[Network Sockets] [MPt] [PVM] |

N /

Figure 2.3 Hardware Object Structure

2.2.3 Model Creation

The creation of a software object in the PACE system is achieved through an
application characterisation tool. It aids the conversion of sequential or parallel
source code into a Performance Specification Language (PSL) [Papaefstathiou
1995] via the Stanford University Intermediate Format (SUIF) [Hall1996]. It
performs a static analysis of the code to produce the control flow of the
application, operation counts in terms of high-level language operations
[Qin1991], and also the communication structure. This process is illustrated in

Figure 2.4.

STiEa User Profiler
Code iL
é :,\l/ Aplp_)lication :
SUIF 7 - e
Front End | [Padidision
—] Layer :

Figure 2.4 Model Creation Process

In PACE a Hardware Modd Configuration Language (HMCL) allows users to
create new hardware objects by specifying system-dependent parameters. On
evaluation, the relevant sets of parameters are used, and supplied to the evaluation
methods for each of the component models. An example HMCL fragment is
illustrated in Figure 4.4.

-17 -

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

2.2.4 Mapping Relations

There are strict mapping relations between source code of the application and its
performance model. Figure 2.5 illustrates the way in which independent objects
are abstracted directly from the source code and built up into a complete

performance model, which can be used to produce performance prediction results.

The source code of the parallel application is firstly divided into several serial
parts and an abstracted parallel part. Serial parts can be automatically converted
into performance scripts using the PACE application characterisation tool. The
parallel part can be converted into the corresponding parallel template line by line.
The dtrict mapping relations make the model creation processes fast and
straightforward. The user does not even need to understand the detailed
parallelisation of the application.

The mapping relations are controlled by the PSL compiler and the PACE
evaluation engine, which is described further in Chapter 4 through the use of the
example application — Sweep3D.

Application Model Scripts
Source Code

Parallel

Abstracted T late
Parallel q\
Part)
- Subtask
[.
Serial
Part

\/

Hardware Object (HMCL)

\/

ok

Figure 2.5 Mapping Relations

2.2.5 Evaluation Engine

Once all the necessary objects have been defined for a performance study, they

can be combined and evaluated within the PACE evaluation engine. This involves

-18-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

the evaluation of the single application object, and all subtask objects, which in
turn require the evaluation of associated parallel template objects and hardware
objects. The sequence of steps performed during the evaluation of one subtask
object is shown in Figure 2.6.

The init procedure of the subtask object is the entry point, which may call other
procedures within the object. Parameters are linked to the currently active parallel
template object (specified by the option command). The parallel template object is
similarly evaluated and uses the hardware object. The result of the evaluation of
the parallel template object is the execution time, which is returned to the
application object. Further details can be found in [Papaefstathiou1998].

Execution Time

Application Subtask Object ParTmp Object

[Hardware Object]

Figure 2.6 Evaluation Process of PACE Models

2.2.6 PACE Toolkit

The PACE methodology described above is implemented as a toolkit, which is
summarised in Figure 2.7. The main components in the PACE toolkit include:

application tools (AT), resource tools (RT), and an evaluation engine (EE).

» Application Tools:. The Source Code Analyser can be used to convert
sequential source code components into performance descriptions. Users
can also edit these descriptions using the object editor or retrieve existing
objects from a library. These performance descriptions are organised
together into the PSL scripts of the application, which can be compiled
into the application model. The application model is one of the inputs into

-19-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

the evaluation engine, which contains all of the application-level

performance information.

* Resource Tools. The RTs provide several benchmarking programs to
measure the performance of CPU, network interfaces (e.g. MPI and PVM),
and memory aspects of hardware platforms respectively. The measurement
results are represented in HMCL scripts and added to the system. The
resource model is another input into the evaluation engine, which contains

all of the system-level performance information.

» Evaluation Engine: The EE is the kernel part of the PACE toolkit, which
executes completed performance models and produces evaluation results
on time estimates, or trace information of the expected application
behaviour. Important applications of prediction data include those of on-
the-fly performance analysis [Kerbyson1998] and dynamic multi-
processor scheduling [Perry2000], which can be applied for efficient

resource management.

/ Application Tools (AT) \ / Resource Tools (RT) \

{ Source} [Object J { Object } L CPU J {Network} [Cache J
Code Editor Library (MPI, (L1, L2)
Analysis PVM)

g g Igs [

[PSL Scripts HMCL Scripts]
J L 1L
\[Compiler] Compiler]
Applicatjon Model Resource Model
NS
Evauation Engine (EE) ’
| | | | | | | |
= == ==
Performance On-the-fly Multi-processor 000
Prediction anaysis scheduling

Figure 2.7 The PACE Toolkit

Some assumptions are made to smplify the PACE implementation. For example,
the PACE application performance modelling is based on the source code
analysis. The source code of the application is assumed to be available for

performance modelling. A resource model in PACE can only include satic

-20-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

performance information of a resource. The dynamic situation of the network
traffic or CPU workload is not considered. The PACE toolkit is relatively smaller
than many other performance evaluation tools, and some of its unique features
(e.g. rapid evaluation time, reasonable accuracy, etc.) alow it to be applied to

performance-driven resource management in a grid computing environment.

2.3 Grid Resource Management

The resource management is central to the operation of a grid. The basic function
of resource management is to accept requests for resources from machines within
the grid and assign specific machine resources to a request from the overall pool
of grid resources for which the user has access permission. A resource
management system matches requests to resources, schedules the matched

resources, and executes the requests using the scheduled resources.

Several solutions have been offered that address to some extent the issues of
resource management and scheduling for grid computing. Our work is different
from these in a number of ways. Some of the principal existing grid projects and
their resource management are described in Table 2.2. A good overview of grid

resource management technologies can be found in [Krauter2000].

Name Unit Project Description Resource Management

Condor | Condor The goal of the Condor | Condor uses a classified
[Litzko | team, project is to develop, | advertisement (classad)
w1988] | Dept. of | implement, deploy and | matchmaking framework for
[Raman | Computer | evaluate mechanisms and | flexible resource management
1998] Science, policies that support High | in distributed environments
Univ. of | Throughput Computing | with decentralised ownership
Wisconsin- | (HTC) on large collections | of resources, which uses the
Madison of distributively owned | matchmaker/entity (which can
computing resources. be both provider and

regquestor) structure.
Features. extensible schema
model; no QoS; network
directory store centralised
queries discovery; periodic

push advertisement.
DPSS Data The DPSS is a data block | DPSS uses a broker/agent

-21-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

[Tierney
2000]
[Brooks
1997]

Intensive
Distributed
Computing
Group,
Lawrence
Berkeley
National
Laboratory

server, which provides
high-performance data
handling and architecture
for building high-
performance storage
systems from low-cost
commodity hardware
components. This
technology has been quite
successful in providing an
economical, high-
performance, widely
distributed, and highly
scalable architecture for
caching large amounts of
data that can potentialy be
used by many different
USers.

architecture: agents are
processes that monitors the
state of the system; broker
agent (or broker) is an agent
that manages the information,
filters information for clients,
or peforms some action on
behalf of a client. Agents
model their environment using
an extensible set of Facts and
act on their environment using
aset of Tasks.

Features. object modd; no
QaS; agent-based store
centralised queries discovery;
periodic push advertisement.

Globus
[Fosterl
997]
[Czako
wski199
g

Mathemati
cs and
Computer
Science
Division,
Argonne
National
Laboratory

The Globus system is
intended to achieve a
vertically integrated
treatment of application,
middleware, and network.
A low-leve toolkit provides
basic mechanisms such as
communication,

authentication, network
information, and data
access. These mechanisms
are used to construct
various higher-level
metacomputing services,
such as parallée
programming tools and
schedulers. The long-term
goa is to build a grid
infrastructure, an integrated
set of higher-level services
that enable applications to
adapt to heterogeneous and
dynamically changing
metacomputing

environments.

The architecture distributes the
resource management problem
among distinct local manager,
resource broker, and resource
co-allocator components, and
defines an extensible resource
specification language (RSL)
to exchange information about
requirements. The information
service within the architecture
uses a Metacomputing
Directory Service (MDS)
[Fitzgerald1997], which
adopts the data representations
and API defined by the LDAP
service[Yeongl995].

Features. extensible schema
model; soft QoS; network
directory store distributed
queries discovery; periodic
push advertisement.

GRACE
[Buyya2
000]

School of
Computer
Science
and
Software
Engineerin

GRACE (Grid Architecture
for

Computational Economy) is
a new framework that uses
economic theories in grid
resource management and

Nimrod/G is a grid resource
broker that allows managing
and steering task farming
applications (parameter
studies) on computational
grids. It follows an economic

-22-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

O

Monash
University,
Australia

scheduling. The
components that make up
GRACE include glabal
scheduler (broker), bid-
manager, directory server,
and bid-server working
closely with grid
middleware and fabrics.
The GRACE infrastructure
also offers generic
interfaces (APls) that the
grid tools and applications
programmers can use to
develop software
supporting the
computational economy.

(computational market) model
for resource management and
scheduling. It allows the study
of the behaviour of output
variables against a range of
different input scenarios.

Features. extensible schema
model; hard QoS; rdational
resource info store; distributed
queries discovery; periodic
push/pull advertisement.

Legion
[Grimsh
aw1999]
[Chapin
1999]

Dept. of
Computer
Science,
Univ. of
Virginia

Legion is an object-oriented
metacomputing

environment, intended to
connect many millions of
hosts ranging from PCs to
massively paralle
supercomputers. It manages
billions of objects and
allows users to write and
run applications in an easy-
to-use, transparent fashion.
It unites machines from
thousands of administrative
domains into a single
coherent system.

Legion wuses a resource
management infrastructure.
The philosophy of scheduling
is that it is a negotiation of
service between autonomous
agents, one acting on the part
of the application (consumer)
and one on behaf of the
resource or system (provider).
The components of the model
are the basic resources (hosts
and vaults), the information
database, the schedule
implementer, and an execution
monitor.

Features. extensible object
model; soft QoS; object model
store distributed queries
discovery; periodic pull
advertisement.

NetSolv
e

[Casano
val998]

Dept. of
Computer
Science,
Univ. of
Tennessee

NetSolve is a client-server
system that enables users to
solve complex scientific
problen remotely. The
system alows users to
access both hardware and
software computational
resources distributed across
a nework. NetSolve
searches for computational
resources on a network,
chooses the best one
available, and using retry

The NetSolve agent operates
both as a database and as a
resource broker. The agent
keeps track of information
about all the servers in its
resource pool, including their
availability, load, network
accessibility, and the range of
computational tasks that they
can perform. The agent then
selects a server to perform the
task, and the server responds
to the client’s request.

-23-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

for fault-tolerance solves a | Features: extensible schema
problem, and returns the | model; soft QoS; distributed

answers to the user. queries discovery; periodic
push advertisement.

Ninf Computer | Ninf is an ongoing global | In order to facilitate location
[Satol9 | Science network-wide computing | transparency and network-
9g] Division, infrastructure project which | wide paralldism, the Ninf
[Nakada | Electrotech | allows users to access | metaserver maintains global
1998] nical computational resources | resource information regarding
Laboratory, | including hardware, | computational server and

Japan software and scientific data | databases, allocating and

distributed across a wide | scheduling coarse-grained
area network with an easy- | computation to achieve good
to-use interface. Ninf is| global load balancing. The
intended not only to exploit | Ninf metaserver is a JAVA
high peformance in | agent, a set of which gathers
network parallel computing, | network information regarding
but also to provide high | the Ninf servers, and also
quality numerical | helps the client to choose an
computation services and | appropriate Ninf server, either
accesses to scientific | automatically or semi-
databases published by | automatically.

other researchers. | Features: fixed schema model;
Computational resources | no QoS; centralised queries
are shared as Ninf remote | discovery; periodic push
libraries executable at a | advertisement.

remote Ninf server.

Table 2.2 Overview of Grid Projects and their Resource Management

Grid resources are the entities such as processors or hosts that are managed by the
resource management system. A local resource in the grid is usually a multi-
processor or a cluster of machines, which are distributed geographically in a small
scope, connected with high-speed networks, and administrated within the same
organisation. These local resources may be far away from each other, connected
viathe Internet with irregular communications, and cross administrative domains.
All these resources compose a global metacomputing environment, such as that
illustrated in Figure 2.8.

The grid resource management functions are performed at both a meta and a local
level. Each local high performance resource is managed by a local resource

manager. A mechanism is also needed a a metalevel to coordinate the

=24 -

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

behaviours of multiple local resource managers so as to achieve high performance

inthe overall grid system.

A local resource
can be amulti-
processor or
cluster of
machines.

High-speed
networks

networks

Figure 2.8 Grid Resources

The basic issues relating to metacomputing resource management include data
representation and management, communication protocols, resource discovery
and quality of service (QoS) support. The main issues related to local resource
management are multi-processor scheduling, resource allocation and monitoring.

These are introduced in detail below.

2.3.1 Data Management

The main data used in a resource management system is that used to describe the
attributes and operations of a resource. Data management related issues include

datarepresentation and data storage.

A grid resource can be described by a corresponding resource model. The
resource model determines how to describe and manage the grid resource. There

are two basic approaches for data representation.

-25-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

Schema based approach. The data that comprises a resource is described
in a description language along with some integrity constraints. The
schema languages are further characterised by the ability to extend the
schemas. In a fixed schema all elements of resource description are
defined and cannot be extended. In an extensible scheme new schema
types for resource descriptions can be added. Predefined attribute-value
based resource models are in the fixed schema category. The resource
gpecification language (RSL) used in Globus resource management is an
extensible schema model. The Condor ClassAd approach using semi-

structured data approach is also in the extensible schema category.

Object based approach. In an object model scheme the operations on the
resources are defined as part of the resource model. The object model can
be predetermined and fixed as part of the definition of the resource
management system. Also the resource model can provide a mechanism to
extend the definition of the object model managed by the system. Legion

uses extensible object models to describe resources in the system.

The resource information should be stored in the resource management system in

proper organisation. It helps characterise the overall performance of the resource

management system and determine the cost of implementing the resource

management protocols since a resource discovery capability may be provided by

the data storage implementation. There are two basic approaches to the storage of

resource information in the system.

Network directories. Network directory data storage is based on IETF
standards, such as LDAP [Yeong1995] and SNMP [Casel1988], or utilise
specialised distributed database implementation. The information service
in Globus resource management system uses a Metacomputing Directory
Service (MDS), which adopts the data representations and API defined by
the LDAP service.

Distributed objects. This data storage approach utilise persistent object
services that can be provided by a language-based model such as that

-26-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

provided by persistent Java object implementations. Legion uses object
model data storage.

The important difference between the distributed object and network directory
approaches is that in network directories the schema and operations are separated
with the operations defined externally to the data store schema. In an object

oriented approach the schema defines the data and the operations.

The applications submitted from the grid users should also be attached to a
corresponding application model, including the information on the requirements
from the user on the application execution. The representation, storage, and
transference of these application models are also very important and have impacts
on the overall performance of the resource management system. Most of above
issues on resource models can also be applied to application models, which will

not therefore be discussed again in detail here.

2.3.2 Communication Protocols

Communication is a central issue for building distributed software systems. In a
grid resource management system, different local resource managers need to
communicate with each other to perform metalevel resource management
functions. Communication protocols are needed as the basis of communication
implementation. The implementation of communication enables different entities
in adistributed system to communicate with each other. However, some common

protocols are needed for them to understand each other.

Communication can be implemented by low-level Internet protocols, such as
TCP/IP, FTP, and HTTP. The communication protocols can be pre-defined in the
system using simple data structures. Many existing enterprise distributed system
infrastructures, languages and platforms can also provide powerful support for
data representation and communication. In the work described in this thesis, data
representation and communication protocols have not been the key consideration.
The resource management system focuses more on resource discovery, QoS

support, and related performance issues.

-27-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

2.3.3 Resource Advertisement and Discovery

A maor function of a grid resource management system is to provide a
mechanism for resources in the grid to be discovered and utilised by grid
applications. Resource advertisement and discovery provide complementary
functions. Discovery is initiated by a grid application to find suitable resources
within the grid. Advertisement is initiated by a resource trying to find a suitable
application that can utilise it. The overhead of matching resources and
applications determines the efficiency of the system and determines the maximum
resource utilisation that a resource management system can achieve in the grid
computing environment. There are two approaches to resource advertisement and

discovery in agrid resource management system: query based and agent based.

* Query-based: Network directory based mechanisms such as Globus MDS
use parameterised queries that are sent across the network to the nearest
directory, which then uses a query engine to execute the query against the
database contents. Query based systems are further characterized
depending on whether the query is executed against a distributed database
or a centralized database. Legion also uses distributed query-based
resource discovery, while centralised query-based resource discovery is
adopted in most current computational grid projects, such as Condor,
DPSS, NetSolve and Ninf.

» Agent-based: Agent based approaches send active code fragments across
machines in the grid that are interpreted locally on each machine. Agents
can also passively monitor and either periodically distribute resource
information or respond to another agent. Thus agents can mimic a query
based resource discovery scheme. Currently agent-based approaches can
only be found in some service discovery projects (which will also be
discussed in detail in the next chapter), such as 2K [Kon2000] and Bond
[Boloni1999]. The agent-based resource management system described in
this work aims to apply agent technologies in resource management for

computational grids.

-28-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

The major difference between a query based approach and an agent based
approach is that agent based systems allow the agent to control the query process
and make resource discovery decisions based on its own internal logic rather than
rely on a fixed function query engine. Agent based resource discovery is
inherently distributed.

2.3.4 QoS Support

In metacomputing resource management, resources should be discovered and
corresponding resource information should be returned to the grid user according
to QoS principles. As also described in [Krauter2000], our notion of QoS is not
limited to network bandwidth but extends to the processing capabilities of the
resources in the grid. Thus we focus on the degree that a grid can provide end-to-

end QoS across all components rather than QoS only on the network.

There are two parts to QoS, admission control and policing. Admission control
determines if the requested level of service can be given and policing ensures that
the application does not violate its service level agreement (SLA). A resource
management system that does not allow applications to specify QoS requirements
in resource requests does not support QoS. Otherwise the QoS support can be

classified into soft and hard support.

e Soft QoS support. An RMS that provides explicit QoS attributes for
resource requests but cannot enforce service levels via policing provides
soft QoS support. Most current grid systems (e.g. Globus, Legion, and
NetSolve) provide soft QoS since most non real-time operating systems do
not allow the specification of service levels for running applications and

thus cannot enforce non-network QoS guarantees.

» Hard QoS support is provided when all nodes in the grid can police the
service levels guaranteed by the resource management system. Nimrod/G
in GRACE supports hard QoS through computational economy services of
GRACE infrastructure,

-29-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

The resource management system described in this thesis can also provide hard
QoS support. The users need to define their requirements explicitly when they
submit a resource request, which is similar to Nimrod/G. Unlike Nimrod/G, in
which the grid resource estimation is performed through heuristics and historical
information (load profiling), the performance prediction capability of grid

resources is achieved via integrating PACE functions into the system.

There are some other functions that can be provided in meta-level grid resource
management. For example, co-allocation problems arise when applications have
resource requirements that can be satisfied only by using resources simultaneously
at several sites. As described in [Foster1999], Globus resource management
supports resource co-allocation, which, however, is not the key consideration in
our implementation. In the sections below, brief introductions are given to two

important issues related to local resource management.

2.3.5 Resource Scheduling

The scheduling on a local grid resource is a “multiple applications on multiple
processors’ problem. Applications arrive at the resource a different times with
different requirements. Resource scheduling in a local resource manager is
responsible for deciding when to start running an application, and how many
processors should be dispatched to an application. There are two kinds of

scheduling policies and corresponding metrics.

* Resource-oriented - maximising the utilisation of the resource. In a
previous work done at Warwick [Perry1999], scheduling a number of
parallel applications on a homogenous multi-processor machine is studied.
It is achieved through just-in-time performance prediction (provided by
PACE) coupled with iterative heuristic algorithms for optimisation of the

utilisation of the resource.

» Application-oriented - meeting requirements from the applications. In the
system described in this work, each application submitted from a grid user

should be attached with explicit performance requirements. Local resource

-30-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

scheduling focuses on meeting these requirements from the user point of

view.

These two aspects of scheduling are related, but sometimes may conflict. There
must be a balance in order to achieve both resource-oriented and application-
oriented optimisation. Rescheduling is also a part of resource scheduling problem.
The rescheduling characteristic of a resource management system determines
when the current schedule is re-examined and the application executions

reordered. There are two rescheduling approaches.

» Periodic or batch rescheduling approaches group resource requests and
system events and process them at intervals. This interval may be periodic
or may be triggered by certain system events. The key point is that
rescheduling is done in batches instead of individual requests or events.

* Event driven online rescheduling performs rescheduling as soon the
resource management system receives the resource request or system

event.

The local resource scheduling is not the main focus of the work described in this
thesis. However, in the following chapters, the related problems will be mentioned
and discussed. An algorithm will also be given for an initial implementation to be

used by meta-level resource management.

2.3.6 Resource Allocation and Monitoring

After applications are scheduled on a grid resource, resource allocation is
responsible for running the application and returning the results. The local
resource manger should be wrapped with parallel application execution
environments like MPI and PVM. When the application begins running, the
resource should be monitored and corresponding information can be used by
local-level rescheduling or meta-level resource discovery. These will not be
discussed in detail here.

-31-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

2.4 Summary

A grid infrastructure is a large-scale distributed system with highly dynamic
behaviours. This chapter introduces the research background to performance
evaluation techniques and grid resource management issues. Previous work on the
PACE toolkit at Warwick has been described in detal. In summary, the

development of computational grids introduces two key challenges:

e Scalability: The grid may potentially encompass all high performance
computing resources. A given component of the grid will have it’s own
functions, resources and environment. These are not necessarily geared to
work together in the overall grid. They may be physically located in

different organisations and may not be aware of each other.

* Adaptability: A grid is a dynamic environment where the location, type,
and performance of the components are constantly changing. For example,
a component resource may be added to, or removed from, the grid at any
time. These resources may not be entirely dedicated to the grid; hence

their computational capabilities will vary over time.

New software development technologies are needed for the implementation of the
grid software infrastructure. Several new grid projects are utilising existing
distributed computing technologies, such as CORBA (Common Object Request
Broker Architecture) [Slamal999] and Jini [Amold1999].

CORBA is OMG's (Object Management Groups) open, vendor-independent
architecture and infrastructure that computer applications use to work together
over networks. CORBA was not originally designed for developing high
performance computing applications. Some work provides CORBA based tools
that enable to use CORBA in different contexts. For example, in the work
described in [Denis2001], portable parallel CORBA objects are provided as a new
programming approach for grid computing, which can interconnect two MPI
codes by CORBA without modifying MPI or CORBA. The work described in
[Sevilla2001] makes use of the CORBA-LC (CORBA Lightweight Components)

to provide a new network-centred reflective component model, which allows

-32-

CHAPTER 2 RESOURCE MANAGEMENT FOR GRID COMPUTING

building distributed applications assembling binary independent components
spread on the network. However, as mentioned in [Foster2001], such technologies
only enable resource sharing within a single organization, and can not be used to

address the concerns and requirements listed above.

A Jini system is a distributed system federating groups of users and resources,
which is based on the Java platform. The work described in [Furmento2001] is a
computational community that supports the federation of resources from different
organisations, designed and implemented in Java and Jini. The service discovery

technique in Jini isintroduced in the next chapter.

Agent technologies have been used for the development of distributed software
systems for several years. Multi-agent systems provide a clear high-level
abstraction and a more flexible implementation of distributed infrastructures and
applications. Multi-agent systems coupled with service discovery approaches are

introduced in the following chapter.

-33-

Chapter 3

SERVICE DISCOVERY IN
MULTI-AGENT SYSTEMS

The software infrastructure of the grid is an open, complex software system.
Multi-agent technology is one of the ways to overcome the challenges in the
development of the grid. Service has been accepted as the most important concept
in this distributed system development, and service discovery is therefore
considered an essential part in many distributed system infrastructures. In this
chapter, we introduce in detail background research on service discovery in multi-
agent systems, the technique of which will be used in our grid resource

management system.

3.1 Multi-Agent Systems

Agent technologies have been developed for over ten years. Numerous theories,
languages, tools, and applications have emerged in different fields [Can1998].
Giving a short survey of multi-agent systems is a difficult task. However, there is
an easy and direct way to obtain an impression on what a multi-agent system is by
looking into several representative and successful multi-agent projects. Table 3.1
gives a list of 6 agent projects, including 3 multi-agent applications, 1 mobile

agent project, 1 agent development tool and 1 agent communication language.

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

Name Unit Description
AARIA | Michigan AARIA is an industrial-strength agent-based factory
[Parunak | Manufacturi | scheduling and simulation system. Three persistent agents
2001] ng are Parts, Resources, and Unit Process. Interactions among
Technology | these three persistent agents are modelled as transient
Centre, agents, such as Engagements, Materials, Products, and
etc. Operations. Each transient agent has a six-phase life cycle:
Inquiring, Committing, Committed, Available, Active, and
Achieved.
ADEPT | DAI A business process is composed of a number of primitive
[Jenning | Research functional activities or tasks. In any reasonably complex
s2000b] | Unit, process, dependencies exist between the tasks and so they
Queen Mary | have to be executed in a controlled and ordered way. This
and execution invariably involves the consumption of
Westfield resources. In most organisations, these resources are
Callege, grouped into business units that control the way in which
Univ. of | they are deployed. Within ADEPT, these business units are
London, represented by autonomous software agents. The agents
UK communicate with one another over a network and
negotiate over how they can collaborate to manage the
overall business process. To be consistent with the service-
oriented philosophy, negotiation and collaboration are at
the level of the services that agents offer to one ancther. In
this case, a service is a packaging of tasks and other (sub-)
services that allows an agent to offer or to receive from
another agent some functional operation. A service can be
reused as a component of another service and agents can
take the role of provider (server) or customer (client) for
Services.
D’'Agent | Dent. of | A maobile agent is an executing program that can migrate
S Computer during execution from machine to machine in a
[Brewing | Science, heterogeneous network. On each machine, the agent
ton1999] | Dartmouth interacts with stationary service agents and other resources
Coallege to accomplish its task. Mobile agents are particularly
attractive in distributed information-retrieval applications.
By moving to the location of an information resource, the
agent can search the resource locally, diminating the
transfer of intermediate results across the network and
reducing end-to-end latency.
JATLite | Agent Based | JATLite (Java Agent Template, Lite) is a package of
[Jeon200 | Engineering | programs written in the Java language that allow users to
0] Group, quickly create new software agents that communicate
Centre for | robustly over the Internet. JATLite provides a basic
Design infrastructure in which agents register with an Agent
Research, Message Router facilitator using a name and password,
Stanford connect/disconnect from the Internet, send and receive
Univ. messages, transfer files, and invoke other programs or

actions on the various computers where they are running.

-35-

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

JATLite especially facilitates the construction of agents
that send and receilve messages using the emerging
standard communications language, KQML.

KOQML Laboratory | KQML, the Knowledge Query and Manipulation
[Labroul | for Language, is a language and protocol for exchanging
999] Advanced information and knowledge. KQML is both a message
Information | format and a message-handling protocol to support run-
Technology, | time knowledge sharing among agents. KQML can be used
Computer as a language for an application program to interact with an
Science and | intdligent system or for two or more inteligent systems to
Electrical share knowledge in support of cooperative problem
Engineering, | solving.
University
of Maryland,
Baltimore
County
MACIP | National CIMS Application Integration Platform (MACIP) is
[Fan199 | CIMS developed to offer manufacturing enterprises with a
9] Research complete solution for the CIMS implementation through
[Cao199 | and integrating a set of application software products.
9] Engineering | Operational Administration System (OAS) is the kernd of
[Caol99 | Centre, the MACIP to implement integration functions. Multi-agent
9] Tsinghua technology is used in OAS to implement the integration of
Univ., different software applications. Each agent is wrapped with
P.R. China | one or more applications and takes these applications as

services that can be provided to other agents. The
communication and cooperation among these applications
are implemented via service discovery among the agents.
Applications may be added to or removed from the system
at run time. Agents must be flexible enough to adapt to
these dynamic behaviours of the system.

Table 3.1 Overview of Multi-Agent Systems: Applications and Tools

In the sections below, a coarse division of research topics that arise from the

implementation of multi-agent systems is given. Each agent in the system is an

autonomous entity with its own functions, data, resource, and environment. The

basic characteristic of an agent isto manage its internal data at a knowledge level.

In MACIP, an agent has knowledge about services provided by other agents and

stores them in different tables. On the basis of knowledge representation, agents

may also communicate with each other at a knowledge level. KQML can be used

as an ACL for agents to exchange information and knowledge. Two agents may

communicate on the same subject a number of times. Agent negotiation is
discussed in detail in the ADEPT project and has been used successfully for

-36-

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

business process management. Further relations among multiple agents can be
characterised as agent coordination issues. JATLite provides one coordination
model for multi-agent systems. These are also illustrated in Figure 3.1 and
discussed further below.

; - N
> Agent
Coordination
\ %
e A
Agent
Negotiation
\ J
' a

Knowledge

Representation

Figure 3.1 Research Topics in Multi-Agent Systems

3.1.1 Knowledge Representation

The knowledge representation of an agent is a correspondence between the
external application domain and an internal symbolic reasoning system. The
symbolic reasoning system is the agent’s model of the external world and consists
of data structures for storing information and procedures for manipulating these
data ructures. The mapping between the elements of the application domain and
those of the domain model allows the agent to reason about the application
domain by performing reasoning processes in the domain model, and transferring

the conclusions back into the application domain.

As illustrated in Figure 3.2, in order to find a solution to a problem P in the
application domain, this problem is first represented as Py, in the agent’s domain
model. Next the agent looks for a solution S, of Py, in its domain model. Then the
obtained solution S, is reverse-mapped into S, which is the solution of the

problem P.

-37-

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

Domain Model Application Domain

R [P]

Figure 3.2 Knowledge Representation

The general features of a knowledge representation include representational
adequacy, inferential adequacy, problem-solving efficiency, and learning
efficiency. Good knowledge representation can lead to efficient knowledge
reasoning, acquisition, and learning. More information on building knowledge-
based agents can be found in [Tecuci1998].

3.1.2 Agent Communication

Agents usually interact by exchanging complex symbolic information and
possibly have to agree on complex interaction protocols. In addition, agents are
autonomous, possibly designed separately at different times by different people,
and including heterogeneous software components. These issues led to the
development of ACLs, such as KQML. A good summary on the many years of
research into ACL s can be found in [Singh1998].

3.1.3 Agent Negotiation

Negotiation is the process by which two agents come to a mutually acceptable
agreement on some matter. For an agent to influence an acquaintance, the
acquaintance needs to be convinced that it should act in a particular way. The
means of achieving this state are to make proposals, trade options, offer
concessions, and (hopefully) come to a mutually acceptable agreement. More

information on agent negotiation can be found in [Jennings2001, Kraus1998].

-38-

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

Though knowledge representation, agent communication and negotiation are
important issues in the implementation of multi-agent systems, they are not the
key consideration in the work described in this thesis. Our agent-based
methodology designed for grid resource management system development focus

more on agent coordination in a large scale.

3.1.4 Agent Coordination

Although ACLs and middleware systems, notably CORBA, are important to
achieve interoperability, they mainly focus on peer-to-peer communications and
do not account for a more comprehensive view of the interaction as a primary
component of agents societies. Therefore, both ACLs and middleware systems
have to somehow be extended in order to include not only language and protocol
specifications but also the definition of coordination laws, to alow for a global

understanding and the management of interactions.

When a multi-agent system is made up of a large number of independently
designed components, it may be very difficult to correctly design and manage the
system as a whole. An approach that smply puts components together and lets
them interact is likely to degenerate into chaos. Instead, models and tools are
needed to put components together in a structured way. As already recognised in
the area of software engineering, the design and management of a large software
project requires the definition and analysis of its software architecture
[Garlan1993, Perry1992]. This includes defining the role of each component, the
mechanisms on which composition can be based, and their composition laws. A
similar approach would be also helpful in the context of multi-agent systems.
However, in this case, a more dynamic and flexible definition of the software
architecture, that is interaction-oriented rather than composition-oriented, is
needed.

Coordination is the art of managing interactions and dependencies among
activities [Malonel994], that is, in the context of multi-agent systems, among
agents. A coordination model provides a formal framework in which the

interaction of software agents can be expressed [Gelernter1992]. A coordination

-39-

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

model consists of three elements. the coordinables, the coordination media, and
the coordination laws [Ciancarini1996]. Coordination models can be classified as
control-driven or data-driven [Papadopoulos1998], which are also illustrated in
Figure 3.3 and explained in detail below.

Coordinables

Eventsto/from
Coordinables

Data to/from
Coordinables

Shared Data Spaces

Data-Access Rules

Figure 3.3 Coordination Models: Control-driven vs. Data-driven

» Control-driven. Coordinables (agents) typically open themselves to the
external world and interact with it through events occurring on well-
defined input/output ports. Manifold [Arbabl993] is a typical language

that implements a control-driven coordination model.

» Datadriven. Coordinables interact with the external world by exchanging
data structures through the coordination media, which especially acts as a
shared data space. The research on data-driven coordination models

originates from the parallel programming language Linda[Carriero1989].

- 40 -

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

Different application contexts exhibit different needs with respect to coordination,
and the choice of a coordination model is likely to have a great impact in the
design of multi-agent systems. In general, control-driven coordination models
better suit those systems made up of a well-defined number of entities in which
the flow of control and the dependencies between the components have to be
regulated, and in which data exchange is not so important. The data-driven model
on the other hand seems to better suit open applications, where a number of
possibly pre-unknown and autonomous entities have to cooperate. In this case, the
control driven model would somehow clash with the autonomy of the components
and the dynamics of the open environment. Focusing on data preserves autonomy
and dynamics of the components, which are usually designed to acquire

information rather than control.

The grid environment is open and highly dynamic. The methodology developed to
implement grid resource management adopts an extended data-driven mechanism
for agents to exchange service information and cooperate with each other for

service discovery.

In this section, we provide a brief introduction to multi-agent technologies. There
is more than ten years of development of agent technologies. Agent-oriented
software engineering [Wooldridgel999, Ciancarini2001] is emerging as another
important approach complementing the structural method [Cao1996] and object-
oriented method [Fan2000], especially in the case when more and more
distributed software applications are emerging with increasing complexity and
flexibility [Ca01999c]. A more detail introduction to theories, applications,
methods, and tools of multi-agent systems can also be found in [Fan2001].

3.2 Service Advertisement and Discovery

As dready stated, resource advertisement and discovery is an important issue in
the implementation of grid resource management. In this section we will introduce
service advertisement and discovery technologies for mobile computing. Many

ideas described in this section can be applied directly to problems of resource

-41 -

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

discovery for grid computing. Table 3.2 gives an overview of six distributed

system infrastructures with service discovery capabilities. A good survey can also
be found in [Richard2000].

modems, set-top boxes,
digital and Internet-
enabled TVs, and storage
devices such as DVD
drives for audio and video
content. As technology
advances and becomes
more affordable, other
kinds of HAVi devices
may appear, such as
videophones and Internet
phones, which will plug
into home networks and
should be able to
communicate without the
user having to program
them.

Name Unit Description Service Discovery
Blueto | IBM, The Bluetooth protocols | The Bluetooth Service Discovery
oth Intel, allow for the development | Protocol (SDP) provides a means
[Bray2 | Nokia, of interactive services and | for client applications to discover
000] Ericsson, applications over | the existence of services provided
[Miller | Toshiba interoperable radio | by server applications as well as the
1999] modules and data | attributes of those services. The
communication protocols. | attributes of a service include the
type or class of service offered and
the mechanism or protocol
information needed to utilise the
service.
Features:
Registry
Advertisement
+ Discovery
+ Interoperability
« Security
HAVi | Grundig, Home Audio-Video | The approach the HAViI
[Lea20 | Hitachi, interoperability is a| Architecture has adopted is to
01] Panasonic, | specification for home | utilise Sdf Device Describing
Philips, neworks of consumer | (SDD) data, required on all
Sharp, electronics devices. | devicess. SDD data contains
Sony, Typical HAVI devices are | information about the device,
Thomson, | digital audio and video | which can be accessed by other
Toshiba products such as cable | devices. The SDD data contains, as

a minimum, enough information to
alow instantiation of an embedded
Device Control Module. This
results in registration of device
capabilities with the HAViI
Registry, allowing applications to
infer the basic s of command
messages that can be sent to the
device.
Features:
+ Registry

Advertisement

Discovery
+ Interoperability

Security

-42-

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

Jini
[Amoal
d1999]
[Jini19
99]

Sun
Microsyste
ms

A Jni system is a
distributed system based
on the idea of federating
groups of users and the
resources required by
those users. The overal
goal is to turn the network
into a flexible easly
administered tool on
which resources can be
found by human and
computational clients. The
focus of the system is to
make the network a more
dynamic entity that better
reflects the dynamic nature
of the workgroup by
enabling the ability to add
and delete services
flexibly.

The heart of the Jini systemisatrio
of protocols called discovery, join,
and lookup. A par of these
protocols, discovery/join, occurs
when a device is plugged in.
Discovery occurs when a serviceis
looking for a lookup service with
which to register. Join occurs when
a savice has located a lookup
service and wishes to join it.
Lookup occurs when a client or
user needs to locate and invoke a
service described by its interface
type (written in the Java
programming language) and
possibly, other attributes.

Features:

+ Registry

+ Advertisement

+ Discovery

+ Interoperability

« Security

Salutati
on
[Pasco
€2001]

The
Salutation
Consortium

The Salutation architecture
is created to solve the
problems of service
discovery and utilisation
among a broad set of
appliances and equipment
and in an environment of
widespread connectivity
and mobility.

The architecture provides a
standard method for applications,
services and devices to describe
and to advertise their capabilities to
other applications, services and
devices and to find out their
capabilities. The architecture also
enables applications, services and
devices to search other
applications, services or devices for
a paticular capability, and to
request and establish interoperable
sessions with them to utilize their
capabilities.
Features:
+ Registry
+ Advertisement
+ Discovery
+ Interoperability

Security

SLP
[Guttm
an1999

ThelETF

The Service Location
Protocol provides a
scalable framework for the
discovery and selection of
network services. Using
this protocol, computers
using the Internet need

SLP supports a framework by
which client applications are
modelled as User Agents and
services are advertised by Service
Agents. A third entity, caled a
Directory Agent provides
scalability to the protocol.

-43-

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

little or no static
configuration of network
services for network based
applications. This is
especially important as
computers become more
portable, and users less
tolerant or ableto fulfil the
demands of network
system administration.

Features:

+ Registry

+ Advertisement
+ Discovery

+ Interoperability
« Security

intdligent appliances, and
wireless devices. UPnP is
a distributed, open
networking architecture
that leverages TCP/IP and
the Web to enable
seamless proximity
networking in addition to
control and data transfer
among networked devices
in the home, office, and
everywhere in between.

UPnP | Microsoft Universal Plug and Play | Simple Service Discovery Protocol
[UPNnP (UPNnP) is architecture for | (SSDP), as the name implies,
200] pervasive peer-to-peer | defines how network services can
[Golan network connectivity of | be discovered on the network.
d1999] PCs of al form factors, | SSDP defines methods both for a

control point to locate resources of
interest on the network, and for
devices to announce ther
availability on the network. SSDP
eliminates the overhead that would
be necessary if only one of these
mechanisms is used.
Features:

Registry
+ Advertisement
+ Discovery

Interoperability

Security

Table 3.2 Overview of Distributed System Infrastructures with Service
Discovery Capabilities

Service advertisement and discovery technologies enable device cooperation and
reduce configuration problems, which is a necessity in increasingly mobile
computing environment. The main features of the service discovery suites
service advertisement, and

include: service regigtry, service discovery,

interoperability. These are introduced in the sections below.

3.2.1 Service Registry

When a new component enters into a distributed system, there is usually a
registration procedure for it to contact other existing components in the system.

This process can be described by service registry.

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

In Jini, to register service availability or to discover services, a service or client
must first locate one or more lookup servers by using a multicast request protocol.
This request protocol terminates with the invocation of a unicast discovery
protocol, in which clients and services are used to communicate with a specific

lookup service.

Unlike Jini, SLP can operate without directory servers. The presence of one or
more directory agents can substantially improve performance, however, this is
done by reducing the number of multicast messages and the amount of network
bandwidth used. In active discovery, service agents and user agents multicast SLP
requests or use DHCP to discover directory agents. When a directory agent is
present, service agents and user agents use unicast communication to register their
services and find appropriate services respectively. In the absence of directory
agents, user agents multicast requests for services and receive unicast responses
directly from the service agents that control the matching services. This tends to
increase bandwidth consumption, but provides a simpler model, appropriate for

small networks.

In the A4 methodology introduced in this work, there is no distinction between
clients, servers, and go-betweens as seen in Jini and SLP. Each agent in the
system functions as a client, a server, or a directory, which provides a simpler

model as well as resulting in a high performance implementation.

3.2.2 Service Advertisement

After joining the system, the components in the system operating as service
providers must advertise their services to other components, which is referred to

as service advertisement.

In UPnP, there is no service registry process. However, when devices are
introduced into a network, they directly multicast “alive” messages to control
points. When they want to cancel the availability of their services, they send

“byebye” messages. In SSDP, each service has three associated IDs — service

-45-

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

type, service name, and location — which are multicast when services are
advertised.

Jini uses Java's Remote Method Invocation (RMI) facility for all interactions
between either a client or a service and the lookup server after initial discovery of
the lookup server. Jini associates a proxy, or remote control object, with each
service instance. A service advertises its availability by registering its object in

one or more lookup servers.

In the A4 methodology, service advertisement only happens between nearby
agents so that the system is scalable, the details of which will be introduced in
Chapter 5.

3.2.3 Service Discovery

The components acting as service requestors will search for available services in

the system. Thisisthe kernel process, which is defined as service discovery.

Bluetooth is a wireless radio system, so there is no service registry or
advertisement in Bluetooth. The Bluetooth SDP provides a simple API for
enumerating the devices in range, and browsing available services. It aso
supports “stop” rules that limit the duration of searches or the number of devices
returned. Client applications use the API to search for available services either by

service class that uniquely identify types of devices, or by matching attributes.

Salutation managers function as service brokers; they help clients find needed
services and let services register their availability. A client can use the
simSearchCapability() call to determine if Salutation managers have registered
gpecific functional units. Once a functional unit is discovered,
simQueryCapability() can be used to verify that a functional unit has certain
capabilities.

In the A4 methodology, many agents can take part in a service discovery process.

A service discovery process can traverse the system for many steps until the

- 46 -

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

discovery succeeds or is forced to stop. This mechanism has a scalable

implementation, which is different from all of the above methods.

3.2.4 Interoperability

When a client component in the system finds an available server component,
whether these two components can cooperate with each other directly is described

as the problem of interoperability.

In Jini, to use a service, a device must first secure an instance of the proxy object
for it. From a client point of view, the location of the service provided by this
remote control object is unimportant, because the object encapsulates the location

of the service and the protocol necessary to operate it.

Salutation managers fill a role similar to lookup servers in Jini, but they can also
manage the connections between clients and services. After the connection is
established, a Salutation manager can operate in several “personalities’, with or

without further operations in the data stream.

Unlike higher level service discovery technologies such as Jini, Bluetooth’s SDP
does not provide a mechanism for using discovered services — specific actions
required to use a service must be provided by a higher level protocol. However, it
does define a standard attribute ProtocolDescriptionList, which enumerates

appropriate protocols for communicating with a service.

In the initial implementation of A4 systems, the protocols for communication
among agents are pre-defined using simple data structures. Interoperability is
supported in a simple way, which may need further extensions for practical large-

scale applications.

Another important issue, which is not a key consideration in the A4 methodology,
is the feature of security. For example, Jini depends on Java's security model,
which provides tools like digital certificates, encryption, and control over mobile

code activities. The security issues will not be discussed in detail here. The A4

-47 -

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

methodology focuses on simulation based quantitative performance evaluation
and optimisation of service discovery in large-scale multi-agent systems, which

cannot be found in other work.

3.3 Use of Agent Technologies in Grid Development

The use of service discovery in multi-agent systems provides a suitable high-level
abstraction for grid resource management, which will be described in detail in
Chapter 5 as the so-called A4 methodology. In this section, we give a brief
introduction to the state-of-the-art in the use of agent technologies in grid

development.

Software agents have been used in several grid projects, such as AppLeS, DPSS,
and NetSolve. In these projects, agents are high-level abstractions of software
entities, which usually act as resource or data brokers or representatives of grid
users in the grid software infrastructure. An agent-based grid computing project
can be found in [Rana2001]. In this work, an “Agent Grid” is described that
integrates services and resources for establishing multi-disciplinary PSEs
(Problem Solving Environments). Specialised agents contain behavioural rules,
and can modify these rules based on their interaction with other agents, and with
the environment in which they operate. The A4 methodology can also be applied
for integrating multiple services and resources. Rather than using a collection of
many predefined specialised agents, a hierarchy of homogenous agents is used in
the A4 methodology, where agents can be reconfigured with special roles at

running time.

As mentioned, agents can achieve autonomy through intelligence and social
ability. Both of these features can be used in grid development. For example, a
resource scheduler is an important entity in a grid resource management system.
Due to the large search space, Al technologies will most likely be used to solve
large-scale resource scheduling issues. The powerful high-level abstraction of
multi-agent systems can also be used to solve some architectural problems arising

in grid development. In this work, we use agents for grid resource management.

-48-

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

As summarised in [Buyya2000b], there are three different models for grid
resource management architecture: hierarchical model, abstract owner model, and
computational market/economy model. In the methodology provided by A4, the
agent system is organised in a hierarchical manner, which is used to address
scalability. Meanwhile, each agent also acts as an abstract owner of the grid
resources, and the service discovery process is performed in a market based way.
Making full use of capabilities that agents provide, our architectural model for
grid resource management can capture the essence of all three of the existing

models.

During the past two years, the research into agents and the grid have begun to
converge. A key sign of this trend can be seen clearly at CCGrid 2001. At this
conference on cluster computing and the grid, two keynote speeches, one main
conference section, and one workshop focused on research into agent
technologies. It is clear that more agent applications on grid computing will

emerge during the next few years.

However, agents cannot do everything, and there is also a long way to go to put
grid computing into practice. In this work, we provide a framework (including
methodology, functionality, and corresponding tools) for agent-based resource
management for grid computing. There are many gaps that remain and require
further work for a full grid resource management system. For example, an agent-
based grid resource management system should be able to cooperate with other
grid services (e.g. those provided by the Globus toolkit). These are not discussed

in detail here.

3.4 Summary

Multi-agent and service discovery technologies have been introduced in detail in
this chapter, which provides the background of the A4 methodology presented in
Chapter 5. There is little research into the performance of large-scale multi-agent

systems, because there are seldom such kinds of agent applications. This research

- 49 -

CHAPTER 3 SERVICE DISCOVERY IN MULTI-AGENT SYSTEMS

is motivated by the development of a grid resource management system, which is

large-scale with highly dynamic behaviours.

By the use of advanced agent technology the development of the software
infrastructure in the grid is sure to accelerate. At the same time, new applications
with new requirements will also stimulate the emergence of new technologies for

software agents.

From a view of software engineering, agents provide high-level abstractionsto the
system. To implement an agent, different techniques must be applied according to
requirements from different agent applications. In the work described in the
thesis, performance prediction capabilities are one of the key features for the
agent implementation, which can be provided by PACE. In the following four
chapters, the main parts of the work are introduced, beginning with a case study of

the performance evaluation using the PACE toolkit.

-50-

Chapter 4

SWEEP3D:
PERFORMANCE EVALUATION USING
THE PACE TOOLKIT

The grid resource management system is introduced, beginning with previous
work a Warwick, that is the PACE toolkit. In this chapter, we validate the PACE
performance prediction capabilities using a new parallel application [Ca01999d]
called Sweep3D - a complex benchmark for evaluating wavefront application
techniques on high performance parallel and distributed architectures [Koch1992].
This benchmark is also being analysed by other performance prediction
approaches including POEMS. The sections below contain a brief overview of
Sweep3D, the model description of the application, and validation results on two

high performance systems.

4.1 Overview of Sweep3D

The benchmark code Sweep3D represents the heart of area Accelerated Strategic
Computing Initiative (ASCI) application [Nowak1997]. It solves a 1-group time-
independent discrete ordinates (Sn) 3D cartesan (XYZ) geometry neutron
trangport problem. The XY Z geometry is represented by a 3D rectangular grid of
cells indexed as | K. The angular dependence is handled by discrete angles with a

spherical harmonics treatment for the scattering source. The solution involves two

-B51-

CHAPTER 4 SWEEP3D

main steps. the streaming operator is solved by sweeps for each angle, and the

scattering operator is solved iteratively.

A sweep (Sn) proceeds as follows. For one of eight given angles, each grid cell
has 4 equations with 7 unknowns (6 faces plus 1 central); boundary conditions
complete the system of equations. The solution is by a direct ordered solve known
as a sweep from one corner of the data cube to the opposite corner. Three known
inflows allow the cell centre to be solved producing three outflows. Each cell’s
solution then provides inflows to 3 adjoining cells (1 in each of the I, J, & K
directions). This represents a wavefront evaluation in all 3 grid directions. For
XY Z geometries, each octant of angles has a different sweep direction through the

mesh, but al angles in a given octant sweep the same way.

Sweep3D exploits parallelism through the wavefront process. The data cube
undergoes a decomposition so that a set of processors, indexed in a 2D array, hold
part of the datain the | and J dimensions, and all of the data in the K dimension.
The sweep processing consists of pipelining the data flow from each cube vertex
in turn to its opposite vertex. It is possible for different sweeps to be in operation

at the same time but on different processors.

| —1
/
L— L
NS —
[~ / | — | | —1 | —1
N | — L — | —1 L—1
N = /////////
. — L . —1
\\// //////
\\ // L L
J N [/// |
~N //
~N—

Figure 4.1 Data Decomposition of the Sweep3D Cube

For example, Figure 4.1 depicts awavefront (shaded in Grey) that originated from
the unseen vertex in the cube, and is about to finish at vertex A. At the same time,

a further wavefront is starting at vertex B and will finish at vertex C. Note that the

-52-

CHAPTER 4 SWEEP3D

example shows the use of a 5x5 grid of processors, and in this case each processor
holds a total of 2x2x10 data elements (data set of 10x10x10).

The version of Sweep3D that can be downloaded from the ASCI website is
written entirely in Fortran77 except that it requires automatic arrays and a C timer
routine is used. This version of Sweep3D supports both PVYM [Geist1994] and
MPI [Dongarral994] message passing libraries as well as a single processor
version. In this case study, we convert the Sweep3D programmes into a pure C
version with only MPI functions, which can be used more conveniently for
validation experiments of PACE performance modelling and prediction

capabilities.

4.2 Sweep3D Models

In this section, we introduce the Sweep3D performance models in detail. The
application model is composed of 9 objects written in the PACE PSL. The
creation of resource models for two platforms is also introduced. The relations
between the source code, application model, and resource model help a better
understanding of the PACE methodology. The contents in this section correspond
to those shown schematically in Section 2.2.

4.2.1 Model Description

We define the application object of the model as sweep3d, and divide each
iteration of the application into four subtasks according to their different functions
and different parallelisations. The object hierarchy is shown in Figure 4.2, each
object is a separate rectangle and is labelled with the object name. The functions

of each object are:

* sweep3d — the entry of the whole performance model. It initialises all
parameters used in the model and calls the subtasks iteratively according

to the convergence control parameter (epsi) as input by the user.

-53-

CHAPTER 4 SWEEP3D

source — subtask for getting the source moments, which is actually a

sequential process.

sweep — subtask for sweeper, which is the core component of the
application.

fixed — subtask to compute the total flux fixup number during each

iteration.

flux_err — subtask to compute the maximum relative flux error.
async — a sequential “parallel” template.

pipeline — parallel template specially made for the sweeper function.

globalsum — parallel template which represents the parallel pattern for

getting the sum value of a given parameter from all the processors.

globalmax — parallel template which represents the parallel pattern for

getting the maximum value of a given parameter from all the processors.

SyiOrigin2000 — contains all the hardware configurations for SGI
Origin2000, which is comprised of smaller component hardware models
aready in existence within PACE. This can be interchanged with a

hardware model of a different system, e.g. a cluster of Sun workstations.

application \

Object sweep3d
Subtask // N~
Object source fixed flux_err

N ~/
(Paralle A

Template | agync pipeline global global
Object

N \\/’/j

@ ~~N\ 7
gargcv'\[l re SgiOrigin2000
~ J

Figure 4.2 Sweep3D Object Hierarchy (HLFD Diagram)

-54-

CHAPTER 4 SWEEP3D

4.2.2 Application Model Creation

The objects of application, subtask, and parallel template in the Sweep3D model
introduced above can be expressed using the PACE PSL. The PSL code for
Sweep3D s fully listed in Appendix A. Figure 4.3 describes different parts of the
sweep3d object clearly in PSL scripts, the sections of which correspond to those
schematically shown in Figure 2.2.

appl i cati on isweep3d {

i ncl ude
i ncl ude
i ncl ude

sour ce;
sweep;
fixed;

i nclude flux_err

link {
har dwar e
Nproc = npe_i * npe_j;
sour ce:
it =

hrduse = "Sgi Ori gi n2000";

for(i = 1;i <= -epsi;i =
call source
cal | sweep;
call fixed
call flux_err

+1) {

Figure 4.3 Sweep3D Application Object

Each object follows the same syntax and requires the following parts:

* Include statement — declares other objectsthat are referenced.

-B5-

CHAPTER 4 SWEEP3D

o External variable definition — defines variables that form the interface to
other objects as well as the PSL run-time system. The variables can be

either numeric or strings.

* Linking statement — enables external variables and options defined in other
objects to be modified.

» Option — setsthe default options of the object.

* Procedures — describe the relationships between objects in order to predict
performance. These relationships can either be described as control flow
graphs (cflow) or execution statements (exec), which are analytical
formulas. Each object also has a procedure init, which is the entry point

for evaluation.

Some of the main statements used in the PSL to represent the performance aspects

of the source code are as follows:

e compute — a processing part of the application, its argument is a resource

usage vector. This vector is evaluated through the hardware object.

* loop —the body of which includes a list of the control flow statements that
will be repeated.

o call - used to execute another procedure.

» case —the body of which includes a list of expressions and corresponding

control flow statements which might be evaluated.

» dgep — corresponds to the use of one of the hardware resources of the
system. Its argument is used to configure the device specified in the

current step. Thisisused in parallel templates only.

» confdev — configures a device. The meaning of its arguments depend on
the device. For example, the device mpirecv (MPI receive communication
operation) accepts three arguments. source processor ID, degtination

processor |D and message size.

-56-

CHAPTER 4 SWEEP3D

As mentioned before, application model creation can be processed almost
automatically with the assistance of PACE application characterisation tool,
which makes the performance modelling very easy and fast. However, during the

performance modelling of Sweep3D, we still meet some difficulties.

Firstly, there are some aspects of the program that can be only processed by the
PACE tools under guidance by the user. For example, the loop numbers in the
program those are not explicit must be estimated by input from the user directly.
PACE tools do not analyse data dependencies in the program. In Sweep3D, if a
loop number is not a constant, we calculate an average value as an approximate
estimation and input it to the model. The execution probabilities of each branch of
if statements must also be estimated by the user, which make the implementation

of PACE source code analysis tools much more efficient.

Secondly, there are some non-structural C statements like goto statement in the
Sweep3D source code, which are not supported by PACE tools. We must give a
reasonable estimation about these parts. Fortunately, those parts contain only a
small number of instructions and have little impact on the overall execution time

of the program.

Thirdly, pipeline is a parallel template specially made for the sweeper function,
which is the kernel part of the Sweep3D model. Though, as mentioned before, a
line by line mapping relation exists between the source code and corresponding
parallel template, we must define the arguments of device configurations by
ourselves, which need a deeper understanding of the parallelisation of Sweep3D.
For example, the processors used by Sweep3D are logically organised into a 2D
array, so the arguments for mpirecv, such as the source processor ID and the
destination processor ID, must be calculated in advance. That is why pipeline

looks much more complex than the other parallel template objects.

Though there are several approximate processes in the Sweep3D model, we can
still get fairly reasonable performance prediction results given in the following

sections. The accuracy of the performance prediction lies on not only the

-57-

CHAPTER 4 SWEEP3D

application model but also the hardware configurations described in the resource

models.

4.2.3 Resource Model Creation

The resource models are embedded in the PACE tools ready for application
performance evaluation. For ordinary usage, the PACE resource tools are not
provided to the user. There are only a limited number of hardware platforms, so
these models can be pre-installed into the PACE system, and be used directly for
performance evaluation, which is convenient especially to those users who are not
professional performance engineers. Figure 4.4 gives an illustration of part of the

resource model for the multi-processor machine, the SGI Origin 2000.

config Sgi Origi n2000 {

har dwar e {

}

pvm {

b

mpi {
DD COW A = 512,
DD _COwW B = 33. 228,
DD _COw C = 0. 02260,
DD COW D = -5.9776,
DD _COW E = 0. 10690,
DD TRECV_A = 512,
DD TRECV_B = 22. 065,
DD TRECV_C = 0. 06438,
DD TRECV. D = -1.7891,
DD TRECV_E = 0.09145,
DD TSEND A = 512,
DD TSEND B = 14. 2672,
DD TSEND C = 0. 05225,
DD TSEND D = -12. 327,
DD TSEND E = 0. 07646,

Figure 4.4 SGI Origin2000 Hardware Object

However, when a new hardware platform emerges, a new resource model should

be produced for performance evaluation of applications running on this new

-58-

CHAPTER 4 SWEEP3D

resource. Also, if a new network APl like MPI and PVM is developed, the
corresponding configuration should also be added into each resource model.
When we begin to evaluate the Sweep3D model on the SGI Origin2000, the MPI
configurations shown in Figure 4.4 are actually not ready in the SGI Origin2000
model. In this section, we give a brief introduction to how this data is produced
using PACE tools, which can lead to a deeper understanding of the working

mechanisms of PACE.

We notice that each MPI function is configured using five parameters, A to E.
These parameters provide a simple description of MPI communications between
processors of SGI Origin2000. They are used to calculate the consuming time of

corresponding communication operation according to the follow equation:

X

_|B+Cx, if x<A
" |D+Ex, if x>A
where X is the number of double floats during one communication process (to
make the evaluation of the Sweep3D model easy, we use the number of double
floats directly as the variable. For general use of the model, x should be the

number of communicating bytes).

A benchmark program with an MPI communication interface is run on two
processors in a Ping-Pong style. For a given length of contents, the processors
send it back and forth many times. Timers are added into the beginning and end
points of the communication and measure the communication time consumed.
Average values are calculated and recorded into the data files. In each data file,
there are a number of data items. Each data item is a pair of data length and

communication time.

Figure 4.5 gives a simple linear regression program written in Mathematica
[Wolfram1991]. Given a data file, the function described in the program can
calculate the five parameters and create corresponding hardware communication
models. The results it produces from three data files are those parameters shown

in Figure 4.4.

-59-

CHAPTER 4 SWEEP3D

i junaelipac npimpichfexamplesferr mplLRgrm *
File Edit Cell Format Input Kernel Find ‘Window H_eIpJ
W[10)= € * el

* LRgr.m - Linear Reqression Model Creatiom
*

* The fimction reads a file that includes twwo collwms {(wessage size.y)

* where y can be any time measurement {e.g. commmication delay) and
* produces simple linear regression wodels.
*

* Used for creating hardware commmication wodels

*)

LRyr: :usage="LRgr[Input filename,PacketSize] - retwrns the model. If
PacketSize option is greater than zero two models are generated, ome for
message size <= PacketSize and another for the other cases. Example:
LRgr[\" GetNumbersy",4096] " ;

{* configuration *)
SizeCol = 1;
Yeool = 2;

LRgr[InFile , PacketSize]| :=
Module[{lst,PacketIdx=1,i,modell.model2},

(*

* Read Ascii File
* File Format: twwo colwms, mmbers, first col message size
*

1st = ReadList[InFile,MNumber,RecordLists-»>True];

{* If packetsize has been specified *)
If[PacketSize > 0,
{* Find Index *)
For[PacketIdx = 1, 1lst[[PacketIdx.1l]] <= PacketSize,
PacketIdx++];

{* Create model for PacketIdx elements *)
wodell = Fit[Take[lst,PacketIdx], {1.x}.x]:
Print[modell] ;

1:

model? = Fit[Take[lst.-(Length]lst]-PacketIdx+1}],{1,x}.x]:
Print[model?] ;

1:

LRgr["sgi_data pingpong®,512];

LRgr["sqgi_data_recv',512];

LRgr["sgi_data send",512]:

33,228+ 0.022601 =
-5.97766 + 0. 106906 x
22.0653 +0. 064383 %
-1.78919 + 0. 0914502 x
14. 2672+ 0. 0522537 x
-12.3271 + 0. 0764662 x

@

Figure 4.5 Creating Hardware Communication Models Using
Mathematica

L] b b L] L L

PACE processor resource model creation will not be described here and can be
found in [Papaefstathioul994]. It is clear that the data included in the PACE
resource models are static, which ignores the impact of the dynamic factors on the

system performance, such as the changing of computing workload and

-60-

CHAPTER 4 SWEEP3D

communication bandwidth. For most of the tightly coupled parallel systems that
are not overloaded, PACE resource models can still give good approximate and

provide reasonable accuracy.

4.2.4 Mapping Relations

This section corresponds to those introduced in Section 2.2.4. The example model
objects and their correspondence with the C source code are shown in Figure 4.6,

which is a detailed example of Figure 2.5.

Sweep3D Source Code
partrp ppaine { [Cotig S O g 2000 {
voi d sveep() { proc exec init { hardvere {
sveep init(); step cpu { confdev Tx sveep init; } }
fo(ig=1 iq<=8 igH) { for(phese = 1; phase <= 8 phase = phase + 1){ pvm{
octant(); step cpu { confdev Tx octant; ¥ | | ...
get_direct(); step cpu { confdev Tx get_direct; } }
for(no =1, no <=mo; no+) { for(i =1 i <mo i=i+1){ i {
pipeineinit(); step cpu { confdev x pipelireinit; } | | ...
for(kk=1; ki <= Ko ki) { for(j =1 j <kb j=j+1){ D CWA = 512,
Kk 1 oop_ini t(); step cpu { corfdev Tx kk loop_init; } [D CWMB = 33,228,
for(x=1 x<=nmpei; x=x+1) [D GMMC = 0. 02260,
it (ewrcv I=0) fo(y=1 y<npej; y=y+1) { D GMD = -5, 9776,
info=MI_Recv(Piib, nib, nyid=Gt myid x y); D GM/E = 0. 10690,
Mi_DOBE tids[ewrcv], ewrcv = Get_ewrov(mase X Y); -- DR/ A=512,
ewtag, Mi_GOWVERD ifCewrevi=0) | - - D TREO/ B = 22 065,
&status); N 77777777777 step npirecv { confdev ewrcy, myid nib; heof 77 |\ [D TR/ C = 0. 06438,
el se el se ~=——_\ D TR/ D= -1. 7891,
else ewrov(); step cpu on nyid { cofdev Tx el se ewrcy; } "=~ D TREO/ E = 0. 09145,
} D TSEND A = 512,
conp_face(); step cpu { corfdev Tx_conp face; } D TSH\D B = 14. 672,
i N for(x=1 x<=npei; x=x+1) D TSA\D C= 0. 05225,
‘lf (ns.r rcv‘l 0) fo(y=1% y<=nmpej;/y=y+1){ D TSE\D D= -12.327,
,’ |nf0—MH\Racv(leb nb, nyid=Gt_nyid(x, ¥); [D TSH\D E = 0. 07646,
! MR I:OE_E tids[ns_rev], nsrov = Gt nsrw(,mase xyy 1 | ...
{ mtagM’lCDMV(ZR.D if(msrev!=0) /
| Sstatus); step npirecv { uﬁfdevmrcv nyid nb; } dc{
| ese \ dse /1
;o dsensro); step cpucnnyld{ cofdev Tx el se ns rev; } ML = 0. 00602936,
! \ } MRSG = 0. 025046,
L pork() \ step cpu { coﬁdewa vulc } ML = 0.0068927,
§of “ N I A IR MG = 0. 011226,
Y y A A [
fo¥stOi. \ stq)cpJ{cmfd—:v’Txlésl } ARIN = 0. 000612696,
;}// SN / i AL = 0.0094727,
b SN } ,,' i A2 = 00234027,
P ARN A ARTB = 0. 0438327,
I ~L A ! ;) C ARD! = 0. 0672354
T Ao~ i
0§ [S 5 i QWL = 0. 000837,
gaCticun \ R oo
%G d corpu Tace() | proc cflomcmpfade{(*lcals sign *) Q& = 0.0096327,
#pragna capp |f do dsa comuie <is dc, Q8G= 0.0305927,
if (dodsa) { case (ds clc IFER>)r{, Q. = 0.0100327,
i=i0-i2 do dsa QWG = 0. 0223627,
#pr agna capp Loop nmi conpue <i's CICLF&L-LA 'I1I_I. R -E QWL = 0.0107527,
for((na =/ ra <= ;)| { Joop (<is dc . QWG = 0. 0229227,
m=n + o, ccheqsclc'GM.LALL TILL, S R S Q\. = 0.0106327,
#or agna capp Loop rk lop (disclc, 1LF€R>, k) { Tmog-o] QUG= 00227377,
fa(lk=1 Ik <=nk [k { ,\ cmmteqsg:ﬂ %I;Ab _f\ SRS @ErErey
k =kO + sign(l k-1, k2); comute 4scle, AL\ e
4 l) call Cflcwélgn FOAL = 0.0304%4,
l/ conpute 9§ ¢fc, TILL, S —\/ LFR = 0. 011834,
loop (s g, LR, jt) { 3o

#pragna. capp Loop jt

o(j =L <jt; j+){
Fecei 4 3 [j][K[1] =
J L Fece[iH3[j][K[1] +
Profiling J wwf mj*Fhii bfj][1K] [m];

}
}
}
}

cmnueN,S cc, QUL A4, ARG
AerM:D_, AT, THL, INL>

Sweep3D Performance Model Scripts

}
omwulefléclc I NL>;
zzmnule sl,‘clc INLL>;

) /

} (* End of oprp face *

[ImcflONWIt‘ly{ }

[ICCCfIONIaSI'{ }

D

Code

-61-

Figure 4.6 Mapping between Sweep3D Model Objects and C Source

CHAPTER 4 SWEEP3D

Figure 4.6A is the C source code showing part of the main function sweep, whose
serial parts have been abstracted into a number of sub-functions in bold font.
Figure 4.6C shows how the same source code structure is used to provide the
parallel template description. Figure 4.6B is an example sub-function source code,
which can be converted automatically to the control flow procedure in the subtask

object as shown in Figure 4.6D.

Figure 4.6 also shows the inner mapping between the software objects and
hardware object of the performance model. All of the performance specification
components in PSL can find their corresponding configurations from the hardware
object, shown in Figure 4.6E. The abundant off-line configuration information
included by the hardware object is the basis to implement a rapid evaluation time

to produce the performance predictions.

It can be seen from the part of the Sweep3D model that there is a lot of
information extracted from the source code that is used for the performance
prediction. The accuracy of the resulting model is of importance, and in Section
4.3 below, detailed results are shown to validate the model with measurements on

the two systems considered.

4.3 Validation Experiments

In this section validation results on execution time for Sweep3D are given to
illustrate the accuracy of the PACE modelling capabilities for performance
evaluation. The procedures in the PACE evaluation engine to achieve these results
have been introduced in Section 2.5.

4.3.1 Validation Results on SGI Origin2000

Table 4.1 shows the validation results of the PACE model againgt the code
running on an SGI Origin2000 shared memory system. Note that the result for
single processor input are not included because there are many special

configurations, which are not included in the current performance model for the

-62-

CHAPTER 4 SWEEP3D

sequential code. The accuracy of the performance prediction results were

evaluated as follows:

Prediction - M easurement
M easurement

Error = x 100%

The errors between measurements and predictions are also shown in Table 4.1. It

can be seen that the maximum error is 11.44%, but the average error is

approximately 5%.
Data 2D Total Time
Proc.
Size Array | Prediction(s) | Measurement (s) Err (%)

15x15x15 1x2 4.73037 4.440255 6.53
2x2 2.59659 2.584936 0.45
2X3 1.8373 1.812252 1.38
2x4 1.51869 1.609818 -5.66
3x3 1.3399 1.343736 -0.29
3x4 1.10918 1.164072 -4.72
4x4 0.907100 1.002728 -9.54

25x25x25 1x2 22.9501 20.780170 10.44
2x2 12.1537 11.619632 4.60
2X3 7.83574 7.893481 -0.73
2x4 6.02865 5.979522 0.82
3x3 5.52498 5.532116 -0.13
3x4 4.24959 4.469564 -4.92
4x4 3.36453 3.537966 -4.90

35x35x35 1x2 69.3858 64.832165 7.02
2x2 36.1978 33.097098 9.37
2X3 22.1074 21.160975 4.47
2x4 16.3181 16.137180 1.12
3x3 15.3466 15.272606 0.48
3x4 11.3211 11.451001 -1.13
4x4 8.84226 9.984213 -11.44

50x50x50 1x2 217.398 228.893311 -5.02
2x2 112.307 102.285787 9.80
2X3 65.6201 67.278086 -2.46
2x4 46.7591 49.534483 -5.60
3x3 45,1373 47.289627 -4.55
3x4 32.1438 34.796392 -7.62
4x4 24.8468 24.800020 0.20

Table 4.1 PACE Model Validation on an SGI Origin2000

-63-

CHAPTER 4 SWEEP3D

The validation results are also illustrated in Figure 4.7. As shown in the figure,
run time decreases when the number of processors increases. At the same time the
parallel efficiency decreases too. In fact when the number of processors is more

than 16, the run time does not improve any further.

5 25
R\ grid size: 15x15x15 .\ grid size: 25x25x25
4 20 \
Run Run
e 3 —e—Modd e 15 —o— Modd
(s0) \\ —— Measured () \\ —— Messured
2 ‘.\.\-N‘ 10
1 _— 5 %\abﬁq.
O+—T—7F—FT—T——T—"—TT—T—T 0 +—TTTT—T—T—T1—
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Processors Processors
80 —
20 1o grid size: 35x35x35 R 250 '\\ grid size: 50x50x50
un
Run 60 i\ till?(g: \
i & AA ol
ume 50 e iosd | (o —+—orid
40 —il— Measured
20 K 100
20 N 50
10 \'_'\-baﬁ
0 0 T
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 020304 05060708091011 12131415 16
Processors Processors

Figure 4.7 PACE Model Validation on an SGI Origin2000

4.3.2 Validation Results on Sun Clusters

By only changing the hardware object to the SunUlItral predictions on this new
system can be obtained as shown in Table 4.2. A cluster of 9 SunUltral

workstations was used to obtain the measurements assuming no background

loading.
Data 2D Proc. Total Time
Array
Size Prediction (s) | Measurement (s) Err (%)
15x15x15 1x2 11.597 12.442062 -6.79
2x2 7.42898 6.938457 7.07
2X3 5.88532 5.659182 4.00
2x4 5.29021 5.445188 2.85
3x3 4.84622 5.101984 5.01
25x25x25 1x2 51.4059 51.326475 0.15

CHAPTER 4 SWEEP3D

2X2 29.6231 27.409842 8.07
2x3 20.5203 20.188288 1.64
2x4 16.7535 17.007142 -1.49
3x3 15.5563 15.041854 3.42
35x35x35 1x2 149.708 145.008424 3.24
2X2 82.8056 78.401377 5.62
2x3 53.097 53.201457 -0.20
2x4 40.9785 42.817732 -4.30
3x3 38.4032 37.551111 2.27
50x50x50 1x2 456.928 462.103560 -1.12
2X2 244,501 232.202359 5.30
2x3 147.7 147.227193 0.32
2x4 108.571 120.719472 -10.06
3x3 103.838 104.700557 0.82

Table 4.2 PACE Model Validation on a Cluster of SunUItral
Workstations

It can be seen that the maximum error is 10.06%, but the average error is also
approximately 5%. As shown in Figure 4.8, the run time spent is much more than
that on SGI Origin2000 with the same workload. But the trend of the curve is

almost the same.

14 grid size; 15x15x15 & grid size: 25x25x25
2T NN
Run 10
. Run
time g \ —&— Model time 40 —&— Modd
NS izt |
4 20
2 10
0 T T T T T T T 0 : : : : : : :
02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09
Processors Processors
160 grid size: 35x35x35 500 grid size: 50x50x50
140-& 450 i
400
Run 120 Run 350 \\
. i & AA ol
time 100 ‘+M0dd time 300 ‘ *—voae!
(s0) 80 &J—' (%9 250 \.\ | —®—Measured| |
60 200
® \l\‘r 150
100
20 50
0 T T T T T T T 0 T T T T T T T
02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09
Processors Processors

Figure 4.8 PACE Model Validation on a Cluster of SunUItral
Workstations

-65-

CHAPTER 4 SWEEP3D

Besides the reasonable accuracy, the performance model can be used to obtain the
evaluation results in a rapid time period, typically less than 2s. This is a key
feature of PACE that enables the performance models to be used to seer the
application execution onto an available system at run-time in an efficient manner
[Kerbyson1998, Alkindi2001].

4.4 PACE as a Local Resource Manager

In this chapter, we use Sweep3D as a case study to validate the performance
prediction capabilities of the PACE toolkit. The key features of PACE

performance prediction capabilities include:

 a reasonable prediction accuracy (the maximum error between

measurements and predictions is 15%);

» arapid evaluation time (typically seconds of CPU use) for a given system

and problem size;

» and easy performance comparison across different computational systems.

It has been shown that the PACE system can produce reliable performance
information which may be used for investigating application and system
performance in many different ways. As mentioned in [Kerbyson2000],
performance data produced by PACE can be used for the management of parallel
and distributed systems. However, the PACE toolkit is initially not developed in
the context of grid computing. In this section, we will discuss whether PACE
functions can be used to produce performance related data for resource

management in agrid environment.

As we have mentioned in Section 2.4, a grid environment brings two key
challenges, which are scalability and adaptability. For the grid resource
management system to be scalable, it is obviously not possible to provide the
whole grid resources with one PACE manager. In this case, it will definitely
become the bottleneck of the system. It is practical that one PACE resource

- 66 -

CHAPTER 4 SWEEP3D

manager may be able to manage and schedule applications running on a local

resource.

PACE models contain only static information on the application and system.
PACE application model is retrieved directly from the source code of the parallel
application. The hardware information contained in PACE resource models is
measured off-line on computing and communication capabilities of the resource.
When a parallel application is executed on a grid resource, there are many
dynamic factors that have an impact on the resource performance. For example,
the grid resource may not be entirely dedicated to the grid users. Especially the
communication between the grid resources is provided by low speed networks,
which may result in irregular communication latency when parallel applications
are running. PACE prediction will not provide the same reasonable accuracy

under such kind of highly dynamic situation.

In summary, while extremely well suited for managing a locally distributed multi-
computer, the PACE functions do not map well onto wide-area grid computing
environments, where heterogeneity, multiple administrative domains, and
communication irregularities dramatically complicate the job of resource

management.

As illustrated in Figure 2.8, grid resource management functions should be
performed at both local and meta levels. Our method for grid resource
management is to use PACE as local resource manager. At the meta level, an
additional mechanism, summarised as the A4 methodology in the following
chapter, are introduced to coordinate different local resource managers to achieve

the overall management of grid resources.

-67-

Chapter 5

A4
AGILE ARCHITECTURE AND

AUTONOMOUS AGENTS

A4 (Agile Architecture and Autonomous Agents) is a methodology for building
large-scale distributed software systems with highly dynamic behaviours
[Ca02001c]. The methodology is developed in order to be used for meta-level grid
resource management, which is an extension of work described in [Cao2000b].
A4’'s emphasis is on deadling with architectural level dynamics and using
simulation based analysis to provide quantitative performance evaluation and
optimisation of system behaviours, which differentiate A4 from other distributed
system infrastructures described in Section 3.2.

« An agent is the main component in the system. Each has its own
motivation, resource and environment. They are not predetermined to
work together. The number of agents will dramatically increase when a
wide-area software environment is considered. Together they form a large-

scale multi-agent system.

» Autonomy is used to describe the character of the agent. The autonomy is
mainly achieved by the intelligence and the social ability of the agents. An
agent can fulfil high-level tasks by its own intelligence or by cooperating

with other agents continuously with little human interference.

-68-

CHAPTER5A4

» Architecture is used to provide a glue for the interactions between the
agents. For example, large-scale multiple agents can be organized into a

hierarchy.

» Agility is used to describe the character of the architecture. Agility means
quick adaptation to environmental change. Autonomy provides the system
with component-level adaptability, while agility provides the architecture-
level adaptability of the system.

5.1 Agent Hierarchy

The hierarchical model is illustrated in Figure 5.1. There is a single type of
component, the agent, which is used to compose the whole system. Each agent has
the same set of functions. Agents are organised into a hierarchy. In Figure 5.1
different terms are used to differentiate the level of the agent in the hierarchy. The
broker is an agent that heads the whole hierarchy, maintaining all service
information of the system. A coordinator is an agent that heads a sub-hierarchy. A
leaf-node is actually termed an agent in this description.

Olo)RONEOEC
@ . Coordinator
o

Figure 5.1 Agent Hierarchy

The broker and coordinators are aso agents except that they are in a special
position in the hierarchy. All the agents have the same function despite their
different positions. The broker does not have any more priorities than coordinators
or agents. The hierarchy of homogenous agents gives a high-level abstraction of a
distributed system.

-69-

CHAPTER5A4

The agent hierarchy can also represent an open and dynamic system. New agents
can join the hierarchy or existing agents can leave the hierarchy at any time.
When a new agent wants to join the system, in the hierarchical model, it will
broadcast to find its nearest existing agent. An agent can only have one
connection to an agent higher in the hierarchy to register with, but be registered
with many lower level agents. Each agent records related registration information.
After registration, agents can communicate with each other using unicast instead
of multicast. When an agent wants to leave the system, it must contact its upper
agent to cancel the registration, and also inform its lower agents to re-register in

the hierarchy.

The hierarchy model can address partly the problem of scalability. When the
number of agents increases, the hierarchy may lead to many system activities
being processed in a local domain. In this way the system may scale well and does
not need to rely on one or a few central agents, which may otherwise become a

system bottleneck.

Service is another important concept in the A4 methodology. Request is a
complementary concept to service. In other methodologies, a client is abstracted
into a request sender; a server is abstracted into a service provider; and a
matchmaker is an abstraction of a router between a client and corresponding
server. In the A4 methodology, an agent contains all of the above abstractions. An
agent can send requests and provide services. Every agent can act as a router
between a request and a service. This gives a simple and uniform abstraction of

the functions in the system.

A resource can be a program, a device or a human in the system, where a service
is originally provided, while a user is a human, where a request is originally sent
out. An agent can be a manager of one or more resources. When a resource is
available to provide a service, the corresponding agent is responsible for
distributing the service information to many other agents. When a user wants to
send a requed, it usually finds and contacts its nearest agent, and a request may

pass by many agents to reach the required resource. These processes that happen

-70-

CHAPTER5A4

in the agent hierarchy are defined as service advertisement and discovery, which

will be discussed in detail in the following sections.

5.2 Agent Structure

The agent hierarchy gives an overall architectural description of the system. In
this section, a layered agent structure is considered, which can provide functions
both for local management and global coordination. The structure is illustrated in
Figure 5.2 and explained in detail below.

/ Agent \ / Agent \

‘ Loca Management Layer J ‘ Locd Management Layer ’
i Jdt it JF

[Coordination Layer] [Coordination Layer
i Jdr i JF

‘ Communication Layer Communication Layer ’

|

Figure 5.2 Layered Agent Structure

e Communication Layer — Agents in the syssem must be able to
communicate with each other using common data models and
communication protocols. ACL can be used to address these problems.
However, an initial system implementation can use some simple pre-
defined data structures instead of a language. The communication layer
provides an agent with an interface to heterogenous networks and

operating systems.

e Coordination Layer — The reguest an agent receives from the
communication layer should be explained and submitted to the
coordination layer, which decides how the agent should act on the request
according to its own knowledge. For example, if an agent receives a

service discovery request, it must decide whether it has related service

-71-

CHAPTER5A4

information. Our methodology focuses on the implementation of this

layer.

* Loca Management Layer — This layer encapsulates the functions needed
for local system management. For example, if an agent finds that the
required service is within its own capabilities, the request will be
submitted to this layer from the coordination layer to access the resource.
This local manager can also provide service information to the
coordination layer. Different agents can include different functions for

local system management.

How the agents in the system cooperate with each other is up to the functions
implemented in the coordination layer in each agent. In the A4 methodology,
these functions are described as two complementary processes, service

advertisement and discovery, which will be described in detail below.

5.3 Service Advertisement

An agent in the system can have many local resources that can provide services.
The agent can take them as its own capabilities. Local management in an agent is
responsible for collecting this service information and provide it to the
coordination layer, where this information is stored. An agent must decide how

and when to advertise this service information to other nearby agents.

An agent can also receive many service advertisements from nearby agents and
also gtore this information in its coordination layer as its own knowledge. All of

the service information are organised into Agent Capability Tables (ACTS).

5.3.1 Agent Capability Tables

An ACT item is composed of three constituent parts:

e Agent ID. ThisID includes the contact information of an agent. During the
registration process described before, an agent can only get 1D information

-72-

CHAPTER5A4

and contact its upper or lower agents. With the agent IDs stored in ACTS,
an agent can also contact more agents and cooperate with them for service

discovery.

Service Information. Service information should contain all performance
related information about a resource. This information will be used by the
agent to evaluate the performance of corresponding resources, etimate the
capability of corresponding agents, and make service discovery decisions.

In general, a name should be defined for each service.

Options. Additional options can be added into each ACT item to constrain
agent behaviours for service advertisement and discovery. Concrete

options will be introduced in detail later.

When a new resource is available to provide service, its agent should advertise the

service information to other agents. The performance of services offered by an

agent can change over time. When this occurs, the corresponding service

information needs also to be updated. When a service becomes unavailable, it

needs to advertise to cancel previous information that has been advertised into the

hierarchy. The dynamics of the system increase the difficulty of system

management.

An agent can choose to maintain different kinds of ACTs according to different

sources of service information. These include:

T_ACT (This ACT). In the coordination layer of each agent, T_ACT is
used to record service information of local resources. The local
management layer is responsible for collecting this information and

reporting it to the coordination layer.

L _ACT (Local ACT). Each agent can have one L_ACT to record the
service information received from its lower agents. The services recorded

inL_ACT are provided by the resourcesin its local scope.

G_ACT (Global ACT). The G_ACT in an agent is actually a record of the

service information received from its upper agent. The service information

-73-

CHAPTER5A4

recorded in G_ACT are provided by the agents, which have the same
upper agent as the agent itself.

» C_ACT (Cached ACT). Cached service information is stored in C_ACT.
When an agent sends a request for service discovery, the returned result
can be stored in C_ACT, and hence looked up when next requested.

5.3.2 ACT Maintenance

The performance of the resources that provide services may vary over time, which
may cause the corresponding service information that is stored in the ACTs of
other agents to become out-of-date. There are basically two ways to maintain the
contents of ACTs in an agent: data-pull and data-push, each of which have two

approaches. periodic and event-driven. These are summarised in Table 5.1.

Type | Approach | ACT Description

Data- | Periodic T _ACT | The ACT management can ask local management to
pull monitor its own resources and return the service
informationto T_ACT periodically.

L ACT | An agent can ask its lower agents for the service
information they have, and update its own L_ACT
periodically.

G_ACT | An agent can ask its upper agent for the service
information it has, and update its own G_ACT
periodically.

C _ACT | An agent can check whether the service information
in its cache is out-of-date periodicaly. Any
unavailable service information will be deleted.

Event- T _ACT | A service discovery process can trigger a T_ACT
driven updating. When a request arrives and an agent |ooks
up the T_ACT, the ACT management can ask local
management to monitor its own resources and return
the serviceinformationto T_ACT immediatdly.

L _ACT | When a request arrives, an agent can ask its lower
agents for the service information they have, and
updateitsown L_ACT immediately.

G_ACT | When a request arrives, an agent can ask its upper
agent for the service information it has, and update its
own G_ACT immediately.

C _ACT | When a request arrives, an agent can check whether
the service information in its cache is still available.
Any out-of-date service information will be deleted.

-74-

CHAPTER5A4

Data- | Periodic | T_ACT | The local management in an agent can monitor its
push resources and submit the results to the ACT
management in the coordination layer periodically.

L _ACT | Lower agents can report their service information
periodically to updatethe L_ACT of an agent.
G_ACT | The upper agent can multicast its service information
to its lowe agents periodically to update ther

G _ACTs.
C ACT | N/A
Event- T _ACT | When a resource changes, the local management in
driven the agent will inform the changeto the T_ACT in the

coordination layer of the agent immediately.

L _ACT | When one service information changes in a lower
agent, it will report the change to update the L_ACT
of an agent immediatdly.

G_ACT | When one service information changes in the upper
agent, it will multicast the change to its lower agents
immediately to update their G_ACTSs.

C ACT | When a service discovery result is retuned to an
agent, the agent can update its C_ACT immediately.

Table 5.1 Service Advertisement and ACT Maintenance

From the methods described above, it is clear that most of the service
advertisement which occurs in an agent hierarchy happens only between nearby
agents. An agent can only advertise its service information to its upper agent or
lower agents. However, service information can also be spread to a large area
after many steps of advertisement over a period of time. This is an important
feature to make the system scalable and to avoid any communication bottlenecks.

The same principles are also applied to the service discovery processes.

5.4 Service Discovery

Each agent has different kinds of ACTs maintained by service advertisement. An
agent takes the contents in ACTs as its own knowledge, which is mainly used for
service discovery. A service discovery process is triggered by the arrival of a

request in an agent. A request is usually composed of several parts:

* Request information. These include details of services the user wants to

discover. Thisinformation may combine with service information in ACTs

-75-

CHAPTER5A4

to produce high-level performance information of corresponding

resources.

* Requirement. This includes required performance information from the
user, which may be used for matchmaking for agents to make decisions on

whether a resource can provide a capable service or not.

* Options. Additional options may be attached with each request, which may
include user control information for the service discovery. For example,

the user may limit time and scope of a discovery process.

An agent can act on areguest in a number of ways, for instance:

* Yes. | can provide required service, so the discovery ends successfully.

* No. | cannot provide the required service. However, | know an agent,
which may have the capability to provide the required service. | can

transfer the request to it for further discovery.

* No. | have no idea of the required service. However, | can transfer the

request to lower or upper agents for further discovery.

* No. | have no idea of the required service, and there are aso no other

agentsthat | can query. | am sorry that the discovery has failed.

5.4.1 ACT Lookup

The process of service discovery in an agent is the process of looking up the
ACTs. The general order for an agent to check different kinds of ACTsinturnis:
T _ACT, C_ACT, L_ACT, and finally G_ACT, which will be explained one by

one below.

An agent is a representative of its own resources in the large-scale environment.
When an agent receives a request from a user or another agent, it is natural that it
will check its own capabilities recorded inthe T_ACT firstly. If an agent is aware
that it can provide the required service itself, the service discovery is successful

and the service information will be returned to where it came from.

-76-

CHAPTER5A4

If there is no required service information inthe T_ACT, an agent may choose to
look up its C_ACT. Previous service discovery results are cached in the C_ACT,
which have more possibility to meet the requirements from the following requests.
If required service information is found in C_ACT, the agent will check whether
the service is ill available. If so, the request will be dispatched to the
corresponding agent. Otherwise, the agent will update the C_ACT and process

other service discovery.

If there is no required service information in the C_ACT either, an agent may then
choose to look up itsL_ACT. L_ACT records service information in local scope.
Most users prefer to find an available resource located as near as possible. So it is
reasonable to check L_ACT first instead of the G_ACT. If the required service
information is found in the L_ACT, the request will be dispatched to the
corresponding agent. Otherwise, additional service discovery will have to be
processed.

An agent can finally looks up its G_ACT. The G_ACT records service
information in a much wider scope and provides opportunities to find the required
service. If the required service information is found in G_ACT, the request will be
dispatched to the corresponding agent. Otherwise, the agent must make decisions

for the following action.

An agent may not maintain all of the above ACTs. T_ACT is generally
maintained in each agent. If an agent does not choose to cache previous discovery
results, there will be no need to look up the C_ACT. An agent can also choose not
to maintain L_ACT or G_ACT. If there isno L_ACT information and an agent
cannot find any information in its ACTSs, it may choose to pass the request to one

of its lower agents.

If an agent looks up all of the ACTs and <till does not get the required service
information, it may consider submitting the request to its upper agent. The upper
agent will follow the same procedure, but may maintain service information in a

larger scope, thus may be more possible to find an available service.

-77-

CHAPTER5A4

If an agent looks up all of the ACTs and does not get the required service
information, and there is no other agent it can contact for further discovery, the
service discovery ends as failed. For example, consider a broker that has no upper
agent. If arequest reaches the broker of the agent hierarchy and the broker fails to
find required service information in its ACTs, the discovery has to end

unsuccessfully.

From the above description, a service discovery may end successfully or in a
failed state. Additional options may be attached with a request, which may
constrain the time or scope of service discovery. Such kinds of options may stop
and fail a discovery process even before the broker of the agent hierarchy has
been reached.

Each step for service discovery is processed between nearby agents, while many
agents can take part in one service discovery, which may lead to service discovery
in a large scope. This principle is the same as that has been applied in service
advertisement. Thus service advertisement and discovery in large-scale systems
are supported. It is clear that the cos for this is much more complex behaviours
for agents. In the next section, a simple example and a formal approach are
introduced to give a better understanding of the service discovery processes and

their relationship with service advertisement when the system is highly dynamic.

5.4.2 Formal Approach

@ " Resource Resource

Figure 5.3 An Example System

The example shown in Figure 5.3 is a simple agent system with two levels, one

broker with several agents below. Each agent maintainsaT_ACT, aL_ACT, and

-78-

CHAPTER5A4

a G_ACT. The broker only has a T_ACT and a L_ACT. Consider a typical
process. User sends arequest, s, through agent A;, and the service can be provided

by Resource. But the Resourcejust moved from agent A to As.

Each T_ACT and L_ACT is maintained by an event-driven data-push method,
and the G_ACTs of these agents are updated using a periodic data-pull method. In
this situation, when the resource is moved, the related T_ ACTsand L_ACTs are
all updated immediately, but when the request is sent out, the G_ACTSs of these
agents have not been updated. How will the service discovery proceed?

The formal representation of the problem is summarised in Table 5.2, which
includes the definitions of agents, evaluations, and processes. This is the basis for

the rule-based reasoning of system dynamic processes.

Agents A, (=1,...... ,n), one of the agents

S, a given service request

Evaluations t(s), evaluationresult of sin T_ACT

I(s), evaluation result of sinL_ACT

g(s), evaluation result of sinG_ACT

t(s), I(9), 9(9) LAA (i=1,...... ,n), null}

null means no service information is available for the request s
Processes Ai(s), A processes therequest s

Table 5.2 Formal Representation

We represent the process for an agent to require a service in a logical way. The
rules show the routes for a request from the original agent to reach the target agent
though the resource can be moved dynamically. Several basic rules are used,

which formalise the service discovery process described in the last section.

* Rulel A(s) =A - (1(9), I(9), g(9))a
The service discovery process in an agent is the process of looking up the
T _ACT,L_ACT and G_ACT (C_ACT isnot used in this case).

* Rule2: (Anis, *, *)tnis = ServiceFound
If an agent is aware that it can provide the required service itself, the

service discovery is successful.

-79-

CHAPTER5A4

« Rule3: (null, Aigwer, *)this = Atower ()

If the required service information cannot be found in the T_ACT but in
the L_ACT, the request will be dispatched to the lower agent.

* Rule4: (null, null, Aanother)this = Aanother(S)
If the required service information cannot be found in the T_ACT or
L ACT but in the G_ACT, the request will be dispatched to the
corresponding agent.

* Rule5: (null, null, null)is = Aupper(S)
If an agent exhausts the ACTs, and does not obtain the required service

information, it will submit the request to its upper agent.

* Rule6: (null, null)proker = NOService
If a broker (head of an agent hierarchy) exhausts the ACTs (G_ACT is not

maintained in a broker), the service discovery ends unsuccessful.

These rules can be organised together to reason about the route of the service
discovery process in the example system. The equations are shown below. For
each step, the evaluation results of all of the ACTs to the request s replace the
correspondent parts, (t(), 1(S), 9(s))ai, in the process automatically. The number at

the end of each line indicates the rule used for the transformation.

A(s) = A - (null,null, A) , D
= A - A9 (4)
= A - A - (null,null,null) (1)
=A - A - B(9 ©)
= A - A - B (nul, A%,)
=>A - A - B- A9 3)
= A~ A B A (AR, D
= A - A -~ B_ A - ServiceFound (2

Three connections are needed for the A; to find the required service in As. In the
G_ACT of A; the service is still recorded to be within the capability of A,. A, ill

-80-

CHAPTER5A4

has to take part in the routing process. The routing process can be simplified if A,

can cache this routing result or the G_ACT of A; can be updated some time later.

The system can have more than two levels and the services may be changed many
times. The system behaviours for service discovery may become much more
complex. Modelling and simulation tools can be developed to estimate the system

performance, as introduced in the following sections.

5.5 Performance Metrics

Unlike other service discovery infrastructures that focus on data models and
communication protocols, the A4 methodology focuses on performance issues

that arise from system dynamics. Two extreme situations can be considered:

* No service advertisement - results in complex service discovery. In this
situation no ACTs are maintained in the agents. Each agent has no
knowledge of the services offered by other agents. When a service is
requested, a service discovery process is required which may be complex

and may traverse alarge number of agents in the system.

* Full service advertisement - requires no service discovery. In this situation,
each agent advertises as much as possible to the other agents. Hence each
agent has nearly complete knowledge of the available services in the
system and no discovery process is required. When a request is made, the

serviceis found in any agents ACT.

Different systems can use different optimisation to achieve high performance. For
example in static systems, where the frequency of change in the service
information is far less than the frequency of service requests, more service
advertisement can achieve high performance service discovery. In extremely
dynamic systems, where the frequency of change in the service information is far
greater than the request frequency, less service advertisement can achieve high
performance. Most practical systems will have characteristics in-between these

two extremes.

-81-

CHAPTER5A4

There are different kinds of performance criteria that can be used to describe the
service discovery performance part of the system. What is considered as high
performance depends on the system requirements. However, there are some
common characteristics of the system that are usually a concern to the system
developer. These include discovery speed, system efficiency, load balancing, and

success rate, which will be discussed below.

5.5.1 Discovery Speed

Each request from an agent can pass one or more agents in order to find a target
agent that can provide the required service. Fewer connections have a quick
discovery process, and higher system performance. In the whole system, there
may be simultaneous service requests. The average service discovery speed, v is
defined as:

where r is the total number of requests during a certain period, and d is the total

number of connections made for the discovery.

The performance of the discovery process is mainly based on the number of
routing connections. The communication time for each connection is not
considered here to simplify the performance modelling and simulation of the

agent system.

5.5.2 System Efficiency

The cost for the service discovery also includes connections made for service
advertisement and data maintenance. Service advertissment may add additional
workload to the system. For each request to find a corresponding service, the total
number of connections, ¢, between agents includes those for the discovery

processes, d, and also those for the advertising processes, a.

c=d+a

-82-

CHAPTER5A4

The efficiency of the system can be considered as the ratio of the total number of

requests, r, during a certain period, to the total number of connections c.

5.5.3 Load Balancing

In some of the systems when the system resources are critical, load balancing may
be an important issue. In the A4 methodology, no agents are used only for service
discovery. There is no reason to have any agent with a higher discovery workload
than any other. For a system with n agents, the workload, w, of each agent can be

described as

where ok and iy are the outgoing and incoming connection times. We can use the
mean square deviation of the w, to describe the load balancing level of the system,
b:

— 2 W
b= where w= kX
5.5.4 Success Rate

In some situations the discovery model cannot guarantee to find the target service
(that may actually exist in the system). However, in a general system a reasonable
service discovery success rate should always be achieved. The success rate, f,

describes successful service discovery:

rf
f = T x100%

-83-

CHAPTER5A4

Most of the time, these service discovery metrics may conflict, that is not all
metrics can be high at the same time. For example, a quick discovery speed does
not mean high efficiency, as sometimes quick discovery may be achieved through
the high workload encountered in service advertisement and data maintenance,
leading to low system efficiency. It is necessary to find the critical factors of a
practical system, and then to use the different agent configurations to reach high

performance.

5.6 A4 Simulator

Performance evaluation of service discovery in a large-scale multi-agent system is
a difficult task. Different configurations of agent behaviours on service
advertisement and discovery can make the overall system behaviours very
complex. In this section, a modelling and simulation environment, the A4

simulator, is introduced.

The A4 simulator has as input all of performance related information of the agent
system, it composes them into a performance model, simulates the service
advertisement and discovery processes step by step, and finally outputs all of the
statistical data on the four performance metrics described above.

Agent Hierarchy —» Agent-level | g o | Step-by-step |—» T
Requ&sts—N; Modelling i . g-g o i View i_> a
Services— ' S | % =2 | 2| Accumulaive |—» d

) [I W H 1
Strategies— | EN gl View |

[l I O . _— | |
AgentMobiIity—N: System-l_evel | T g i Agent i—b %
Request Distribution—py ~ Modelling 4 o El View e
Service Distribution—bi i @ i Log E—P b
Global Strategies— | | View —> f
Inputs i GUI i Kernel i GUI i Outputs

Figure 5.4 A4 Simulator

The main structure of the A4 simulator isillustrated in Figure 5.4, which includes

a kernel and GUIs. The kernel part of the simulator performs the modelling and

-84-

CHAPTER5A4

simulation functions, while users can input related information and get simulation
outputs from the GUIs.

5.6.1 Inputs/Outputs

There are four kinds of information that affect the system performance and must
be input into the performance model. These include: the agent hierarchy, the
services, the requests, and the strategies for service advertisement and discovery.
The A4 simulator supports the modelling activity at both the agent level and the
system level. The only components that exist in the model are agents, so agent-
level modelling can be used to define all the model attributes for the simulation.
However, system-level modelling is also necessary to input information on agent
mobility, service and request distribution, and so on. These will be discussed in
detail below.

* Agent hierarchy. When a new agent is added into the model, its upper
agent should be defined. The upper agent is also configured to add a new
lower agent. The information is used to organise agents into a hierarchy in
the system model. No cycles are permitted in the hierarchy, which may

cause deadlock during the service discovery process.

* Requests. Each agent is configured to send different requests periodically.
A request item may include several parts of information: the required
service name, the relative required performance value, the sending

frequency, and the discovery scope.

» Services. Each agent is also configured to provide many services, whose
performance may vary over time. A service item may include several parts
of information, the service name, the relative performance value, the
performance changing frequency, service available time, and service
advertisement scope. The usage of these attributes will be introduced in
the simulator kernel section below.

» Strategies. Different strategies are defined in each agent to control its
behaviours on service advertisement and discovery. These strategies have
been discussed in detail in Section 5.3 and 5.4 respectively.

-85-

CHAPTER5A4

* Agent mobility. The agent mobility can be defined at the system level
only. An agent mobility item may include information on: the agent ID,
the new agent ID after the movement, the upper agent ID of the new agent,
and the step number when the movement will happen during the

simulation.

* Request distribution. System-level request definitions can ease the
modelling process. The same request item does not need to be defined in
different agents one by one. The A4 simulator provides a convenient way
to distribute a request definition to different agents once it is defined at the
system level.

» Service distribution. The same service with the same attributes can also be
provided by different agents. System-level service definitions allow many

agents to be configured with the same service at the time.

* Global strategies. A system-level strategy definition can affect all of the
agents in the model and ease the modelling process. Both global strategies
and individual strategies can be defined in each agent. However, agent-

level strategy definitions have a priority over the system-level ones.

The information above is input into the simulator. The outputs of the simulator are
al of the simulation results on four performance metrics. All of the details on
service advertisement and discovery are also recorded in a simulation log file for
further reference. The use of input information to produce outputs during the
modelling and simulation processes within the simulator kernel is introduced
below.

5.6.2 Simulator Kernel

The kernel of the simulator is composed of a model composer and a simulation
engine. The kernel will perform the main modelling and simulation functions and
transform the raw simulation data to satistical results to support the four

performance metrics.

-86-

CHAPTER5A4

The model composer organises the input information into a performance model
before the simulation process begins. During this phase, the system-level
information is transferred into an agent-level representation as much as possible.
For example, system-level requests and services will be used to configure a
certain percentage of agents. The global strategies are used to define the strategies
of each agent, except for agents that have already been defined with agent-level
strategies. After these, a performance model is composed and the simulator is
ready for evaluation. The information on agent movement can only be stored at

the system level and will not be used to configure any agent in the system.

The simulation engine will start a smulation process once a performance model
and a total number of simulation steps are defined. The whole process is
illustrated in Figure 5.5, which is divided into seven phases, five of which are

within the main simulation loop.

I nitialise smulation

v
Set service changes -«

v

Set agent movements

v

Advertise services

v

Send requests and service discovery

v

Calculate and visualise simulation results

v

Finalise smulation

Next step

Figure 5.5 Simulation Process of A4 Simulator

* Initialise simulation. Once a simulation process is started, the A4 simulator
will set up an environment for simulating service advertisement and
discovery. All of the GUIs for performance modelling are locked. The
performance model cannot be modified during the simulation. A copy of
the model is also made to prevent data loss due to the simulation being

-87-

CHAPTER5A4

irregularly interrupted. The simulation results are also initialised for

recording the outputs.

Set service changes. This is performed at the beginning of each simulation
step. The availability and performance of a service may change at each
step. The service available time in each service item records the step
number when the corresponding service is available. After that, the service
will be deleted in all ACTs of all agents in the model. There is also the
frequency of change in performance of each service. The performance of
each service may or may not be changed at each step according to this

frequency.

Set agent movements. Each agent mobility item contains a step number
when a movement will happen during the simulation. An agent movement
indicates not only the change of the agent hierarchy, but also the change of
related services. Additional service advertisement occurs when an agent is
moved, for example, old service information is announced for deletion,
and new service information should be advertised along the new agent
hierarchy. An agent is moved while its upper agent may or may not be
changed, which leads to different gtuation with different service

advertisement workload.

Advertise services. Both event-driven and periodic service advertisement
are considered during this phase. Each agent acts on its ACTs according to
its strategy configurations. Each connection between agents for service
advertisement will be recorded in the simulation log file and will effect

corresponding simulation results.

Send requests and service discovery. A request is decided to be sent
according to its frequency. Each agent that receives the request will look
up its ACTs in turn according to its strategy configuration for service
discovery. Every detail of a service discovery process is recorded in the
log file and related simulation results, such as agent connection times, are

recorded.

Calculate and visualise simulation results. At the end of each simulation

step, the raw simulation data should be summarised, and corresponding

-88-

CHAPTER5A4

statistical results on the performance metrics calculated. These results are
shown on the simulator GUI dynamically to give the user aview of what is

going on during the simulation.

* Finalise simulation. After all simulation steps are completed the simulator
returns back to the modelling mode. All the modelling GUI's are unlocked.
The performance model is retrieved from the original copy. The GUIs for
visualising the simulation results will not be refreshed until the next

simulation begins, and can thus be used for further analysis.

The A4 simulator also supports the evaluation of multiple models simultaneously.
The user can use different configurations in different models, simulate them, and

compare the results.

5.6.3 User Interfaces

The A4 simulator is implemented using Java. It provides graphical user interfaces

for the modelling and simulation respectively.

File Edit Simulate Help

44 Simulator —— des.aml

DCs =
Server

Servar1 s

Server~3
Server~4
Host

Host~1 —an

Host~2
Host~3 Server-2
Host~4
End —n
Enc~1
End-~2
PC
PC~1
PC~2

Server-3

Sener1

End~1

o

had [it
The agent Server~2 is selected. Sat Jun 02 11:44:37 2000

() Main window

-89-

CHAPTER5A4

= eatager W Eitee
Basic | Request Service | Strategy Basic Rmuﬁt-‘swm Strtegy | -

-) - From Agent: _} Add Mokility
¥ Using Cache el
[¥ Using Local Agent Capatility Table T0 Upper Agent: R
[¥ Using Glokal Agent Capability Tahle Tirme: H
| Upclating L_ACT Frequently From Ag: Mew1~3 A Newagent U: Newrd T: 150 Del Mability
L_ACT Updating Frequency:
_| Updiating G_ACT Freguently
G_ACT Updating Freguency: ?ﬁever i
¥ Auverlismg Up the Local Changes
= Mu\llcaal\ﬁg Down the Local C}%anges

(b) Agent-level modelling (c) System-level modelling

Figure 5.6 A4 Simulator GUIs for Modelling

The user can add, edit and delete agents from the model viathe main GUI window
shown in Figure 5.6(a). In the left column of the main window, all of the agents
are listed. A brief description of the selected agent is also shown below the agent
list. The text field above the agent list can be used to search an agent by its name.
The model can also be saved and reloaded for reuse later. The windows shown in
Figure 5.6(b) and Figure 5.6(c) can be used for agent-level and system-level
modelling respectively.

Some other GUIs in the A4 simulator are used to visualise simulation results to

the user, which are shown below in Figure 5.7.

r ¥ (*100) r ¥ r100)

2 177 14738 118 :i
e
o o 1] a
1 Steps 200 A Steps 200 1 Steps 200 1 Steps 200

& (100) a & ("100)

@
@
w
o
&

o} a a
1 Steps 200 1 Steps 200 1 Steps 200
b 100) d b (*100)
1SSWMWWWM 16 702 1 9506

[} 1] 1]

1 Steps 200 1 Steps 200 1 Steps 200
 (r100) i £ ¢*100)

WWMWW
aQ Q Q

1 Steps 200 1 Steps 200 1 Steps 200 1 Steps 200
Ok Ol

(a) Step-by step view (b) Accumulative view

-90-

CHAPTER5A4

Agent Relationships:

Upper Agent Mame
Mo Choice

Reuest:

Up Agent Narmes

e 1 |
hewis_ 1~ 1 i1~
Mewis_1~2 s -2

Lawer Agent Narme @w;«gentrﬂames

Service:

Request: Mail P: 0 F:2 S Top
Request: Mail P: 500 F:2 & Top
Request: Mail P: 500 F:2 S Top

Service: Mail P: 1000 F: Static “: Unlimited 8: Top
Service: Mail P: 1000 F: Static %: Unlimited S: Top

Cache:

Agent Names Sirvices

I e, wrvice: Mail P 1000 F: Static %: Unlimited S: Top
e, :rvice: Mail P: 1000 F: Static ¥: Unlimited S: Top
M i, ervice: Mail P 1000 F Static % Unlimitad S: Top
Local ACT:

Agent Names Sirvices

Mewes_ 1 rvice: Mail P: 1000 F: Static ¥ Unlimited S: Top
Mews_1 wvice: Mail P 213 F 10 W Unlimited 8: Top
hews_1~2 grvice: Mall P 520 F: 10 V@ Unlimited S: Top
Glokal ACT:

Agent Mames ‘Semces

Frash |

Each Step: i, 0, w

Eﬁ

Accumulative: i, o, w

464

—
0
d 1 Steps

200
Average: i, o, w
ES?
0 &¥
1 Steps 200
oK |

Step 1: Model shot2.aml:
Step 1: Model shot2.aml:
Step 1: Model shot2.aml:
Step 1: Model shot1.aml:
Step 1: Model shot1.aml:
Step 1: Model shot1.aml:
Step 1. Model shot1.aml:
Step 1: Model shot1.aml:

Lu:

(c) Agent view

Simulation Log |2} !
SA: Service Mail: Mewa_1~2 ——= Mewdshews_1=News_ 1~ 13Mewa_1~2=News_1~3xNews_1~d=News_1~5=Ney -
SA: Service Mail: NewA_2 ——> MewA_1~3>NewA_2>MNews 2~ 1=Newa_2~2>hNewa_2~3=Newsd_2~4 ——= hewA>N

Mews,_1~5

GU: Newa _2~2 ——= NewA_1~3

SD
sD
sD
sD

: Reguest Mail: Mews_1~5 Service Found

. Request real: NewA_1~6 ——= MewaA. Service not found
. Request real: Mews_1~6 ——= hlews, Service not found
: Request Mail: Mewa_1~7 ——= hlews_1. Service Found

i

Ok

(d) Log view

Figure 5.7 A4 Simulator GUIs for Simulation

During each step in the simulation the results will be updated in each of the GUIs.

The simulator can provide multiple views of the simulation data, which are all

updated in real time. In the step-by-step view of the Figure 5.7(a), the simulation

data, r, a, d, r, and the statistic data, v, e b, f, in each step are shown. In the

accumulative view shown in Figure 5.7(b), the statistical data on the accumulative

steps are shown. In the agent view shown in Figure 5.7(c), the user can view the

contents of a selected agent, its operation at each step, accumulative and average

views of the data o, i, and Wk. In Figure 5.7(d), the log view shows the

simulation log file, which records the details of all service advertisement and

discovery processes during simulation.

-01-

CHAPTER5A4

5.6.4 Main Features

The A4 simulator is developed to provide quantitative information of the
performance of service advertisement and discovery in large-scale multi-agent
systems with highly dynamic behaviours using the A4 methodology. The main

feature of the A4 simulator can be summarised as follows:

» Support for al of the performance metrics and strategy configurations
described in the A4 methodology;

e Support two levels of syssem modelling for easy and convenient

performance modelling of multi-agent systems;

» Support modelling of agent mobility and simulation of additional service

advertisement processes,
» Support multi-view and real-time display of simulation resullts;

e Support smultaneous simulation of multiple models and comparison of

results;

e Support smulation log management.

The use of the A4 simulator for a performance study is introduced in the next
section through a case study, and simulation results are included to show the
impact of agent mobility on the system service discovery performance.
Meanwhile, the A4 simulator kernel can also be used in practical multi-agent
systems to analyse and optimise system service discovery performance on-line,
which will be introduced in Chapter 7.

5.7 A Case Study

In Section 5.4.2, a smple example with a formal representation was given. A
resource in the system was moved, which results in more workload for service
discovery. In this section, the A4 simulator is used to study the impact of agent
mobility on system service discovery performance using a much more complex

example.

-92-

CHAPTER5A4

5.7.1 Performance Model

A simple multi-agent system model is shown in Figure 5.8, containing 26 agents.
The whole system is configured to have only one service named Print. The agent
that can provide the service is Printer now connected to till and later, during the
simulation, is moved to connect to sun with a new identity NewPrinter (this is not
shown in Figure 5.8). All the other agents may or may not request the Print
service with a different frequency (Note that the details of requests are not given
below).

o germ liames
— coke

sprite
ultra 1 e

giki

cola

tiger

wirl

rnonn il

Frinter

— uncle
Cow ro i

spare

bull

_ IS

nore

hiost child
host2

hostl —

Figure 5.8 Example Model: Agent Hierarchy

This experiment is used to show the impact of agent mobility on the service
discovery performance. Strategies are only defined at the system level, which
means that all of the agents in the model must use the same strategies for service
advertisement and discovery. The T_ACT, L_ACT and G_ACT are used in each
agent. T _ACTs and L _ACTs ae mantained by event-driven service
advertisement. G_ACTSs are updated once every 30 steps using a periodical data-

pull. The agent movement mentioned above takes place at the 100" simulation

step.

-03-

CHAPTER5A4

5.7.2 Simulation Results

Figure 5.9 shows the simulation results for 200 steps. A step can be designed as
an arbitrary number of seconds. The curves for discovery speed (v), and the
system efficiency (e) in the step-by-step view show the effect of the agent
mobility most clearly.

0 0
1 Steps 200 1 Steps 200
a a
T 164
n n
1 Steps 2000 1 Steps 200
d d
4 QaaM
n n
1 Steps 200 1 Steps 200
v (F10-2) v (F10-2)

2 42f~ —

1 Steps 21 Steps 200
g *10-2) e (™10-2)

B1 P

n n
1 Steps 21 Steps 200

(a) Step-by-step View (b) Accumulative View

Figure 5.9 Simulation Results

-94-

CHAPTER5A4

We assume that the load balancing and discovery success rate are not critical in
this study. Attention is given to the discovery speed and the system efficiency.
The whole process can be divided into five phases, which are explained in detail
below.

* Learning phase. In the first 40 seps, the G_ACTs of the agents are
updated gradually, so the discovery speed and system efficiency increase.

This can be viewed as an agent learning process.

» Stable phase. After about 40 steps, the curves are flat at a higher level. All
G_ACTs of the agents have been updated and there are no service
changes, so the system runs in a steady state mode with high service

discovery speed and system efficiency.

« Agent mobility. The defined agent mobility happens a the 100"
simulation step. When the agent moves it must advertise to delete its
service information from the old agent hierarchy and to add the new
service information to the new agent hierarchy. This causes an increase of
the connections for service advertisements (a). The service information in
all the agents becomes out-of-date, which results in more workload for the
service discovery (d). So the average service discovery speed (v) and

system efficiency (€) decrease suddenly.

* New learning phase. This phase is the same as the previous learning phase.
The agents learn about the new identity of the service Print gradually via
the G_ACT updating.

* New stable phase. The agent mobility finally resultsin a stable state mode
with higher performance. This is because sun is the coordinator of a larger
sub-hierarchy than till is. When the service is moved, more requests
become local instead of remote, which reduces the discovery workload of

the system.

This is a small example model with only one agent movement. The system model
is not a large-scale one and the service in the system is static during most of the
simulation time. However, this simple case study gives an intuitive impression

that system dynamics has a great impact on the service discovery performance.

-05-

CHAPTER5A4

The A4 simulator enables such kinds of problems to be investigated
guantitatively.

5.8 A4 as a Global Framework

The aim of this work is the development of a grid resource management system.
In Section 4.4, we have introduced PACE functions that can be used for local
resource management in a grid environment. In this section, we discuss that the
A4 methodology can be applied as a global framework to implement meta-level

grid resource management.

Agents are the main abstractions in the A4 methodology. An agent can be used as
a representative of a local high performance resource in a grid environment. The
high performance computing capability that a local resource can provide is
modelled as a service. Each agent is a service provider of high performance

computing.

Each agent can also be equipped with PACE performance prediction capabilities
in its local resource management for scheduling parallel applications to available
local resources. PACE functions are also used in the coordination layer of agents

to provide QoS support for service discovery.

Each agent is responsible for local resource monitoring, and corresponding
service information is collected and stored in the T_ACT. An agent is also
responsible for advertising the service through the agent hierarchy, according to

different strategy configurations.

Grid users can send application execution requests to the grid environment, which
can be received by a nearby agent. Agents can cooperate with each other and

perform service discovery functionsto find an available service for the requests.

When a target agent is found that can provide the requested service, the user can
contact the agent directly for application execution. Hence A4 can provide a
global framework and be coupled with PACE functions to implement grid

-96-

CHAPTER5A4

resource management. An initial implementation of an agent-based resource
management system for grid computing, ARMS, will be described in detail in the

next chapter.

-97-

Chapter 6

ARMS:
AGENT-BASED RESOURCE MANAGEMENT
SYSTEM FOR GRID COMPUTING

Resource management in the grid computing environments will rely on accurate
application performance prediction capabilities, as discussed in Chapter 4. An
agent-based methodology is also introduced in the last chapter to address the
challenges of scalability and adaptability. In this chapter, an initial
implementation of an agent-based resource management system for grid
computing, ARMS, is presented [Cap2001d], using a hierarchy of homogenous
agents [Cao2001b] coupled with the prediction capabilities of the performance
evaluation toolkit, PACE.

6.1 ARMS in Context

The relationship between ARMS and other concepts mentioned in this thesis is
shown in Figure 6.1. ARMS is a system, which builds a bridge between grid users

and resources to schedule applications to utilise the available grid resources.

PACE is used to provide quantitative data concerning the performance of
sophisticated applications running on local high performance resources. PACE
application tools (AT) are provided to grid users. A request to execute an

-08-

CHAPTER 6 ARMS

application by a user must be atached with a corresponding application model
developed using the AT. Meanwhile, PACE resource tools (RT) are embedded in
each grid resource to provide a corresponding resource model, which is an
important part of the service information of the resource. The PACE evaluation
engine (EE) is used in each agent in the ARMS for performance evaluation given

both the application and resource models.

At a metacomputing level, the A4 methodology is used for grid resource
management. Agents cooperate with each other and perform service
advertisement and discovery functions to schedule applications that need to utilise
the available resources. The behaviours of agents can be configured with different

strategies and steered with different policies to improve the system performance.

A performance monitor and advisor, PMA, is a special agent existing in the agent
system of ARMS. The main part in the PMA is the A4 simulator kernel. PMA
monitors the state of each agent, configures each agent with modelling and
simulation results, and steers the agent behaviours to implement the resource

management more efficiently. PMA will be introduced in detail in the next

chapter.
[A4 A4 Simulator]
Grid PMA Grid
Users ARMS Resources
=
4 R
Application Evaluation Resource
Tools (AT) Engine (EE) Tools (RT)
_ PACE)

Figure 6.1 ARMS in Context

-99-

CHAPTER 6 ARMS

6.2 ARMS Architecture

ARMS is an agent-based grid resource management system. An overview of the
ARMS architecture is illustrated in Figure 6.2. The main components in the
architecture include: grid users, grid resources, ARMS agents, and the ARMS
PMA. These will be discussed respectively in the following sections.

Figure 6.2 ARMS Architecture

6.2.1 Grid Users

There are different kinds of users of a grid computing environment. Grid
developers are responsible for implementing basic grid services. ARMS provides

grid resource management, which is a part of these services.

The developers of the tools, compilers, libraries, and so on implement the
programming models and services used by application developers. MPI and PVM
are included in these kinds of tools. Grid service and tool developers are a very

small group of grid users, which are not of concern in the context of this thesis.

-100-

CHAPTER 6 ARMS

Application developers comprise those who construct grid-enabled applications
using grid tools. There are different kinds of grid applications. distributed
supercomputing, high throughput, on demand, data intensive, and collaborative
applications. The applications mentioned in this work mainly refer to scientific
supercomputing applications, which are very large problems needing lot of CPU,
memory, etc, especially those writtenin MPl and PVM.

Most grid users, like most users of computers or networks today, will not write
programs. Instead, these end users will use grid-enabled applications that make
use of grid resources and services. In some situations, application developers are
also the end users of the applications they develop. The grid users in Figure 6.2
and mentioned in the following sections are considered to be scientists, who
develop scientific supercomputing applications and use them to solve large

problems in the grid environment.

As shown in Figure 6.2, grid user side software includes the PACE application
tools. When a parallel application is developed, the corresponding application
model should also be produced using PACE tools. As described earlier,
performance modelling using PACE is an easy process that can be used by non-
professional performance engineers. Each request to execute an application that is
sent to a grid environment should be attached with a corresponding PACE
application model.

Another component included in a grid request is the cost model, which describes
al information on a user's requirements about the application execution, for
example, the deadline for the application execution to be finished. Though there
can be many metrics for application execution, we focus on application execution

time only here.

6.2.2 Grid Resources

A grid resource can provide high performance computing capabilities for grid

users. A resource can include Massive Parallel Processors (MPP), or a cluster of

-101-

CHAPTER 6 ARMS

many workstations, or even PCs. A grid resource can be considered as a service

provider of high performance computing capabilities.

PACE resource tools can be used in each grid resource to provide the model of the
resource. The computational and communication benchmark programs can be
controlled to execute on the resource to produce performance data for the models
dynamically. The PACE resource model is a part of service information of the

resource, which will be advertised across the agent hierarchy.

6.2.3 ARMS Agents

Agents are the main components in ARMS. Each agent is a representative of a
grid resource a the meta-level of resource management. As introduced in the A4
methodology, agents are organised into a hierarchy. The hierarchy of homogenous
agents provides a meta-level view of the grid resources. The service information
of each grid resource can be advertised in the hierarchy (both upwards and
downwards). Agents can also cooperate with each other to discover an available

resource for arequest of application execution.

Two important components within each agent are also shown in Figure 6.2. As
mentioned in the A4 methodology, each agent has ACTs to record service
information of other agents. The service information contains all performance
related information of a grid resource, which can be used to estimate its

performance.

The PACE evaluation engine is also integrated into each agent. Its performance
prediction capabilities can be used for local resource management to schedule
parallel applications to available local processors. The PACE evaluation engine is
also used in the coordination layer of each agent to provide QoS support for

service discovery.

Each agent receives requests from grid users or other agents in the system. How
does an agent process to make service discovery decisions using the PACE

evaluation engine? How does an agent collect service information from its local

-102 -

CHAPTER 6 ARMS

resource management? Such kinds of questions will be answered in Section 6.3,

where the structure and functions of each agent is described in detail.

6.2.4 ARMS Performance Monitor and Advisor

A special agent is introduced into the ARMS agent system. It is an agent acting as
a performance monitor and advisor (PMA). It contacts each agent in the hierarchy
as shown in Figure 6.2. The PMA uses the kernel of the A4 simulator, which aims
to improve ARMS service discovery performance. We will introduce the structure

and functions of the PMA separately in Chapter 7.

ARMS is implemented using the A4 methodology coupled with PACE functions.
All functions developed in ARMS correspond to elements of the A4 methodology.
However, the detailed implementation of each agent need also be described in the

next section.

6.3 ARMS Agent Structure

The agent structure in ARMS is shown in Figure 6.3, which corresponds to the
general A4 agent structure shown schematically in Figure 5.2. Each layer has
several modules, which cooperate with each other to perform service

advertisement and discovery functions.

The communication layer of each agent performs communication functions and
acts as an interface to the external environment. From the communication module,
an agent can receive both service advertisement and discovery messages. It
handles the contents in the message and submits them to corresponding modules
in the coordination layer of the agent. For example, an advertisement message
from other agents will be directly sent to the ACT manager in the agent
coordination layer. The communication module is also responsible for sending out

messages for service advertisement or discovery to other agents.

There are four components in the coordination layer of an agent: ACT manager,

PACE evaluation engine, scheduler, and matchmaker. They work together to

-103-

CHAPTER 6 ARMS

make decisions on how an agent should act on the received messages from the
communication layer. For example, the final response to a service discovery
message includes. application execution on the local resource or dispatching the

request to another agent.

Resource
Monitoring

Application
Management

___ Application Execution

)
= J4
I O
S Scheduler —8j>
C &} <
S = By
B 2 Match
S _]%‘ Eval. Results M aker
o : o
S £ = PACE g
g— 8 Evaluation = >
- — 3 - w
(% E% Engine 8 J
Application Mode Agent 1D
“““““““““““““““ - ication Mo e T
g PP L1 {}
IS . ‘ Communication Module
'€
: g
8 Advertisement Discovery To another agent

Figure 6.3 ARMS Agent Structure

The main functions for local resource management in an agent include application
management, resource allocation, and resource monitoring. An application
execution command is sent from the coordination layer to local management in an
agent, which includes the scheduling information for an application, such as its
starting time, and allocated processor IDs. Application management is responsible
for managing the queuing applications that have been scheduled to be executed on
local resources. When the starting time of an application arrives, it will be
dispatched to the resource alocation. Resource allocation has wrappers with
different application execution environments like MPI and PVM, and actually
implements application execution on scheduled processors. Another important
module for local resource management in an agent is resource monitoring. It is

responsible to control PACE benchmark programs to be executed on the local

-104 -

CHAPTER 6 ARMS

resource and construct the corresponding resource models dynamically. The
resource monitoring is also responsible for contacting the application management
and resource allocation modules for other resource and application information. It
will organise all of the collected information about the local resource into service
information provided by the local resource and report it to the T_ACT in the

coordination layer of the agent.

We describe the agent functions above. As mention before, our work focuses on
the implementation of functions for the agent coordination layer. The four main
components will be introduced in detail below, and there will be no further

introduction to other modules for communication and local management in an

agent.

6.3.1 ACT Manager

The ACT manager controls the agent access to the ACT database, where service
information of grid resources are recorded. As mentioned in Section 5.3.1, an
ACT item contains three parts. agent ID, service information, and additional

options. The specific contents of service information in ARMS are shown in

Figure 6.4 and explained below.
Service Info. Resource Info. Processor 1 ID: Type
PACE resource model
Processor 2 ID: Type
: PACE resource model
Processor n 1D
Application Info. Application 1 1D i Start time
End time

Application 2 1D Start time
: i End time
Application mI1D
Application-Resource Mapping

Figure 6.4 Service Information in ARMS

-105-

CHAPTER 6 ARMS

Service information of a grid resource should include all of the information about
aresource that has an impact on the performance of a resource and can be used to
evaluate its performance. Service information is basically composed of resource
information, application information, and the mapping between the applications

and the resources.

Consider a grid resource with n processors. Each processor P; has its own type ty;,
such as Sun Ultral and SGI Origin2000. A PACE resource model can be used to
describe all the performance information of a processor. PACE resource models
of some typical processors can also be pre-installed into the evaluation engine in
each agent, instead of running benchmark programs on resources dynamically to
produce resource models. In this case, resource models cannot reflect dynamic
factors of the resource performance. However, if the workloads of grid resources
are not very heavy, it can ill give a good approximation and greatly simplify the
system implementation. The resource information will also be simpler, and
referring to the processor type is sufficient. In some situations, the processors of a
grid resource are homogenous. In this case, there is no need to give a list of
processors. Just giving the number of processors and corresponding processor

type is enough. The processors of a grid resource can be expressed as follows:

Let m be the number of applications that are running, or being queued to be
executed on a grid resource. Existing applications on a resource will impact the
resource performance. If there are a lot of applications queued for a resource, the
resource may have little chance to meet requirements from future requests. The
application information includes a list of applications that are running or queued
on aresource. Each application A has two attributes: scheduled start time ts;, and

end time tg. The applications of a grid resource can be expressed as follows:

- 106 -

CHAPTER 6 ARMS

The application-resource mapping gives a map of how processors of a resource
are alocated to applications. Let MA; be the set of processorsthat are alocated to

application A;:

MA:{MA,-UZLZ, ,m}
MA, ={PII=12,......k}

where k; is the number of processors that are allocated to application A;. Let M be
a 2D array, which describes the mapping relationships between resources and

applications using Boolean values.

0 if P OMA,

The contents of service information are described above. The ACT manager is
also responsible for maintenance of different kinds of ACTs according to different
strategies described in Table 5.1. The service advertisement in ARMS is
performed in the same way as described in the A4 methodology.

6.3.2 PACE Evaluation Engine

As mentioned in Section 5.4, a request is composed with request information,
requirements, and additional options. In ARMS, arequest for service discovery is

to find an available grid resource for an application.

The request information is basically the PACE application model am, which
includes all of the performance related information of an application A;. The
application model will be one of the inputs to the PACE evaluation engine in an

agent.

The requirements in ARMS are specified in a cost model, which can include many
metrics, for example, the deadline for the execution of an application to be

finished, t.eq. The cost model is one of the inputs to the matchmaker in an agent.

-107 -

CHAPTER 6 ARMS

The PACE evaluation engine has two inputs, the application model from the
request, am, and the resource information from the ACT manager, ty. Using this
information, the PACE evaluation engine can produce performance prediction
information such as application execution time, exet, for the application to be

executed on the given resource.
exet = eval (ty,am)

Instead of running the application on all of processors of a grid resource P, an

application can choose to be executed on any subset of processors P (notethat P

cannot be an empty set @), which can also be evaluated and expressed as follows:
OPOP,P#®,ty Dty,ty # ®,exet = evalty,am).

The output of the PACE evaluation engine, exet, is one of the inputs to the
scheduler of the agent. Another input to the scheduler is the application

information from an ACT item.

6.3.3 Scheduler

An ACT item acts as a vision of a grid resource that is remote to the agent.
However, an agent can still schedule the required application execution based on
this information of a resource. The function of the scheduler is to find the earliest

time for an application to be finished on the resource described by an ACT item,

tsched-

tena = 100, 1)
The application has the possibility of being alocated to any selection of
processors of a grid resource. The scheduler should consider all of these
possibilities and choose the earliest end time of the application execution. In any
of these situations, the end time is equal to the earliest possible start time plus the

execution time, which is described as follows:

-108 -

CHAPTER 6 ARMS
te =ts +exet.

The earliest possible start time for application A, on a selection of processors is
the latest free time of all of selected processors if there are still applications
running on the selected processors. If there is no application currently running on
the selected processors, application A. can be executed on these processors

immediately. These can be expressed as follows:

ts = max[t, max (td,)j ,

where td; is the latest free time of processor P;. This equals to the maximum end

time of applicationsthat are allocated to process P;:

td, = max (tej) :

0, M; =1

In summary, tsheq Can be calculated as follows:

- mi ||+ :
Cches mpgy,gm[max(t’ Drpgxmp(DWMﬁél(te’)D exetj

It is not necessarily the case that scheduling all processors to an application will
achieve higher performance. On the one hand, the start time of application
execution may be earlier if only a number of processors are selected; on the other
hand, with some applications, execution time may become longer if too many

processors are allocated.

The scheduling algorithm described above is used in the initial implementation of
ARMS. The complexity of the algorithm is determined by the number of possible

processor selections, which can be calculated as:

Cr+C?+...4C'=2"-1

-109 -

CHAPTER 6 ARMS

It is clear that if the number of processors of a grid resource increases, the
complexity of the local resource scheduling algorithm will increase exponentially.
Though a local resource in a grid environment can only have limited number of
processors, this algorithm cannot scale well when the number of processors
increases. Another factor is that the scheduling policy of this algorithm is to meet
requirements from the user, instead of maximising the resource utilisation. There
is no rescheduling process for previously scheduled applications. New algorithms
need to be developed in a practical implementation of ARMS; this will be
discussed in Chapter 8.

We can also see the importance of the efficiency of the PACE evaluation engine.
During each scheduling process, the evaluation function can be called 2"-1 times.
Even in the situation where all the processors of a grid resource are of the same
type, the evaluation function still needs to be called n times. PACE evaluation can
be performed very quickly to produce prediction results on the fly, which is the
key feature for PACE to be used in ARMS to provide QoS support for service

discovery.

6.3.4 Matchmaker

The matchmaker in an agent is responsible for comparing the scheduling results
with the cost model attached to the request. The comparison results lead to
different decisions on agent behaviours according to service discovery strategies
described in Section 5.4.1.

In terms of application execution time, if treq = tned, the corresponding resource
can meet the user requirement. If the corresponding ACT itemisinthe T_ACT, a
local resource is available for application execution. The application execution
command will be sent to the local management in the agent. Otherwise, the agent
ID of the corresponding ACT item is returned, and the agent will dispatch the
request to that agent via the agent ID.

If treq < tsched, the corresponding resource cannot meet the requirement from the

user. The agent continues to look up other items in ACTs until the available

-110-

CHAPTER 6 ARMS

service information is found. The agent can look up different ACTs in turn. If
there is no available service information in ACTs any more, the agent may submit
or dispatch the request to its upper or lower agents for further discovery according

to its own strategy configurations for service discovery.

There may be many other metrics in the cost model from the user. The
corresponding evaluation mechanisms should also be provided in each agent.
Their implementation will be the same as the application execution time described

in this section. These will not be discussed in detail here.

6.4 ARMS Implementation

ARMS has been developed to demonstrate how the A4 methodology is coupled
with PACE functions to achieve grid resource management. Each ARMS agent is
composed with an agent kernel and some agent information browsers. A case
study is given and some experimental results are also included to show how

ARMS schedules applications onto available resources.

6.4.1 Agent Kernel

The kernel of each agent is developed in C/C++ and fulfils al of the main
functions described in the last sections. The agent kernel makes extensive use of
the file system, and a collection of various database files representing its complete

state at any particular instant in time.

The most important file in an agent is the log file. After an application execution
request is received in an agent, it undergoes a series of state changes, with each
state representing a particular stage in its lifetime. The various states for a request
to be processed in an agent include: queuing, discovering, waiting, running,
submitted, etc.

The agent hierarchy database file is used to record the contact 1Ds of the upper
and lower agents. There are also various database files used as agent ACTs. A

separate thread in an agent exists for service advertisement and ACT maintenance

-111-

CHAPTER 6 ARMS

according to the strategy configurations, which are also stored in a separate
database file.

At alocal management level, resource and application information are represented
in different database files. As mentioned before, the system focuses on agent
coordination and meta-level service advertisement and discovery. Though there is
related information existing in the local management layer of each agent,
applications fake executing on corresponding resources, which does not impact on
the system performance being investigated and simplifies the system

implementation.

6.4.2 Agent Browser

One of the main goals of the initial implementation of ARMS is to make the state
of the system visible and enable the performance of the system to be investigated.
Agent browsers are developed using the X windows library and can be used to
show all contents of the database files within an agent described in the last
section. These are all illustrated in Figure 6.5.

Each agent has an operational platform, which includes a menu for activating
various agent browsers, shown in Figure 6.5(a). Figure 6.5(b) shows an example
of agent browsers, an application browser, which gives details of applications that
are running or gueuing on the local resource. A Gantt chart is also designed to
give agraphical interface to visualise the make spans of all the applications shown
in the application browser, which isillustrated in Figure 6.5(c).

Grd ARMS Azent (@ gem
Comnrmunication Log files |
Coordination Hitamhy | ACTs | | Stotegiss |
Local Ianager Fesources | Tasks | Chamitt |
Ivliscellanecus Help | About | Exit |

(a) Operational platform

-112-

CHAPTER 6 ARMS

File(F) Fil(F)
= _ g
AmpID ‘S Nome ‘ogp St T App Bod Tise App Resouce Maggany |~ [le23 - et
: ; b : : 4
57698 | deshlsifummelsdiametopi |6769% [s7700 00001L1111111141 J e n
ST |deshlsifummeladiamslt |67738 {6774 UL et u
677 | dshsifummiodiammsicpi |67774 |s7776 o001 11111111111 i n
67317 |deohsifumweiediarmsfimpros [67817 |s7837 000000001 1111111 s u
67230 :fdcsivlsujunwellaﬂfamlc]nsum 67230 67238 0111111100000000 — .
67922 '/dcsiv]sujunweﬂadfamslcpn 67922 67024 ooo0111111111111 hos] .
67929 | idesfulsifjunweilad/farmsiimproc |67929 167949 0000000011111111 hos2 .
67937 | deshlsijummelsdlumsiclosure (67937 |g70a2 0111111100000000 i] u
7947 | deshlsiummesdlamsiemsort 67947 |g7957 1111110000000 e — u
57971 |estlsipummenisdismstimpros (67971 {67991 000000001 1111111 il | |
63037 | deshlsifummelsdiamstiscobi |68037 | 63043 LIEERETRERTELTEN) e | |
63046 | dsivlsifummeiiadfarmsiciosnrs (68046 |6z04 LIEEERTEERTELNET) e |
68054 | dshsifummeiisdfarmsfimpros 68054 |6z074 000000001 1111111 e |
hastl N |]
hostl6 | [| |
12:52:2
1 I ki C pill

Figure 6.5 ARMS Agent Browsers

Agent browsers are updated in real time when the system is running. The user can
also change the strategies to configure the agent with a different behaviour for
service advertisement and discovery from the drategy browser. The agent
behaviours can also be configured using the PMA semi-automatically, which will
be discussed in Chapter 7.

6.5 A Case Study

Experiments have been designed using the initial implementation of ARMS.
There are two main parts in the design of the experiments. ARMS itself includes
agents, resources, and agent behaviour strategies used in the experiment. The
automatic users of the system are also designed to send application execution
requests to ARMS with different frequencies, which add different workloads onto
the system.

6.5.1 System Design

There are 8 agents in the experimental system. The agent hierarchy is shown in
Figure 6.6. The agent at the head of the hierarchy is gem, which has three lower
agents. sprite, origin, and tizer. The agent origin has no lower agents, while sprite

and tizer have two lower agents each.

-113-

CHAPTER 6 ARMS

/ \
D G T
CEPICEPICEPICED

Figure 6.6 ARMS Case Study: Agent Hierarchy

Each agent is a representative of a local grid resource. The information of the
resources is shown in Table 6.1. Each resource is composed with 16 processors
(for SGI) or hogts (for Sun), and each host has the same resource type. The SGI
multi-processor is the most powerful, followed by the Sun Ultra 10, 5, 1, and

SparcStation in turn.

Agent Resource Type #Processors/Hosts
gem SGI Origin 2000 16
origin SGI Origin 2000 16
sprite Sun Ultra 10 16
tizer Sun Ultra 10 16
coke Sun Ultra 1 16
budweiser Sun Ultra 5 16
burroughs Sun SPARCstation 2 16
rubbish Sun SPARCstation 2 16

Table 6.1 ARMS Case Study: Resources

In the experimental system, the T_ACT, L_ACT and G_ACT are used in each
agent. T _ACTs are maintained by the event-driven datapush service
advertisement. L_ACTs are updated once every 10 seconds using periodical data-
pull. G_ACTs are updated once every 30 seconds using periodical data-pull. All
of the agents use the same strategies except that gem is the head of the agent
hierarchy and does not maintain a G_ACT. The choice of different strategies
impacts on the service discovery performance of the overall system, which will be
discussed in detail in Chapter 7.

-114-

CHAPTER 6 ARMS

The agents and resources have been defined and configured above, while another
important design aspect of the experiment is the requests. To add workloads
automatically to ARMS, we design virtual users that send application execution
requests to the agent system.

6.5.2 Automatic Users

The applications that are used in the experiment are some typical scientific
computing programs, including sweep3d, fft, improc, closure, jacobi, memsort,
and cpi. Each application has been modelled and evaluated using the PACE
toolkit. The performance evaluation results against the SGI Origin2000 can be
found in Figure 6.7. The run time spent on other platforms is much more than that
on the SGI Origin2000, but the trend of the curve is almost the same, which is not

shown in details.

=
(@)
1

50 1«
45 +
§ 40 A
§ 35 - —e— sweep3d
N —a— fft
5 30 - —A— improc
% 25 —>— closure
pt —*— jacobi
é 201 —e— memsort
F 15 - —+cpl
[o))
c
i=
c
3
&

(6]
1

o

123456 7 8 910111213141516

The Number of Processors

Figure 6.7 ARMS Case Study: Applications

- 115-

CHAPTER 6 ARMS

Each request chooses one of the 7 applications randomly and is sent to one of 8
agents randomly. The required execution time for the application is also chosen

randomly from a given domain, which is described in Table 6.2.

Application | Minimum Requirement (s) | Maximum Requirement (s)
sweep3d 4 200
fft 10 100
improc 20 192
closure 2 36
jacobi 6 160
memsort 10 68
cpi 2 128

Table 6.2 ARMS Case Study: Requirements

The automatic users can be configured to send requests with different frequencies.
As shown in Table 6.3, four experiments are designed with different workloads
added to ARMS. The interval of requests sent in each experiment is chosen
randomly from a given domain, which results in a different average frequency.
For example, experiment No. 2 lasts about 7 minutes. During this period, 149
requests are sent to ARMS. There is one request sent every 3 seconds on average.

The experimental results will be discussed in the sections below.

Experiment No. 1 2 3 4
Minimum Request Interval (s) 1 1 1 1
Maximum Request Interval (s) 7 5 3 1
Average Frequency (s/application) 4 3 2 1
Experiment Last Time (min) 7 7 7 5
Total Application Number 109 149 215 293

Table 6.3 ARMS Case Study: Workloads

6.5.3 Experiment Results |

In this section, the detailed results of experiment No. 2 are given. In this
experiment, there are a total of 149 applications scheduled to be executed on 8
resources. The detailed results are listed in Appendix B, which can be illustrated

using both auser’s (global) view and agent (local) views.

-116-

CHAPTER 6 ARMS

A request is submitted by the user to ARMS with a requirement of execution time.
Agents in ARMS cooperate with each other to find an available resource that can
meet the user requirement. The service discovery process can be completed in O,
1, or 2 steps. For example, in a 2-step service discovery, three agents are involved.
The first agent receives the request from the user, the corresponding resource is
found at the final agent, and the second acts as a go-between during the process.
The application execution results are returned, including the time spent on

discovery, waiting, execution, etc.

The experimental results shown in Appendix B also give a list of application
execution data in the local management layer of each agent. An agent schedules
the accepted application executions onto the local resource. The corresponding
information includes the start time, the end time, and the mapping between the
application and the processors/hosts. These can be illustrated clearly using Gantt

charts.

The detailed results of this single experiment show how ARMS uses agent-based
service advertisement and discovery to achieve grid resource management.
However, the capability and performance for agents to schedule applications onto
grid resources can be only illustrated by the comparison of the statistical data

from several experiments. These are discussed below.

6.5.4 Experiment Results Il

In this section, some statistical data on the results of the four experimentsis given.
Note that the detailed results for the other three experiments are not given and
only statistical data are included in the tables below.

The digributions of the application execution against agents for all the
experiments are summarised in Table 6.4. For example, in the experiment No. 2,
27 requests of the application execution are scheduled onto the resource of the
agent gem (this is conformed with the detail results shown in Appendix B.2),
which are 19 percent of the total 149 requests. 5 requests (3 percent of the total

-117 -

CHAPTER 6 ARMS

requests) are not scheduled onto any resource and end unsuccessfully (this is

summarised from the data shown in Appendix B.1).

Agent Experiment Number
1 2 3 4

No. % No. % No. % No. %
gem 13 12 27 19 45 21 45 15
origin 13 12 15 10 27 13 42 14
sprite 15 14 20 13 27 13 38 13
tizer 14 13 27 19 31 14 39 13
coke 10 9 15 10 20 9 28 10
budweiser 13 12 17 11 23 11 31 11
burroughs 14 13 12 8 16 7 26 9
rubbish 14 13 11 7 17 8 24 8
failed 3 2 5 3 9 4 20 7
Total 109 100 149 100 215 100 293 100

Table 6.4 ARMS Experiment Results: Application Execution

The distributions of the application execution against service discovery for al the
experiments are summarised in Table 6.5. For example, in the experiment No. 2,
the resources for 114 requests of the application execution are discovered
immediately at the agent they are submitted to, which are 77 percent of the total
149 requests. This can also be summarised from the data shown in Appendix B.1.

#Step Experiment Number

1 2 3 4

No. % No. % No. % No. %
O-step 106 97 114 77 143 66 199 68

1-step 3 3 24 16 38 18 29 10
2-step 0 0 11 7 31 15 53 18
3-step 0 0 0 0 3 1 12 4

Total 109 100 149 100 215 100 293 100

Table 6.5 ARMS Experiment Results: Service Discovery

The statistical results shown in Tables 6.4 and 6.5 are also illustrated in Figures
6.8 and 6.9 respectively. The curves in the figures show trends of the application

-118-

CHAPTER 6 ARMS

distributions when the system workload increases. These are also discussed in
detail below.

25
g
17 20 7 —— gern
@, —&—origin
E —A— gprite
'% 15 1 —>—tizer
= —%— coke
E 10 ° ° —e— budwei ser
E i —+— burroughs
2 —=— rubbish
o .
= —— failed
S 5 /
=
o
<

O T T T

N
N
w
N

Experiment Number

Figure 6.8 ARMS Experiment Results: Application Execution

100

S

Pl

O

3 gQ-

3

a

[}

g

(%B 60 - ——O-step
2 —=—1-step
% —A— 2-step
5 40 - —— 3-step
5

2

B

o 204

c

=

®

L

g o

<

Experiment Number

Figure 6.9 ARMS Experiment Results: Service Discovery

-119-

CHAPTER 6 ARMS

1. There is one request sent every 4 seconds on average in the experiment
No. 1. Application execution requests are sent to the agents randomly, so
each agent should receive the same number of requests from users. In this
experiment, the system workload is rather light in relative to the
capabilities of the resources (even to the resources of agent burroughs and
rubbish, which are not so powerful). The 97% 0-step discoveries show that
amost all the requests are met immediately at the first agent they arrive.
Almost no service discovery processes occur between agents. This results
in an average application distribution on the agents and the number of the
requests that end unsuccessfully is very small.

2. The local resources of agent burroughs and rubbish are clusters of Sun
SPARCstation 2, which is not as powerful as the other platforms existing
in other agents. In the experiment No. 2, when the system workload
becomes heavier, many requests that they cannot meet are submitted to
their upper agent, tizer, which leads to a very heavy workload on tizer
(19% of application executions). The resources of agent coke and
budweiser are a bit more powerful. However, they still cannot meet all of
the requests from users. Some of the requests are submitted to their upper
agent, sprite, which leads to a heavy workload on sprite, though not so
heavy as tizer. These result in the dramatic increase of the percent of 1-
step service discovery processes. The agent gem is the head of agent
hierarchy and has the most powerful platform, a multi-processor SGI
Origin2000. There are some application execution requests that have very
critical requirements. These requests can only be met using the SGI
Origin2000, so are submitted from tizer or sprite to gem. This leads to a
rather heavy application execution workload on gem and also an increase
of the processes for the 2-step service discovery. However, as shown in the
Gantt chart of gem in Appendix B.2, gem is so powerful that it is still not
fully utilised. The resource of another agent, origin, is as powerful as that
of gem, and can meet all of the requests it receives from users. However,
origin is a little far from the other agents. This results in the fact that
origin is far from utilised, which is also illustrated in the Gantt chart of
origin in Appendix B.3.

-120-

CHAPTER 6 ARMS

3. The system workload increases further. The dramatic decrease of the
percent of application executions on tizer indicates that the local resource
of tizer is fully utilised in this situation. Many requests submitted from
burroughs and rubbish have to be passed to gem, which leads to a
dramatic increase of the number of 2-step discovery processes. The
number of 1-step discovery processes increases too and a few 3-step
discovery processes appear. More application executions are scheduled
onto the agent origin. All of these indicate that service discovery among

the agents becomes active when the system workload increases.

4. The system workload becomes very heavy in this situation. The decrease
of the percent of application executions on gem indicates that the local
resource of gem also reaches its capability limitation, which results in a
dramatic increase of the number of the unsuccessful requests. The number
of 1-step discovery processes decreases, while 2-step and 3-step service
discovery processes occur more often. All of these indicate that the whole
system is fully utilised, so more complex service discovery processes
occur in order to find the available resources for the requests. However, in
this situation, the application executions show a very reasonable
distribution against agents. The order of the workload on the agents is the
same as that of the computing capabilities of their resources. The agent
gem and origin, which represent the most powerful resources in the
example system, have more applications executed, followed by sprite,
tizer, budweiser and coke. And only a small number of requests are met at

the agent burroughs and rubbish.

These experimental results show that the performance prediction driven agent-
based service advertisement and discovery is effective for the applications to be
scheduled at the meta level to utilise the grid resources. As we have mentioned in
Section 2.4, scalability and adaptability are two key challenges that the

implementation of grid resource management must address.

As shown in the experimental results, agents are organised into a hierarchy and
only process service advertisement and discovery with nearby agents. Once the

computing power in a scope cannot meet the requirements received, the additional

-121-

CHAPTER 6 ARMS

requests will be gradually dispatched to a larger scope, where the workload is not
so heavy compared with the computing capabilities. Note that the service
discovery is not processed in one step, but step by step, and may bypass many
intermediate agents. This key feature makes it possible for the system to scale

well when the grid environment becomes very large.

The PACE performance evaluation functions are used in the ARMS
implementation both locally and remotely. In order for an agent to make
decisions, the PACE evaluation engine will be called many times. The rapid
evaluation time of PACE without sacrificing accuracy is a very important feature

for the ARMS implementation.

Another important factor for ARMS to achieve high performance is the capability
for the agents to adjust their behaviours for service advertisement and discovery to
adapt to the highly dynamic grid environment. Though some of the strategies have
been introduced in the A4 methodology, and a PMA isaso included inthe ARMS
architecture, meta-level performance optimisation of ARMS using PMA is not
discussed in detail. In the next chapter, the implementation of PMA is described
to provide ARMS with high adaptability.

-122-

Chapter 7

PMA:
PERFORMANCE MONITOR AND
ADVISOR FOR ARMS

Performance issues arise from the dynamic nature of grid resources [Can2001].
As we have mentioned in the A4 methodology, most practical systems must make
a balance between service advertisement and discovery. The PMA is a special
agent, which is capable of performance modelling and simulation about the agent
system and acts as a performance monitor and advisor in ARMS. In this chapter,
the structure for the PMA implementation is described along with details on
performance optimisation strategies and steering policies. A case study is also
used to show how different strategies and policies are used to improve the

performance of the ARMS agent system.

7.1 PMA Structure

The PMA was illustrated in Figures 6.1 and 6.2 previously. Unlike facilitators or
brokersin classical agent-based systemsiit is not central to the rest of the agents. It
neither controls the agent hierarchy nor serves as a communication centre in the
physical and symbolic sense. Instead, the PMA observes the communication
traffic of the agent system and tries to draw corresponding conclusions regarding

the agents' behaviour with the intention of improving the performance of ARMS.

-123-

CHAPTER 7 PMA

If the PMA ceases to function, the agent system has no difficulty in surviving and
it continues with its ordinary life. The efficiency improvement consideration
would not be provided in ARMS unless some modelling and simulation
mechanism is built into the PMA. By introducing the PMA, we have tried to avoid
making ARMS unscalable by relying on a single agent, which otherwise becomes
a system bottleneck.

In this section, we will introduce the structure of the PMA and its relation with
other agents in ARMS, which is shown in Figure 7.1. The kernel of the A4
simulator is used in the PMA, including the model composer and simulation

engine. However, the PMA has a different way of input and output.

i ARMSAgents i PMA
Monitoring Statistica D?Ia > Model Composer
Performaice Model Strat‘Egi%
Reconfiguration (« Strategi%i Simulation Engine

Figure 7.1 PMA vs. ARMS

Statistical data is monitored from each of the ARMS agents and input to the PMA
for performance modelling. As introduced in Section 5.6.1, the statistical data that
are input into the model composer mainly concern the requests and services in the

system. These include:

* Relative request performance value. In ARMS, this value is the required

application execution time.

* Request sending frequency. An agent may receive the same request from a
user very frequently. The PMA sensors in the ARMS agents can analyse
the request information in the log file and calculate the average time a
request isreceived.

* Relative service performance value. In ARMS, the resource performance
is evaluated using the PACE toolkit and scheduling algorithms, which

makes the modelling and simulation very difficult. Some estimation on

- 124 -

CHAPTER 7 PMA

average application waiting and execution time can be used as a relative

service performance value.

» Service performance changing frequency. The grid resources are dynamic
and their performance varies over time. The PMA sensor in the ARMS
agents can monitor the updating frequency of T_ACT and estimate an

average performance changing freguency.

The datigtical data and other relative information are composed into a
performance model. The performance model is put through the simulation engine
in the PMA. The optimisation strategies used in ARMS to improve service
discovery will be discussed in Section 7.2. New optimisation strategies can be
chosen to improve the performance metrics according to some steering policies,
which will be discussed in Section 7.3. The simulation can be performed many
times until a better solution is selected. The selected optimisation strategies are
returned and used to reconfigure the agents in ARMS.

7.2 Performance Optimisation Strategies

When the A4 methodology and the ARMS implementation were introduced
earlier, some srategies for ACT maintenance were discussed. However, the
impact of the choice of these strategies on the overall system performance is not
discussed in detail. There are also further performance optimisation strategies that
can be considered, which will be discussed in detail below.

7.2.1 Use of ACTs

T_ACT is always used in each agent and cannot be used for service discovery
performance optimisation, because the connections made between the local
resource and the T_ACT in the agent take place within an agent and have no

effect on communications between agents.

Caching previous service discovery results is a good strategy for performance

optimisation that assumes a request may be required more than once. Many

-125-

CHAPTER 7 PMA

current network applications use caches to optimise performance. Using cached
service information may result in direct service discovery in one step. However, if
the service information changes frequently compared to the request frequency,
using the cache may decrease the service discovery speed. So the efficiency of

using cache depends on the characteristics of the actual system.

Adding some local knowledge to an agent is also a performance optimisation that
assumes that services are often required by local agents. If an agent has the
service information of its lower agents, it need not traverse al of them for service
discovery and dispatch the request to the available lower agent directly. However,
additional data maintenance workload is needed for the L_ACT.

Adding some global knowledge to an agent is also a performance optimisation. A
request may need less connections to find the available service as the higher-level
agents need not take part in the discovery process. The system load can also be
reduced. Additional data maintenance workload is also needed for the G_ACT.

The efficiency of using L_ACT and G_ACT also depends on the characteristics of
the actual system. Balance must be made between service advertisement and
discovery when L _ACT and G _ACT are used in agents. How to steer the
performance optimisation process will be discussed in Section 7.3 and illustrated
using a case study in Section 7.4.

7.2.2 Limited Service Lifetime

Another performance optimisation strategy is to add a service lifetime limitation
to the atributes of the service information. This lifetime should be pre-estimated
before the service is advertised. The agent can check the ACTs frequently and
delete out-of-date service information. This can avoid unnecessary routing
processes and increase the speed of service discovery. There is also no additional
data maintenance workload. However, the lifetime of some services in the system

may be unpredictable.

-126 -

CHAPTER 7 PMA

7.2.3 Limited Scope

The scope in which a service can be advertised and discovered can also be pre-
defined by attributes to the service information. The service need only be
advertised within a certain scope of the system, which can reduce the
advertisement and data maintenance workload. The search for a service can aso
be limited to a certain scope, avoiding unnecessary discovery processes. However,
a prior knowledge about the service and its requests are needed to achieve
optimisation. Mismatches between the scope limitation of a service and of a

request may result in the low success rate of the service discovery.

7.2.4 Agent Mobility and Service Distribution

A good match between the requests and services in the system may lead to higher
performance service discovery. For example, in the grid environment, if a scope
with many requests has also many high performance computing resources, these
requests need not be routed far away to find an available resource, which
decreases the service discovery workload. However, request distribution is up to
the users and cannot be changed by the system. So agent mobility and service re-
distribution can be used to give a better match with the requests.

The case study in Section 5.7 provides a good illustration that agent movement
and service re-distribution can lead to a higher performance. When the service is
moved to a coordinator of a larger sub-hierarchy, more requests become local

instead of remote, which reduces the discovery workload of the system.

It is clear whether the strategies described above can be used to improve
performance is determined by the characteristics of the system. The performance
of the system may vary when the grid resources change. So the process for the
PMA to monitor and reconfigure the ARMS agent exists during the lifetime of the
system. When the system states change, the PMA is responsible for changing the
performance optimisation strategies and configuring the relative agent behaviours
to adapt to the new situation. Some performance steering policies can be used to

guide the changing of strategies and configure the agent behaviours to achieve

-127 -

CHAPTER 7 PMA

higher service discovery performance gradually. These will be discussed in the

following sections.

7.3 Performance Steering Policies

There are four metrics that are used to characterise the performance of the system,
which were given in Section 5.5. The processes for the PMA to deer the
performance of the ARMS agents are driven by improving these metrics.
Different systems have different critical aspects and have different criteria of high
performance. In this section, we focus on load balance between the service

advertisement and discovery, which is commonly needed in most of the systems.

Discovery speed (V) and system efficiency (€) are two metrics that are used for
load balancing between the service advertisement and discovery. The system isin
very low performance mode when both discovery speed and system efficiency are
very low. In this situation, agents can be steered and configured with more service
advertisement. Reasonable service advertisement can lead to less workload on
service discovery and improve both discovery speed and system efficiency
simultaneously. However, too much service advertisement may decrease system
efficiency though increase discovery speed. Let’s consider each kind of ACT

maintenance approach.

Each agent maintains a T_ACT in its coordination layer, which includes the
service information of the local resource. Periodically updating T_ACT may save
update workload but cause delay on updating and unnecessary trouble for service
discovery. Maintenance of T _ACT does not add workload on agent
communication, so event-driven updating can be used to keep T_ACT in line with
resource changes in real time. Because event-driven data-pull updating of T_ACT
may increase service discovery time, it is better to use an event-driven data-push
approach to keep the T_ACT updated in real time. However, if the resource
changes very frequently and the number of requests is very small, an event-driven

data-pull approach can also be used.

-128-

CHAPTER 7 PMA

In most situations, cached information can improve the system performance to
some extent. Especially when system performance is very low and there is no
cached information maintained in each agent, adding C_ACT in each agent of the
system could result in obvious performance improvement. In general, C_ACT is
maintained using both event-driven data-pull and data-push approaches, which is

the same as other kinds of use of cache.

Keeping some service information of lower agents can always improve service
discovery performance if the system is not extremely dynamic. However, in
general only one of the four approaches can be chosen for L_ACT maintenance.
Two or more approaches applied at the same time may cause redundancy of
service advertisement. The service discovery may not benefit from the redundant

service information enough so that the system efficiency may decrease.

Use of G_ACT has the same policies as L_ACT. Note that data-push updating of
G_ACTs should be applied to the system carefully. Because the updating takes
place in all of the lower agents of an agent, the service advertisement workload
could increase greatly. However, the lower agents may not make good use of this
updated service information for service discovery, which leads to a low system

efficiency.

Another advantage of using G_ACT, is to avoid adding too much service
discovery workload to the coordinators or the broker in the agent hierarchy and
improve load balance of the agents. The success rate of the system can also be
improved using available limit service lifetime and scope configurations. This is
not discussed in detail here.

In fact, it is difficult to define obvious and efficient policies to guide the
performance optimisation processes used in PMA. There are too many factors that
have an impact on system performance and whether a strategy can be chosen to
improve performance depends heavily on the real situation of the system. The
system can be steered at a global level, which means that al of the agents are
configured with the same strategies. However, each agent can also be configured

with a different strategy. In this section, we only discuss the problem of

-129-

CHAPTER 7 PMA

performance steering initially. Further research is needed to give a deeper analysis

of the performance optimisation issues.

7.4 A Case Study

In this section, an example model is given and experiment results are included to
show how to steer the performance optimisation process using the PMA. Note that
the simulation results included in this section are actually produced using the A4

simulator.

7.4.1 Example Model

The attributes of an example model are shown in several tables. This is composed
of about 250 agents, each representing a high performance computing resource
that may provide a computing capability with a different performance. These
agents are organised in a hierarchy, which has three layers. The identity of the
root agent is gem. There are 50 agents registered to gem, four of which each also

have 50 lower agents. The hierarchy isillustrated in Table 7.1.

Agents Upper Agent
gem .
sprite~0......sprite~49 gem
tup~0..... tup~49 sprite~9
cola~0......cola~49 sprite~19
tango~0..... tango~49 sprite~29
pepsi~0......pepsi~49 sprite~39

Table 7.1 Example Model: Agents

To smplify the modelling processes, we define the services and requests in the
agents at the system level, which is shown in Table 7.2 and 7.3 respectively. The
name of the services and requests are al HPC, but with different relative
performance values. The frequency value of the service, 5, for example, means the
service performance will change between 0 and the performance value once every

5 steps during the simulation. The frequency value of the request, 5, for example,

-130-

CHAPTER 7 PMA

means a request will be sent once every 5 steps during the simulation. A step can
be designed as an arbitrary number of seconds. In ARMS, these values must be
monitored by the PMA while the system is operational. The performance
optimisation strategies of the lifetime and scope limitations are not used in the
model. The digtribution value is used to define how many agents will be
configured with the corresponding service or request.

Name Pelff((a)lfmm\éﬁce Freg | Lifetime | Scope | Dist (%)
HPC 1000 5 | Unlimited | Top 20
HPC 600 10 | Unlimited | Top 40
HPC 200 20 | Unlimited | Top 60

Table 7.2 Example Model: Services
Name Pelff((a)lfmm\éﬁce Freg. | Scope | Dist. (%)
HPC 100 5 Top 80
HPC 300 10 Top 60
HPC 500 20 | Top 40
HPC 800 40 Top 20
HPC 1000 60 Top 10

Table 7.3 Example Model: Requests

Finally, the model must define how each agent uses the ACTs to optimise the
performance. In this case study six experiments have been considered, each of
which has the same configurations as described in Table 7.1 — 7.3, but has
different optimisation strategies as described in Table 7.4.

Performance Optimisation Strategies Experiment Number

112(3|4|5|6

T_ACT: event-driven data-push vl vl w !l vl v
C_ACT: event-driven data-push and data-pull rararay
L_ACT: event-driven data-push e v | |
G_ACT: periodic data-pull every 10 steps raray
L_ACT: periodic data-pull every 10 steps o |
G_ACT: event-driven data-push v

Table 7.4 Example Model: Strategies

-131-

CHAPTER 7 PMA

To simplify the experiments, we only define the strategies at the system level,
which means all of the agents in the model must use the same performance
optimisation strategies. A mixture of optimisation strategies is possible but is not
considered in these experiments. In the simulation results included in Section
7.4.2, acomparison of the different strategies is given by considering their impact

on the system performance.

7.4.2 Simulation Results

The simulation results for al of the experiments are summarised in Table 7.5.
Note that al values are accumulative results after 200 simulation steps. Each of

the six situations are described in detail below.

Metrics Experiment Number
1 2 3 4 5 6
r 12296 12355 12576 12560 12645 11715
a 0 0 5604 8051 10172 | 285148
d 65595 51113 7435 6901 6910 7056
\Y 0.18 0.24 1.69 1.82 1.82 1.84
e 0.18 0.24 0.96 0.84 0.74 0.04

Table 7.5 Simulation Results

1. Only T_ACTsare used in each agent. Each time the request arrives, a lot
of connections must be made and traversed in order to find the satisfied
service. In this situation, the discovery speed and system efficiency are
both rather low.

2. The cache is used in each agent, which needs no extra data maintenance
and improves the discovery speed and system efficiency a little. This is
because the dynamics of the services reduce the effects of the cached

information and so becomes unreliable.

3. L_ACT is added in each agent. Each time the service performance
changes, the corresponding agent will advertise the change upward in the

hierarchy. This adds additional data maintenance workload to the system,

-132-

CHAPTER 7 PMA

which decreases the discovery workload extremely. So the discovery

speed and the system efficiency are all improved.

. G_ACT isaso added. Each agent will get global service information from
its upper agent once every 10 simulation steps, which will add additional
data maintenance workload. From the simulation results, we can see this
improves the discovery speed further. But the system efficiency decreases
a little because of the additional data maintenance.

. Another maintenance of the L_ACT is added. Each agent asks for service
information from its lower agents once every 10 steps. This doesn't
improve the discovery speed any more and only adds more data

maintenance workload, which decreases the system efficiency further.

. Another maintenance of the G_ACT is added. Thisimproves the discovery
speed only a little, but adds further data maintenance workload, which
decreases the system efficiency extremely.

200

—
La
]

m
Oe

—
]
=

e (*100)

Ln
]

1 2 3 4 5 & Ha

Figure 7.2 Choice of Optimisation Strategies

The impact of the choice of the optimisation strategies on the discovery speed and

the system efficiency is shown clearly in Figure 7.2. It can be seen that the fourth

experiment has a good balance between the discovery speed and the system

efficiency for this example model. It has a higher discovery speed in comparison

to the third, with only slight lower system efficiency.

Changing the G_ACT update frequency will also change the performance of the

model. Figure 7.3 shows the relation between the G_ACT update frequency and

the system performance. In these experiments, the strategies that are used are all

the same as described in the fourth experiment of Table 7.4. The only differenceis

-133-

CHAPTER 7 PMA

the G_ACTs in the agents are updated with different frequencies, which may lead
to differences in the amount of system workload for service advertisement. The
best trade-off between discovery speed and system efficiency is once every 20

simulation steps in this example model.

200

\ '
180 ——ot—9o

\‘\Q/’\O

160

120

|
|
|
|
|
|
140 i
|
|
|
|
|
T

v, € (*100)

60 /./
40

20

100
R ==
80 !
i
|
[}
[}
[}
[}
[}
[}
[}
[}
[}
]

O T T T T T T T T
1 2 5 10 20 30 40 80 Never

G_ACT Upddting Frequency in Steps

Figure 7.3 Choice of G_ACT Update Frequency

In summary, the example model should use all of the ACTs. L_ACT should be
maintained by the real-time service advertissment. The G_ACT should be
maintained by updating once every 20 steps. In fact, the performance of the
example model can be improved further using agent level modelling. Different
agents can use a mixture of different strategies to achieve higher performance of

the whole system. Thisis not discussed in detail here.

The techniques of performance modelling and simulation are useful especially for
the current phase of research into grid computing. As mentioned, a practical grid
environment does not yet exist. In fact, there is not even a grid testbed that can be
used for research. In the last chapter, the example system is composed of only 8

resources, which is far from a grid size. The performance data cannot be produced

-134 -

CHAPTER 7 PMA

in such a system for analysis, which makes a simulation environment very

valuable for this kind of research. The A4 simulator is such an attempt.

The PMA agent is used for online performance optimisation and steering for
ARMS, which is a further usage of the smulation techniques. The simulation
results are not only used for traditional performance analysis, but also feedback to
the system for performance improvement in real time. However, the research into
performance issues on service discovery in large-scale multi-agent system is just
beginning. More performance optimisation strategies and steering policies need to
be investigated further. A practical implementation of the ARMS and the PMA is

ongoing, and is summarised in the conclusion part of the thesis.

-135-

Chapter 8

CONCLUSIONS

The grid is an emerging infrastructure for high performance computing. Resource
management is the most important service for grid implementation. In this thesis,
the methodology, tools, and applications of agent-based resource management for
grid computing are presented. In this chapter, the main contents of the thesis are

summarised and future work is suggested.

8.1 Thesis Summary

The work in this thesis is based on previous work on a performance evaluation
toolkit, known as PACE. In this thesis, a new parallel application, Sweep3D, is
used to validate the capabilities of performance modelling, evaluation, and
prediction of the PACE system. The key features of PACE include rapid
evaluation time, reasonable accuracy, and easy comparison across different
platforms. The utilisation of PACE provides QoS support for grid resource

management.

While extremely well suited for managing a locally distributed resource, the

PACE functions do not map well onto a wide-area grid computing environment.

-136-

CHAPTER 8 CONCLUSIONS

A new methodology for building large-scale distributed software systems with
highly dynamic behaviours, A4 (Agile Architecture and Autonomous Agents), is
presented in this thesis. The main component in an A4 system is the agent. Agents
are both service requestors and providers. Services can be advertised and
discovered within the hierarchy among different agents. There are four
performance metrics for service discovery: discovery speed, system efficiency,
load balancing, and success rate. A simulator for A4 has been developed that can

be used for modelling and simulation to evaluate an A4 system performance.

The coupling of the A4 methodology with PACE functions leads to an initial
implementation of an agent-based resource management system for grid
computing, called ARMS. PACE is used to provide quantitative data concerning
the performance of sophisticated applications running on a local resource. At a
metacomputing level, agents cooperate with each other and perform resource
advertisement and discovery functions to schedule applications that need to utilise
the available resources. An ARMS agent includes. an ACT manager, the PACE

evaluation engine, a multi-processor scheduler, and a matchmaker.

A special agent, a PMA, is also developed as a performance monitor and advisor
in ARMS, which is capable of performance modelling and simulation of agent
service discovery. Some performance steering policies can be used to guide the
agents to choose different kinds of performance optimisation strategies, including
the use of ACTs, limited service lifetime, and limited scope of service

advertisement and discovery, etc, to improve system performance gradually.

The main contribution of this work includes: performance prediction driven QoS
support for grid resource management and scheduling, an agent-based hierarchical
model for service advertisement and discovery, and simulation-based performance

optimisation and steering of agent resource discovery.

The performance prediction capability provided by the PACE toolkit was used for
multi-processor scheduling, on-the-fly application steering, and traditional
performance analysis. In the work described in this thesis, it is first used for QoS

support of grid resource management. Most of the previous solutions to grid

-137 -

CHAPTER 8 CONCLUSIONS

resource management include only soft QoS support. The key features of PACE
make it a more suitable toolkit than any other evaluation tools to provide detail
performance data rapidly without sacrificing the accuracy. This can be used to
provide the hard QoS support for grid resource management at a meta level. The
introduction of the PACE performance prediction technique to grid resource

management differentiates this work from any other existing solutions.

Agent technologies have been developing for more than ten years and are
becoming a mainstream software development technology. The development of
the grid software infrastructure can benefit from the trend of agent-based software
engineering in different ways. In this work, a hierarchy of homogenous agents is
used with capabilities of service advertisement and discovery to provide grid
resource management and scheduling at a meta level. Agents can be configured
with different behaviours, which provides a flexible way for the system to adapt to
the highly dynamic grid environment. The agent-based architecture not only
provides a clean and powerful high-level abstraction of the grid resource
management system described in this work, but can also be used as a framework
for new components or functions to be added into the system. ARMS is the first
prototype implementation of an agent-based resource management system for grid

computing with important featuresthat do not exist in other solutions.

Unlike many other agent-based system implementations that focus mainly on data
representation and communication protocols, performance issues are the key
consideration in the development of ARMS described in this thesis. The high-
level performance evaluation and optimisation of service advertisement and
discovery in large-scale MAS are attempted in this work using performance
modelling and simulation techniques. Some performance metrics are defined and
some performance optimisation strategies and steering policies are explored.
Though performance issues on service discovery have been discussed in some
other work, to the authors' knowledge, a quantitative analysis, that enablesa MAS
performance of service discovery to be investigated, can be only found in the

work described in this thesis.

-138-

CHAPTER 8 CONCLUSIONS

In summary, all of above go together to provides an available methodology and
prototype implementation of an agent-based resource management system for grid
computing, which can be used as a fundamental framework for further

improvement and refinement.

8.2 Future Work

The main suggestion for future work is centred on the enhancement of ARMS.
The framework and methodology have been demonstrated using an initial
implementation of ARMS as described in this thesis. Many features can be added

to the new implementation.

8.2.1 Performance Evaluation

The PACE toolkit is used to supply performance evaluation datain ARMS. There
are still several aspects that can be improved for PACE to provide better QoS

support of grid resource management.

Current PACE models include too much detail of an application or a resource,
which need to be lightened for remote performance evaluation without sacrificing
accuracy. A new project isto focus on transaction-level performance evaluation of
Java applications [Spooner2001]. The detail of the operations in an application
can be encapsulated into transactions, and the performance specification can be
processed a a higher level. PACE models with lightweight application
characterisations will reduce the communication workload between agents when
service advertisement and discovery are processed, and hence improve the system

performance.

PACE resource models are currently static without consideration of dynamic CPU
workload and network traffic. The benchmark programs are executed off-line to
produce these models on different platforms. In future, Dynamic Performance

Measurement (DPM) can be applied to the ARMS implementation. The agents in

-139-

CHAPTER 8 CONCLUSIONS

ARMS can control the benchmark programs to be executed on the local resource

inreal time and produce the corresponding resource models dynamically.

In the work described in this thesis, we focus on the evaluation of the application
execution time, which is the only cost metrics that is included in the cost model of
arequest. In fact, more metrics (e.g. memory usage, execution environment, etc.)
can be added into the cost model and the corresponding evaluation engines can
also be added into each ARMS agent. This will provide a wider QoS support of

the grid resource management.

8.2.2 Multi-processor Scheduling

An advanced multi-processor scheduling algorithm should be developed to
include more consideration of dynamic information on resources and applications
and aim to both meet requirements from users and maximise the resource
utilisation.

A multi-processor scheduler, called TITAN, is under development at Warwick. A
Genetic Algorithm (GA) is used as the kernel of TITAN. A monitoring module is
also developed to collect dynamic information of the local processors. TITAN
also takes advantage of the performance prediction capability of PACE. The GA
in TITAN is an iterative heuristic process that can absorb slight changes of both
resources and applications. TITAN aims to maximise the resource utilisation via
calculating the penalty of the weighted idle time of the local processors and
minimising the global make span of the application executions. An extension of

the GA will aim to meet requirements from users as well.

TITAN will be an ideal local resource manager in the grid computing
environment. The new implementation of ARMS can integrate multiple TITANs
with agents to achieve grid resource management. TITAN can also be developed
using the APIs provided by standard grid toolkits like Globus so as to cooperate
with other kinds of local resource managers (e.g. Condor and AppLeS) in the grid

environment.

- 140 -

CHAPTER 8 CONCLUSIONS

8.2.3 Agent-based Resource Management

The A4 methodology and the ARMS agents can also be improved in a number of
ways. These are listed in detail below.

* Anagent in the hierarchy may be permitted to register with multiple upper
agents, which will result in a more flexible and robust system architecture.
Once an agent leaves the system, its lower agents are ill able to contact
the rest of the system via other upper agents. The cost of this would be

more complex system management.

* New performance metrics for the agent-based service discovery can be
developed concerning the communication time spent on the service
discovery, instead of just the number of connections made for the service
discovery. Benchmark programs can be developed to measure the
communication time between two agents, and measurement results can be

used for modelling the time spent in agent communication.

* New performance optimisation strategies and steering policies should be
developed for efficient implementation of service advertisement and
discovery in ARMS. The modelling and simulation techniques can be used

to evaluate different strategies and their impact on the system performance

* New protocols for service advertisement and discovery can be developed
to provide stronger QoS support. For example, multiple service support
will provide users and system management tools with a wider base of QoS
support. The agent-based grid resource discovery can also be designed to
be a negotiation process between the users and the ARMS agents.

» Current agent behaviours in ARMS can only be configured by the system
manager or the PMA. Further implementation of the ARMS agents should
be able to change the behaviours themselves according to the changing
requests and resources. The agent needs more capabilities to learn over

time and get useful knowledge from its historic information.

-141-

CHAPTER 8 CONCLUSIONS

8.2.4 Enhanced Implementation

The ARMS implementation can be enhanced using some existing standards,
languages, tools and protocols. For example, the ARMS agents and the PMA can
be developed using Java and an XML format for data representation. An agent
communication language (ACL) can be used to allow agents to communicate with
each other a a higher-abstracted knowledge level. A resource specification
language (RSL) can be used to give a formal representation of service information
in ARMS. Some network and database management protocols like LDAP and
SNMP can also be used in the implementation of ARMS.

The new implementation of ARMS is to be tested on a grid infrastructure that is
being built aa Warwick. This includes clusters of Sun workstations, an SGI
Origin2000 and an IBM S/390, etc. All of the work introduced above will enhance
the applicability and usefulness of the implementation of ARMS towards a
practical system.

- 142 -

Alkindi2001

Amold1999

Arbab1993

Atkins1996

Bagrodial998

Baker2001

BIBLIOGRAPHY

A. M. Alkindi, D. J Kerbyson, G. R. Nudd, and E.
Papaefstathiou, “Optimisation of Application Execution on
Dynamic Systems’, Future Generation Computer Systems,
Vol. 17, No. 8, Elsevier Science, pp. 941-949, 2001.

K. Amold, B. O’'Sullivan, R. Scheifer, J. Waldo, and A.
Woolrath, The Jinild Specification, Addison Wesley, 1999.

F. Arbab, |I. Herman, and P. Spilling, “An Overview of
Manifold and its Implementation”, Concurrency: Practice
and Experience, Vol. 5, No. 1, pp. 23-70, 1993.

D. E. Atkins, W. P. Birmingham, E. H. Durfee, E. J. Glover,
T. Mullen, E. A. Rundensteiner, E. Soloway, J. M. Vidal, R.
Wallace, and M. P. Wellman, “Toward Inquiry-Based
Education Through Interacting Software Agents’, |IEEE
Computer, Vol. 29, No. 5, pp. 69-76, 1996.

R. Bagrodia, R. Meyer, M. Takai, Y.A Chen, X. Zeng, J.
Martin, and H.Y. Song, “Parsec: A Paralel Simulation
Environment for Complex Systems’, IEEE Computer, Vol.
31, No. 10, pp. 77-85, 1998.

M. Baker, R. Buyya, and D. Laforenza, “The Grid: A
Survey on Global Efforts in Grid Computing”, Technical
Report: 2001/92, Monash University, Australia, May 2001.

- 143-

Berman1996

Boloni1999

Bradshaw1997

Bray2000

Brewington1999

Brooks1997

Buyyal999

Buyya2000

Buyya2000b

Can1996

Can1998

BIBLIOGRAPHY

F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao,
“Application-level Scheduling on Distributed
Heterogeneous Networks’, in Proc. of Supercomputing,
1996.

L. Boloni, and D. Marinescu, “An Object-Oriented
Framework for Building Collaborative Network Agents’, in
A. Kandel et a, eds, Agents in Intelligent Systems and
Interfaces, Kluewer, 1999.

J. M. Bradshaw, ed., Software Agents, The AAAI Press /
The MIT Press, 1997.

J. Bray, and C. Sturman, Bluetooth: Connect Without
Cables, Prentice Hall, 2000.

B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko,
and D. Rus, “Mobile Agents for Distributed Information
Retrieval”, in M. Klusch, ed., Intelligent Information
Agents, Chapter 15, Springer-Verlag, 1999.

C. Brooks, B. Tierney, and W. Johnston, “JAVA Agents for
Distributed System Management”, LBNL Report, 1997.

R. Buyya, ed., “High Performance Cluster Computing”,
Prentice Hall, 1999.

R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An
Architecture for a Resource Management and Scheduling
System in a Global Computational Grid”, in Proc. Of 4™ Int.
Conf. on High Performance Computing in Asia-Pacific
Region, Beijing, China, 2000.

R. Buyya, S. Chapin, and D. DiNucci, “Architectural
Models for Resource Management in the Grid”, in Proc. of
1% |IEEE/ACM Int. Workshop on Grid Computing, Lecture
Notes in Computer Science 1971, Springer-Verlag, pp. 18-
35, 2000.

J. Ceon, “Andysis and Design of an Acknowledge
Subsystem of BMCST-MIS’, BEng Thesis, Tsinghua
University, 1996.

J. Cao, “Flexible Software Systems’, MSc Thesis, Tsinghua
University, 1998.

-144 -

Can1999

Can1999b

Can1999c

Can1999d

Can2000

Can2000b

Can2001

Can2001b

Can2001c

BIBLIOGRAPHY

J Cao, Y. Fan, and C. Wu, “Research of Operation
Administration System Agents of Integration Platform”,
Computer Integrated Manufacturing Systems (CIMS), Vol.
5, No. 3, pp. 39-43, 1999.

J. Cao, Y. Fan, and C. Wu, “System Architecture of New
CIMS Application Integration Platform”, J. of Tsinghua
University, Vol. 39, No. 7, pp. 68-71, 1999.

J Cao, and Y. Fan, “Concepts of Flexible Software
Systems’, Computer Science, Vol. 26, No. 2, pp. 74-77,
1999.

J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Modeling of ASCI High Performance Applications Using
PACE”, in Proc. of 15" Annua UK Performance
Engineering Workshop, Bristol, UK, pp. 413-424, 1999.

J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Performance Modelling of Parallel and Distributed
Computing Using PACE”, in Proc. of 19" IEEE Int.
Performance, Computing and Communication Conf.,
Phoenix, USA, pp. 485-492, 2000.

J. Cao, D. J Kerbyson, and G. R. Nudd, “Dynamic
Application Integration Using Agent-Based Operational
Administration”, in Proc. of 5" Int. Conf. on Practical
Application of Intelligent Agents and Multi-Agent
Technology, Manchester, UK, pp. 393-396, 2000.

J. Cao, D. J. Kerbyson, and G. R. Nudd, “Performance
Evaluation of an Agent-Based Resource Management
Infrastructure for Grid Computing”, in Proc. of 1% |EEE Int.
Symp. on Cluster Computing and the Grid, Brisbane,
Augtralia, pp. 311-318, 2001.

J. Cao, D. J. Kerbyson, and G. R. Nudd, “Use of Agent-
Based Service Discovery for Resource Management in
Metacomputing Environment”, in Proc. of 7" Int. Euro-Par
Conf., Manchester, UK, Lecture Notes in Computer Science
2150, Springer-Verlag, pp. 882-886, 2001.

J. Cao, D. J. Kerbyson, and G. R. Nudd, “High Performance
Service Discovery in Large-scale Multi-agent and Mobile-
agent Systems’, to appear in Int. J. of Software Engineering
and Knowledge Engineering, Special Issue on Muti-Agent
Systems and Mobile Agents, World Scientific Publishing,
2001.

- 145-

Can02001d

Carriero1989

Casanoval998

Case1988

Chapin1999

Chen1996

Ciancarini1996

Ciancarini1999

Ciancarini2001

Czajkowski1998

Davison1998

BIBLIOGRAPHY

J. Cao, D. J Kerbyson, S. A. Jarvis, G. R. Nudd, D. P.
Spooner, and J. D. Turner, “ARMS. an Agent-based
Resource Management System for Grid Computing”, to
appear in Scientific Programming, Special Issue on Grid
Computing, 1OS Press, 2001.

N. Carriero, and D. Gdernter, “Linda in Context”,
Communications of ACM, Vol. 32, No. 4, pp. 444-458,
19809.

H. Casanova, and J. Dongarra, “Applying NetSolve's
Network-Enabled Server”, IEEE Computational Science &
Engineering, Vol. 5, No. 3, pp. 57-67, 1998.

J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple
Network Management Protocol”, RFC 1067, IETF Draft
Standard, 1988.

S. J Chapin, D. Katramatos, J. Karpovich, and A.
Grimshaw, “Resource Management in Legion’, Future
Generation Computer Systems, Vol. 15, No. 5, pp. 583-594,
1999.

H. Chen, A. Hougton, J. Nunamaker, and J. Yen, “Toward
Intelligent Meeting Agents’, IEEE Computer, Vol. 29, No.
8, pp. 62-70, 1996.

P. Ciancarini, “Coordination Models and Languages as
Software Integrators’, ACM Computing Surveys, Vol. 28,
No. 2, pp. 300-302, 1996.

P. Ciancarini, and A. L. Wolf (eds.), Proc. of 3 Int. Conf.
on Coordination Languages and Models, Lecture Notes on
Computer Science 1594, Springer Verlag, 1999.

P. Ciancarini, and M. Wooldridge (eds.), Agent-Oriented
Software Engineering, Lecture Notes in Atrtificial
Intelligence, Vol. 1957, Springer Verlag, 2001.

K. Czajkowski, |. Foger, N. Karonis, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke, “A Resource
Management Architecture for Metacomputing Systems’, in
Proc. of IPPS/'SPDP '98 Workshop on Job Scheduling
Strategies for Parallel Processing, 1998.

R. G. Davison, J. J. Hardwicke, and M. D. J. Cox,
“Applying the Agent Paradigm to Network Management”,

- 146 -

Denis2001

Deelman1998

Dongarral994

Fan1999

Fan2000

Fan2001

Fitzgerald1997

Foster1997

Foster1998

BIBLIOGRAPHY

BT Technology Journal, Vol.16, No. 3, pp. 86-93, July
1998.

A. Denis, C. Pérez, and T. Priol, “Portable Parallel CORBA
Objects: An Approach to Combine Parallel and Distributed
Programming for Grid Computing”, in Proc. of 7™ Int.
Euro-Par Conf., Manchester, UK, Lecture Notes in
Computer Science 2150, Springer-Verlag, pp. 835-844,
2001.

E. Deedman, A. Dube, A. Hoisie, Y. Luo, R. L. Oliver, D.
Sundaram-Stukel, H. Wasserman, V. S. Adve, R. Bagrodia,
J. C. Browne, E. Houstis, O. Lubeck, J. Rice, P. J. Tdler,
and M. K. Vernon, “POEMS:. End-to-end Performance
Design of Large Parallel Adaptive Computational Systems”,
in Proc. of the 1¥ ACM Int. Workshop on Software and
Performance, pp. 18-30, 1998.

J. Dongarra, D. Walker, E. Lusk, et a., “ Special Issue - MPI
- A Message-Passing Interface Standard”, Int. J. of
Supercomputer Applications and High Performance
Computing, Vol. 8, No. 3-4, 1994.

Y. Fan, W. Shi, and C. Wu, “Enterprise Wide Application
Integration Platform for CIMS Implementation”, J. of
Intelligent Manufacturing, Vol. 10, No. 6, pp. 587-601,
1999.

Y. Fan, and J. Cao, Object-oriented Modelling, Analysis
and Design of Complex Systems, Tsinghua University Press
| Springer-Verlag, 2000.

Y. Fan, and J. Cao, Multi-Agent Systems. Theories,
Applications and Methods, to be published by Tsinghua
University Press/ Springer-Verlag, 2001.

S. Fitzgerald, |I. Foger, C. Kesselman, G. von LaszewsKi,
W. Smith, and S. Tuecke, “A Directory Service for
Configuring High-Performance Distributed Computations”’,
in Proc. of 6" IEEE Symp. on High Performance
Distributed Computing, pp. 365-375, 1997.

|. Foger, and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit”, Int. J. Supercomputer Applications,
Vol. 11, No. 2, pp. 115-128, 1997.

|. Fogter, and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan-Kaufmann, 1998.

- 147 -

Foster1999

Foster2000

Foster2001

Frank1997

Furmento2001

Garlan1993

Geist1994

Gelernter1992

Goland1999

Grimshaw1999

BIBLIOGRAPHY

|. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
and A. Roy. “A Distributed Resource Management
Architecture that Supports Advance Reservations and Co-
Allocation”, in Proc. of Int. Workshop on Quality of
Service, 1999.

|. Foster, “Internet Computing and the Emerging Grid”,
Nature, Dec. 7, 2000.

|. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations’, to be
published in Intl. J. Supercomputer Applications, 2001.

M. I. Frank, A. Agarwal, and M. K. Vernon, “LoPC:
Modelling Contention in Parallel Algorithms’, in Proc. of
6" ACM SIGPLAN Symp. on Principles and Practices of
Parallel Programming, Las Vegas, pp. 62-73, 1997.

N. Furmento, S. Newhouse, and J. Darlington, “Building
Computational Communities from Federated Resources’, in
Proc. of 7" Int. Euro-Par Conf., Manchester, UK, Lecture
Notes in Computer Science 2150, Springer-Verlag, pp. 855-
863, 2001.

D. Garlan, and M. Shaw, “An Introduction to Software
Achitecture’, in Advances in Software Engineering and
Knowledge Engineering, World Scientific, Vol. 1, 1993.

A. Geigt, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam, PVM: Parallel Virtual Machine: A Users
Guide and Tutorial for Networked Parallel Computing, MIT
Press, 1994.

D. Gelernter, and N. Carriero, “Coordination Languages
and Their Significance’”, Communications of the ACM,
Vol. 35, No. 2, pp. 96-107, 1992.

Y. Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright,
“Simple Service Discovery Protocol/1.0: Operating without
an Arbiter”, IETF Internet Draft, 1999.

A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey,
“Wide-Area Computing: Resource Sharing on a Large
Scale”, IEEE Computer, Vol. 32, No. 5, pp. 29-37, 1999.

- 148 -

Guttman1999

Hall1996

Harper1999

Hey2001

Jennings1998

Jennings2000

Jennings2000b

Jennings2001

Jennings2001b

Jeon2000

Jini1999

BIBLIOGRAPHY

E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service
Location Protocol, Version 2", RFC 2608, |IETF Draft
Standard, 1998.

M. W. Hall, J M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S. Liao, E. Bugnion, and M. S. Lam, “Maximizing
Multiprocessor Performance with the SUIF Compiler”,
|EEE Computer, Vol. 29, No. 12, pp. 84-89, 1996.

J. Harper, D. J. Kerbyson, and G. R. Nudd, “Analytical
Modeling of Set-Associative Cache Behavior”, |EEE Trans.
on Computers, Vol. 48, No. 10, pp. 1009-1024, 1999.

T. Hey, “e-Science Core Programme’, in e-Science Core
Programme Town Meeting, London, UK, 2001.

N. R. Jennings, and M. J. Wooldridge (eds), Agent
Technology: Foundations, Applications, and Markets,
Springer-Verlag, 1998.

N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, and B.
Odgers, “Autonomous Agents for Business Process
Management”, Int. J. of Applied Artificial Intelligence, Vol.
14, No. 2, pp. 145-189, 2000.

N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, B.
Odgers, and J. L. Alty, “Implementing a Business Process
Management System using ADEPT: A Real-World Case
Study”, Int. J. of Applied Artificial Intelligence, Vol. 14,
No. 5, pp. 421-465, 2000.

N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C.
Sierra, and M. Wooldridge, “Automated Negotiation:
Prospects, Methods and Challenges’, Int. J. of Group
Decision and Negotiation, Vol. 10, No. 2, pp. 199-215,
2001.

N. R. Jennings, “An Agent-based Approach for Building
Complex Software Systems’, Communications of the
ACM, Vol. 44, No. 4, pp. 35-41, 2001.

H. Jeon, C. Petrie, and M. R. Cutkosky, “JATLite: A Java
Agent Infrastructure with Message Routing”, |EEE Internet
Computing, Vol. 4, No. 2, pp. 87-96, 2000.

“Jinid0 Architectural Overview”, Sun Technical White
Paper, Jan. 1999.

- 149 -

Kerbyson1998

Kerbyson2000

Koch1992

Kon2000

Kraus1998

Krauter2000

Labroul999

Lea2001

Leinberger1999

Lieberman1997

BIBLIOGRAPHY

D. J Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Application Execution Steering Using On-the-fly
Performance Prediction”, in Proc. of Euro. Conf. on High
Performance Computing and Networking, Lecture Notes in
Computer Science 1401, Springer-Verlag, pp. 718-727,
1998.

D. J Kerbyson, J. S. Harper, E. Papaefstathiou, D. V.
Wilcox, and G. R. Nudd, “Use of Performance Technology
for the Management of Distributed Systems”, in Proc. of 6"
Int. Euro-Par Conf., Lecture Notes in Computer Science
1900, Springer-Verlag, pp. 149-159, 2000.

K. R. Koch, R. S. Baker, and R. E. Alcouffe, “Solution of
the First-Order Form of the 3-D Discrete Ordinates
Equation on a Massively Parallel Processor”, Trans. of the
Amer. Nuc. Soc., Vol. 65, No. 108, 1992.

F. Kon, R. Campbell, M. Mickunas, and K. Nahrstedt, “2K:
A Distributed Operating System for Dynamic
Heterogeneous Environments’, in Proc. of 9" IEEE Int.
Symp. on High Performance Distributed Computing, 2000.

S. Kraus, K. Sycara, and A. Evenchik, “Reaching
Agreements through Argumentation: a Logical Model and
Implementation”, Artificial Intelligence, Vol. 104, pp. 1-69,
1998.

K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy
and Survey of Grid Resource Management Systems’,
Technical Report: 2000/80, Monash University, Australia,
Nov. 2000.

Y. Labrou, T. Finin, and Y. Peng, “Agent Communication
Languages. The Current Landscape’, |EEE Intelligent
Systems, Vol. 14, No. 2, pp. 45-52, 1999.

R. Lea, S. Gibbs, R. Gauba, and R. Balaraman, HAVi
Example By Example: Java Programming for Home
Entertainment Devices, Prentice Hall, 2001.

W. Leinberger, and V. Kumar, “Information Power Grid:
The New Frontier in Parallel Computing”, |EEE
Concurrency, Vol. 7, No. 4, pp. 75-84, 1999.

H. Lieberman, “ Autonomous Interface Agents’, in CHI "97
Conf. Proc. on Human Factors in Computing Systems, pp.
67-74, 1997.

-150-

Litzkow1988

Maes1995

Malonel994

Miller1995

Miller1999

Nakadal998

Nowak1997

Nudd2000

Nwanal998

BIBLIOGRAPHY

M. Litzkow, M. Livny, and Matt Mutka, “Condor - A
Hunter of Idle Workstations’, in Proc. of 8" Int. Conf. on
Distributed Computing Systems, pp. 104-111, June 1988.

P. Maes, “Artificial Life Meets Entertainment: Lifelike
Autonomous Agents’, Communications of the ACM, Vol,
38, No. 11, pp. 108-114, 1995.

T. W. Malone, and K. Crowston, “The Interdisciplinary
Study of Coordination”, ACM Computing Survey, Vol. 26,
No. 1, pp. 87-119, 1994.

B. P. Miller, M. D. Cdlaghan, J. M. Cargille, J K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam, and T. Newhall, “The Paradyn Parallel
Performance Measurement Tools’, IEEE Computer, Vol.
28, No. 11, pp. 37-46, 1995.

B. Miller, and R. Pascoe, “Mapping Salutation Architecture
APIs to Bluetooth Service Discovery Layer”, Bluetooth
White Paper, July 1999.

H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M.
Sato, and S. Sekiguchi, “Utilizing the Metaserver
Architecture in the Ninf Global Computing System”, in
Proc. of High Performance Computing and Networking,
Lecture Notes on Computer Science 1401, Springer-Verlag,
pp. 607-616, 1998.

D. A. Nowak, R. C. Christensen, “ASCI Applications’,
LLNL Report 232247, Nov. 1997.

G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry,
J. S. Harper, and D. V. Wilcox, “PACE — A Toolset for the
Performance Prediction of Parallel and Distributed
Systems’, Int. J. of High Performance Computing
Applications, Special Issues on Performance Modelling —
Part |, Sage Science Press, Vol. 14, No. 3, pp. 228-251, Fall
2000.

H. S. Nwana, J. Rosenschein, T. Sandholm, C. Sierra, P.
Maes, and R. Guttmann, “Agent-Mediated Electronic
Commerce: Issues, Challenges and Some Viewpoints’ in
Proc. of 2" ACM Int. Conf. on Autonomous Agents, pp.
189-196, 1998.

-151-

Papadopoul0s1998

Papaefstathiou1994

Papaefstathiou1995

Papaefstathiou1995b

Papaefstathiou1998

Parunak1998

Parunak2001

Pascoe2001

Perry1992

Perry1999

BIBLIOGRAPHY

G. Papadopoulos, and F. Arbab, “Coordination Models and
Languages’, in Advances in Computers, Vol. 46. The
Engineering of Large Systems, Academic Press, 1998.

E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J.
Atherton, “An Analysis of Processor Resource Models for
Use in Performance Prediction”, Research Report CS-RR-
279, Department of Computer Science, University of
Warwick, 1994.

E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J.
Atherton, “An Overview of the CHIPS Performance
Prediction Toolset for Parallel Systems’, in Proc. of 8"
ISCA Int. Conf. on Parallel and Distributed Computing
Systems, pp. 527-533, 1995.

E. Papaefstathiou, “A Framework for Characterising
Parallel Systems for Performance Evaluation”, Ph.D.
Thesis, Department of Computer Science, University of
Warwick, 1995.

E. Papaefstathiou, D. J. Kerbyson, G.R. Nudd, J. S. Harper,
S. C. Perry, and D. V. Wilcox, “A Performance Analysis
Environment for Life”, in Proc. of 2 ACM SIGMETRICS
Symp. on Paralel and Distributed Tools, Oregon, USA,
1998.

H. V. D. Parunak, “Practical and Industrial Applications of
DAI”, in G. Weiss (ed.), Introduction to Distributed
Artificial Intelligence, MIT Press, 1998.

H. V. D. Parunak, A. D. Baker, and S. J. Clark, “AARIA
Agent Architecture: from Manufacturing Requirements to
Agent-based System Design”, J. of Integrated Computer-
Aided Engineering, Vol. 8, No. 1, pp. 45-58, 2001.

R. Pascoe, “Building Networks on the Fly’, IEEE
Spectrum, Vol. 38, No. 3, pp. 61-65, 2001.

D. E. Perry, and A. L. Wolf, “Foundations for the Studies of
Software Architecture’”, ACM SIGSOFT Software
Engineering Notes, Vol. 17, No. 4, 1992.

S. C. Perry, J. S. Harper, D. J. Kerbyson, and G. R. Nudd,
“Theory and Operation of the Warwick Multiprocessor
Scheduling System”, Research Report CS-RR-363, Dept. of
Computer Science, University of Warwick, 1999.

-152 -

Perry2000

Qin1991

Raman1998

Rana2000

Richard2000

Sat01998

Schopf1997

Segal2000

Sevilla2001

BIBLIOGRAPHY

S. C. Pery, R. H. Grimwood, D. J Kerbyson, E.
Papaefstathiou, and G. R. Nudd, “Performance
Optimisation of Financial Option Calculations’, Paralel
Computing, Vol. 26, No. 5, pp. 623-639, 2000.

B. Qin, H. A. Sholl, and R. A. Ammar, “Micro Time Cost
Analysis of Parallel Computations’, |IEEE Trans. on
Computers, Vol. 40, No. 5, pp. 613-628, 1991.

R. Raman, M. Livny, and M. Solomon, “Matchmaking:
Distributed Resource Management for High Throughput
Computing”, in Proc. of 7" IEEE Int. Symp. on High
Performance Distributed Computing, Chicago, USA, July
1998.

O. F. Rana, and D. W. Walker, “The Agent Grid: Agent-
Based Resource Integration in PSES’, in Proc. of 16"
IMACS World Congress on Scientific Computation,
Applied Mathematics and Simulation, Lausanne,
Switzerland, 2000.

G. G. Richard 111, “Service Advertisement and Discovery:
Enabling Universal Device Cooperation”, |IEEE Internet
Computing, Vol. 4, No. 5, pp. 18-26, 2000.

M. Sato, H. Tezuka, A. Hori, Y. Ishikawa, S. Sekiguchi, H.
Nakada, S. Masuoka, and U. Nagashima, “Ninf and PM:
Communication Libraries for Global Computing and High-
performance Cluster Computing”, Future Generation
Computer Systems, Vol. 13, No. 4-5, pp. 349-359, 1998.

J. M. Schopf, “Structural Prediction Models for High-
Performance Distributed Applications’, in Proc. of 1997
Cluster Computing Conf., 1997.

B. Segal, “Grid Computing: The European Data Grid
Project”, in Proc. of IEEE Nuclear Science Symp. and
Medical Imaging Conf., Lyon, France, 2000.

D. Sevilla, J M. Garcia, and A. Gomez, “CORBA
Lightweight Components. A Model for Distributed
Component-Based Heterogeneous Computation”, in Proc.
of 7" Int. Euro-Par Conf., Manchester, UK, Lecture Notes
in Computer Science 2150, Springer-Verlag, pp. 845-854,
2001.

-153-

Singh1998

Slamal1999

Smith1990

Spooner2001

Tecucil998

Tierney2000

Tierney2001

UPNnP2000

Uysal 1998

Wolfram1991

Wooldridge1999

BIBLIOGRAPHY

M. P. Singh, “Agent Communication Languages:
Rethinking the Principles’, IEEE Computer, Vol. 31, No.
12, pp. 40-47, 1998.

D. Slama, J. Garbis, and P. Russell, Enterprise Corba,
Prentice Hall, 1999.

C. U. Smith, Performance Engineering of Software
Systems, Addison Wesley, 1990.

D. P. Spooner, J. D. Turner, J. Cao, S. A. Jarvis, and G. R.
Nudd, “Application Characterisation Usin% a Lightweight
Transaction Model”, in Proc. of 17" Annual UK
Performance Engineering Workshop, Leeds, UK, pp. 215-
225, 2001.

G. Tecuci, Building Intelligent Agents: An Apprenticeship
Multistrategy Learning Theory, Methodology, Tool and
Case Studies, Academic Press, 1998.

B. Tierney, W. Johnston, J. Lee, and M. Thompson, “A
Data Intensive Distributed Computing Architecture for Grid
Applications’, Future Generation Computer Systems, Vol.
16, No. 5, pp 473-481, 2000.

B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R.
Wolski, and M. Swany, “A Grid Monitoring Service
Architecture’, White Paper, Grid Performance Working
Group, Global Grid Forum, 2001.

“Understanding Universal Plug and Play”, Microsoft White
Paper, Jun. 2000.

M. Uysal, T. M. Kurc, A. Sussman, and J. Saltz, “A
Performance Prediction Framework for Data Intensive
AEpIications on Large Scale Parallel Machines”, in Proc. of
4™ Workshop on Languages, Compilers and Run-time
Systems for Scalable Computers, 1998.

S. Wolfram, Mathematica: a System for Doing Mathematics
by Computer, Second Edition, Addison Wesley, 1991.

M. J Wooldridge, and N. R. Jennings, “Software
Engineering with Agents. Pitfalls and Pratfalls’, IEEE
Internet Computing, Vol. 3, No. 3, pp. 20-27, 1999.

-154 -

BIBLIOGRAPHY

Y eong1995 W. Yeong, T. Howes, and S. Kille, “Lightweight Directory
Access Protocol”, RFC 1777, IETF Draft Standard, 1995.

- 155-

Appendix A

PSL CODE FOR SWEEP3D

This section gives a list of all the PSL source code for Sweep3D. Each software
object is included in a separate section. There are totally 9 objects. 1 application
object, 4 subtask objects, and 4 parallel template objects.

A.1 Application Object: sweep3d

*

* SWEEP3D nodel
)
application sweep3d {
i ncl ude hardware;
i nclude source;
i ncl ude sweep;
include fixed;

include flux_err;

var nuneric:

Nproc = 6,
npe_i = 2,
npe_j = 3,
nk = 10,
mi = 3,
it_g = 50,
jt_g = 50,
kt = 50,
mm = 6,
isct =1,
epsi = -12,
ibc =0,
jbc =0,

- 156 -

APPENDIX A PSL CoDE FOR SWEEP3D

kbc = 0,
do_dsa = 1,
ifixups = -7,
it,

jt,

it_dsa,
jt_dsa,

kt _dsa,
jt_ibc,

kt _i bc,
mm_i bc,
it_jbc,

kt _j bc,
mm j bc,
it_kbc,
jt_kbc,

mm kbc,

nk,

ndi ag,

nm

link {

har dwar e:
Nproc = Nproc;

source:

it =it,

jt =jt,

kt = kt,
isct = isct,
ifixups = ifixups,
epsi = epsi;

sweep:
it
jt
kt
do_dsa
it_dsa
jt_dsa
kt _dsa
i bc i
j bc
kbc

o n
—

do_dsa,
it_dsa,
jt_dsa,
kt _dsa,

1 I
o — —
S ool
O 00

3
E

nmi
nk nk
nk = nk
ndiag =
nm = nm

epsi = epsi,

i fixups = ifixups,
npe_i = npe_i,
npe_j = npe_j;

ndi ag,

flux_err:
it
jt
kt

it,
it
kt ;

}

option {
hrduse = "SunU tral";
}

proc exec init {
var nuneric:

i, tnp;
if (Nproc == 1)
{

npe_i = 1;
npe_j = 1;
}
else if (Nproc == 2)
{
npe_i = 1;
npe_j = 2;

- 157 -

APPENDIX A PSL CoDE FOR SWEEP3D

}
else if (Nproc == 3)
{
npe_i = 1;
npe_j = 3;
}
else if (Nproc == 4)
{
npe_i = 2;
npe_j = 2;
}
else if (Nproc == 5)
{
npe_i = 1;
npe_j = 5;
}
else if (Nproc == 6)
{
npe_i = 2;
npe_j = 3;
}
else if (Nproc == 7)
{
npe_i = 1;
npe_j = 7,
}
else if (Nproc == 8)
{
npe_i = 2;
npe_j = 4,
}
else if (Nproc == 9)
{
npe_i = 3;
npe_j = 3;
}
else if (Nproc == 10)
{
npe_i = 2;
npe_j = 5;
}
else if (Nproc == 11)
{
npe_i = 1;
npe_j = 11;
}
else if (Nproc == 12)
{
npe_i = 3;
npe_j = 4,
}
else if (Nproc == 13)
{
npe_i = 1;
npe_j = 13;
}
else if (Nproc == 14)
{
npe_i = 2;
npe_j = 7,
}
else if (Nproc == 15)
{
npe_i = 3;
npe_j = 5;
}
else if (Nproc == 16)
{
npe_i = 4;
npe_j = 4,
}
if (isct == 0) nn¥l;
else if (isct == 1) nn¥4;
it =it_g/ npe_i ;
jt =jt_g/ npej + 1;

- 158 -

APPENDIX A PSL CoDE FOR SWEEP3D

if(nk >kt) nk = kt;

if (do_dsa == 1)

{
it_dsa =it + 1;
jt_dsa =jt + 1;
kt _dsa = kt + 1;

}

el se

{
it_dsa = 1;
jt_dsa = 1;
kt _dsa = 1;

}

if (ibc !'=0)
jt_ibc =jt;
kt _ibc = kt;
mm.ibc = mm

}

el se

{
jt_ibc = 1;
kt _ibc = 1;
mm.ibc = 1;

}

if (jbc!=0)
it_jbc =it;
kt _jbc = kt;
mm j bc =

}

el se

{
it_jbc = 1;
kt _jbc = 1;
mm j bc = 1;

}

if (kbc !'= 0)
it_kbc =it;
jt_kbc =jt;
mm kbc = mm

}

el se

{
it_kbc = 1;
jt_kbc = 1;
mm kbc = 1;

}

tnp = kt;

i =1

while (tmp > nk)

{
tnp = tnp - nk;
=i + 1;

nk = kt / i;

ndiag = (nk+jt+i+nmi)*jt / (nk+jt);

for(i =1; i <= -epsi; I =i +1)

{

call source;
call sweep;
call fixed;
call flux_err;

- 159 -

APPENDIX A PSL CoDE FOR SWEEP3D

A.2 Subtask Object: source

subt ask source {
i ncl ude async;
i ncl ude hardwar e;

var nuneric:

it = 25,

jt =17,

kt = 50,

isct =1,
ifixups = -7,
epsi = -12,
pl,

p2;

link {
}

proc exec init {
if(ifixups > 0)

async: Tx = source_conp();

pl
p2

}
if(ifixups == 0)

pl
p2

}
if(ifixups <0)

pl = 0;
p2 = 0;
}
}
(*
* CHI P3S
* Application Characterisation Tool
* Source : source.c
* RU Type: clc
*
)

(* Calls: *)
proc cflow source_conmp { (* Defined at source.c:1 *)
conpute <is clc, FCAL, 2*POL1, AILL, TILL, CM.L>;
case (<is clc, IFBR>) {
1-isct:
conpute <is clc, SILL>;
loop (<is clc, LFOR>, kt) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, jt)
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it)

compute <is clc, CM.L, 7*ARD3, MDL, AFDL, 2*TFDL, SFDL

, I NLL>;
} .
conpute <is clc, |NLL>;

}

conpute <is clc, |NLL>;

}
1-(1-isct):
conpute <is clc, SILL>;
loop (<is clc, LFOR>, kt) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, jt) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it) {

compute <is clc, CM.L, 19*ARD3, 4*MFDL, AFDL, 5*TFDL

, 4*SFDL, |NLL>;
}

conpute <is clc, |NLL>;

- 160 -

}

conpute <is clc,

}
}
conpute <is clc,
case (<is clc,
pl:
conpute <is clc,
1-(pl):
conpute <is clc,
case (<is clc,
p2:

SILL,

Sl

conpute <is clc,

1-(p2):

conpute <is clc,

case (<is clc,
(- epsi +i fixups)

}

conpute <is clc,

}

} (* End of source_conp *)

| FBR>) {

I NLL>;

CMLL>;

LL>;

CMLL>;
| FBR>) {

Sl LL>;

SILL,

| FBR>) {
/(-epsi):

Sl LL>;

POL1, CMLL>;

A.3 Subtask Object: sweep

subt ask sweep {
i ncl ude hardwar e;
i ncl ude pipeline;

nuneric:
it
jt
kt

var
26,

p1,
p2,
p3;

link {
pi peline:
Tx_sweep_init

sweep_init(),

Tx_oct ant

= octant(),

Tx_get _direct

= get _direct(),

Tx_pi peline_init
Tx_kk_l oop_init
Tx_el se_ew_ rcv
Tx_conp_face
Tx_el se_ns_rcv
Tx_work = work()
Tx_el se_ew_snd
Tx_el se_ns_snd

Tx_last = last()
nmm = mm

mmo = i,

it =it,

jt =jt,

= pipeline_init(),
= kk_loop_init(),
el se_ew rcv(),

conp_face(),

el se_ns_rcv(),

el se_ew_snd(),
el se_ns_snd(),

-161-

APPENDIX A PSL CoDE FOR SWEEP3D

APPENDIX A PSL CoDE FOR SWEEP3D

kt = kt,
nmk = nk,
npe_i = npe_i,
npe_j = npe_j;
}
proc exec init {
if(kbc == 0)
pl1 = 1;
el se
pl = 0.5;
if(ibc == 0)
p2 = 1;
el se
p2 = 0.5;
if(jbc == 0)
p3 = 1;
el se
p3 = 0.5;
}
(-k
* CHI P3S
* Application Characterisation Tool
* Source sweep. c
* RU Type: clc
*)

(* Calls: *)
proc cflow sweep_init {
conpute <is clc, FCAL,

(* Defined at sweep.c:2 *)
6* ARD1, 6*SFDL>;

case (<is clc, IFBR>) {

do_dsa:

conpute <is clc, SILL>;
loop (<is clc, LFOR>, 3)
conpute <is clc, CM.L, SILL>;

loop (<is clc,

LFOR>, kt_dsa) {

conpute <is clc, CM.L, SILL>;

loop (<is clc, LFOR>, jt_dsa) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it_dsa) {

conpute <is clc,

}

conpute <is clc, |NLL>;

}

conpute <is clc, |NLL>;

}

conpute <is clc, |NLL>;

}
}
conpute <is clc, POL1,
} (* End of sweep_init *)

(* Calls: *)
proc cflow octant {
conpute <is clc, FCAL,

SI LL>;

(* Defined at sweep.c:74 *)

CMLL>;

case (<is clc, IFBR>) {

1/ 8:

conpute <is clc, 9*POL1, 6*TILL, 3*SILL>;

1-(1/8):

conpute <is clc, CM.L>;
case (<is clc, IFBR>) {

1/ 7:

conpute <is clc,

1-(1/7):

conpute <is clc, CM.L>;

case (<is clc,
1/ 6:

conpute <is clc,

1-(1/6):

| FBR>) {

conpute <is clc, CM.L>;
case (<is clc, IFBR>) {

1/ 5:

conpute <is clc,

1-(1/5):

conpute <is clc, CM.L>;
case (<is clc, IFBR>) {

-162 -

CMLL, ARD3, SFDL,

9*POL1, 5*TILL, 4*SILL>;

9*POL1, 5*TILL, 4*SILL>;

I NLL>;

9*POL1, 4*TILL, 5*SILL>;

APPENDIX A PSL CoDE FOR SWEEP3D

1/ 4:
conpute <is clc, 9*POL1, 4*SILL, 5*TILL>;
1-(1/4):
conpute <is clc, CM.L>;
case (<is clc, IFBR>) {
1/ 3:
conpute <is clc, 9*POL1, 5*SILL, 4*TILL>;
1-(1/3):
conpute <is clc, CM.L>;
case (<is clc, IFBR>) {
1/ 2:
conpute <is clc, 9*POL1, 5*SILL, 4*TILL>;
1-(1/2):
conpute <is clc, 9*POL1, 6*SILL, 3*TILL>;
}

}
}
conpute <is clc, POL1, CM.L>;
case (<is clc, IFBR>) {
0.5:

conpute <is clc, POL1, SILL>;
1-(0.5):

conpute <is clc, POL1, SILL>;
}

conpute <is clc, POL1, CM.L>;
case (<is clc, IFBR>) {
0.5:

conpute <is clc, POL1, SILL>;
1-(0.5):

conpute <is clc, POL1, SILL>;
}

conpute <is clc, POL1, CM.L>;
case (<is clc, IFBR>) {
0.5:

conpute <is clc, POL1, SILL>;
1-(0.5):

conpute <is clc, POL1, SILL>;

}
} (* End of octant *)

(* Calls: *)
proc cflow get_direct { (* Defined at sweep.c: 202 *)
conpute <is clc, FCAL, CM.L>;
case (<is clc, IFBR>) {
0.5:
conpute <is clc, 3*TILL, MLL>;
1-(0.5):
conpute <is clc, 3*TILL, MLL>;
}

conpute <is clc, CM.L>;
case (<is clc, IFBR>) {
0.5:

conpute <is clc, 3*TILL, MLL>;
1-(0.5):

conpute <is clc, 3*TILL, MLL>;
}

conpute <is clc, SILL>;
loop (<is clc, LFOR>, m)
conpute <is clc, CM.L, 9*ARD1, 6*M LL, 3*TFDL, |NLL>;

}
} (* End of get_direct *)

(* Calls: *)
proc cflow pipeline_init { (* Defined at sweep.c: 296 *)
conpute <is clc, FCAL, AlLL, MLL, TILL, 2*CM.L, ANDL>;
case (<is clc, IFBR>) {
pl:
conpute <is clc, SILL>;
loop (<is clc, LFOR>, mmi) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, jt) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it) {

- 163 -

APPENDIX A PSL CoDE FOR SWEEP3D

conpute <is clc, CM.L, ARD3, SFDL, |NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;
}
1-(pl):
case (<is clc, IFBR>) {
do_dsa:
conpute <is clc, SFDL, AlILL, TILL, SILL>;
loop (<is clc, LFOR>, nmm)
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, jt) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it) {
conpute <is clc, CM.L, 6*ARD3, 3*TFDL, 4*ARDl
, 4*MFDL, 2*AFDL, | NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, 2*ARDl, AFDL, TFDL>;
1-(do_dsa):
conpute <is clc, SFDL, SILL>;
loop (<is clc, LFOR>, mm)
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, jt) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it)
conpute <is clc, CM.L, 3*ARD3, 2*TFDL, 3*ARDl
, 3*MFDL, AFDL, |NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, 2*ARDl, AFDL, TFDL>;
}
}

conpute <is clc, 2*AlLL,
} (* End of pipeline_init *)

(* Calls: min max *)

DI LL, TILL>;

proc cflow kk_loop_init { (* Defined at sweep.c: 410 *)

conpute <is clc, FCAL, CM.L>;
case (<is clc, IFBR>) {
0.5:
conpute <is clc, 4*AlLL,
call cflow mn;
conpute <is clc, 2*TILL,
1-(0.5):
conpute <is clc, 4*AlLL,
call cfl ow max;
conpute <is clc, 2*TILL,
}

conpute <is clc,
} (* End of kk_loop_init *)

(* Calls: sign *)
proc cflow el se_ew rcv {

6*AlLL, 4*MLL,

M LL, TILL>;
2* Al LL>;
M LL, TILL>;
2* Al LL>;

2* Tl LL>;

(* Defined at sweep.c: 471 *)

conpute <is clc, FCAL, 2*CM.L, ANDL>;
case (<is clc, IFBR>) {
p2:
conpute <is clc, SILL>;
loop (<is clc, LFOR>, mmi) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, nk) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, jt) {
conpute <is clc, CM.L, ARD3, SFDL, |NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;
}
1-(p2):

- 164 -

APPENDIX A PSL CoDE FOR SWEEP3D

conpute <is clc, SFDL, SILL>;
loop (<is clc, LFOR>, mmi) {
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, nk)
conpute <is clc, CM.L, AlLL>;
conpute <is clc, AlLL>;
call cflow sign;
conpute <is clc, TILL, SILL>;
loop (<is clc, LFOR>, jt)
conpute <is clc, CM.L, 3*ARD3, 2*TFDL, 3*ARDl1, 3*MFDL
, AFDL, | NLL>;
}
conpute <is clc, |NLL>;
}

conpute <is clc, |NLL>;

}
conpute <is clc, 2*ARDl, AFDL, TFDL>;

} (* End of else_ew.rcv *)

(* Calls: sign *)
proc cflow conp_face { (* Defined at sweep.c:550 *)
conpute <is clc, FCAL>;
case (<is clc, IFBR>) {
do_dsa:
conpute <is clc, AILL, TILL, SILL>;
loop (<is clc, LFOR>, mmi) {
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, nk) {
conpute <is clc, CM.L, AlLL>;
conpute <is clc, AlLL>;
call cflow sign;
conpute <is clc, TILL, SILL>;
loop (<is clc, LFOR>, jt) {
conpute <is clc, CM.L, 3*ARD3, ARD1l, M-DL, AFDL, TFDL
, INLL>;
}
conpute <is clc, |NLL>;
}

conpute <is clc, |NLL>;

}
}
} (* End of conp_face *)

(* Calls: sign *)

proc cflow else_ns_rcv { (* Defined at sweep.c: 620 *)
conpute <is clc, FCAL, 2*CM.L, ANDL>;
case (<is clc, IFBR>) {

p3:
conpute <is clc, SILL>;
loop (<is clc, LFOR>, nmi) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, nk) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it)
conpute <is clc, CM.L, ARD3, SFDL, |NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;
}
1-(p3):

conpute <is clc, SFDL, SILL>;
loop (<is clc, LFOR>, nmm)
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, nk) {
conpute <is clc, CM.L, AlLL>;
conpute <is clc, AlLL>;
call cflow sign;
conpute <is clc, TILL, SILL>;
loop (<is clc, LFOR>, it) {
conpute <is clc, CM.L, 3*ARD3, 2*TFDL, 3*ARDl1, 3*MFDL
, AFDL, | NLL>;
}

conpute <is clc, |NLL>;

}

conpute <is clc, |NLL>;

-165-

}

APPENDIX A PSL CoDE FOR SWEEP3D

conpute <is clc, 2*ARDl, AFDL, TFDL>;

} (* End of else_ns_rcv *)

(* Calls:

sign mn nmax *)

proc cflow work { (* Defined at sweep.c: 697 *)
conpute <is clc, FCAL>;
case (<is clc, IFBR>) {

do_dsa:

conpute <is clc, AILL, TILL, SILL>;
loop (<is clc, LFOR>, mmi) {

}
}

conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, nk) {

conpute <is clc, CM.L, AlLL>;

conpute <is clc, AlLL>;

call cflow sign;

conpute <is clc, TILL, SILL>;

loop (<is clc, LFOR>, it) {

conpute <is clc, CM.L, 3*ARD3, ARDl1, M-DL,

. INLL>;
}

conpute <is clc, |NLL>;

}

conpute <is clc, |NLL>;

conpute <is clc, SILL>;
loop (<is clc, LFOR>, nmi) {
conpute <is clc, CM.L, ARL1, SILL, INLL>;

}

conpute <is clc, SILL>;

loop (<is clc, LFOR>, jt+nk-1+nm -1)
conpute <is clc, 4*AILL, CML, SILL, TILL>;
loop (<is clc, LFOR>, mmi-1)

}

compute <is clc, CM.L, 3*ARL1, 2*TILL, AILL, INLL>;

conpute <is clc, 2*AlLL>;

call
call
call
call

cflow mn;
cflow mn;
cflow mn;
cfl ow max;

conpute <is clc, 2*ARL1, 2*TILL, AILL, 2*SILL>;
loop (<is clc, LFOR>, ndiag) {

conpute <is clc, CM.L, TILL, SILL>;
loop (<is clc, LFOR>, mmi-1) {

AFDL, TFDL

conpute <is clc, 2*AILL, CMLL, ARL1, TILL, INLL>;

}

conpute <is clc, 2*TILL, 3*AlLL>;
call cflow mn;

conpute <is clc, AlLL>;

call cflow sign;

conpute <is clc, TILL, 3*AlLL>;
call cfl ow max;

conpute <is clc, AlLL>;

call cflow sign;

compute <is clc, 3*TILL, 2*AlLL, ABSI, 5*ARD1, 2*MFDL, 4*TFDL

, ARD3, SILL>;
loop (<is clc, LFOR>, it) {

}

conpute <is clc, SILL>;

loop (<is clc, LFOR>, nm1) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it) {

conpute <is clc, CM.L, ARD3, ARD1, TFDL, | NLL>;

compute <is clc, CM.L, 2*ARD1, 2*ARD3, MDL, AFDL, TFDL

, I NLL>;

}

conpute <is clc, |NLL>;
}
case (<is clc, IFBR>) {
(-ifixups)/(-epsi):

conpute <is clc, TILL>;

loop (<is clc, LFOR>, it)

conmpute <is clc, 4*CM.L, 3*ANDL, 8*ARD1, 8*MFDL, 9*TFDL

, 7*ARD3, 9*AFDL, DFDL, AILL, TILL>;

- 166 -

APPENDIX A PSL CoDE FOR SWEEP3D

1-((-ifixups)/(-epsi)):
conpute <is clc, TILL>;
loop (<is clc, LFOR>, it) {

compute <is clc, 4*CM.L, 3*ANDL, 7*ARD1, 8*MFDL, 8*TFDL
, 5*ARD3, 9*AFDL, DFDL, SILL, CMDL>;

case (<is clc, IFBR>) {
0.5:
conpute <is clc, 2*AFDL, 4*TFDL,
, SFDL, CMDL>;
case (<is clc, IFBR>) {
0.5:
conpute <is clc, ARD1, M-DL,
}

conpute <is clc, CMDL>;
case (<is clc, IFBR>) {
0.5:
conpute <is clc, ARD1, MDL,
}

conpute <is clc, SILL>;
}
conpute <is clc, CMDL>;
case (<is clc, IFBR>) {

0.5:
conpute <is clc, 2*AFDL, 4*TFDL,
, ARD1, SFDL, CMDL>;
case (<is clc, IFBR>) {
0.5:
conpute <is clc, ARD1, MDL,
}
conpute <is clc, CMDL>;
case (<is clc, IFBR>) {
0.5:
conpute <is clc, ARD1, MDL,
}
conpute <is clc, SILL>;
}

conpute <is clc, CMDL>;
case (<is clc, IFBR>) {

0.5:
conpute <is clc, 2*AFDL, 4*TFDL,
, ARDl1, SFDL, CMDL>;
case (<is clc, IFBR>) {
0.5:
conpute <is clc, ARD1, MDL,
}
conpute <is clc, CMDL>;
case (<is clc, IFBR>) {
0.5:
conpute <is clc, ARD1, M-DL,
}
conpute <is clc, SILL>;
}

DFDL,

ARD3,

ARD3,

ARD3,

AFDL,

AFDL,

ARD3,

3*MFDL, ARDL

AFDL, TFDL>;

AFDL, TFDL>;

3*MFDL, ARD3

AFDL, TFDL>;

TFDL>;

3*MFDL, ARD3

TFDL>;

AFDL, TFDL>;

compute <is clc, 4*TFDL, ARD1, 2*ARD3, 2*AlLL, 2*TILL>;

}
}
conpute <is clc, SILL>;
loop (<is clc, LFOR>, it)

compute <is clc, CM.L, 2*ARD3, 2*ARD1, M-DL, AFDL, TFDL

, INLL>;
}
conpute <is clc, SILL>;
loop (<is clc, LFOR>, nm1) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it)
conpute <is clc, CM.L, 3*ARD3, 2*ARDLl

, TFDL, I NLL>;
}
conpute <is clc, |NLL>;
}
case (<is clc, IFBR>) {
do_dsa:
conpute <is clc, SILL>;
loop (<is clc, LFOR>, it) {
conpute <is clc, CM.L, 8*ARD3, 4*ARDL
, 3*TFDL, | NLL>;
}
}

- 167 -

, 2*MFDL, AFDL

, 3*MFDL, 3*AFDL

APPENDIX A PSL CoDE FOR SWEEP3D

conpute <is clc, ARD3, TFDL, |NLL>;
conpute <is clc, 2*POL1, AILL, TILL, INLL>;

}
}
} (* End of work *)

(* Calls: sign *)
proc cflow el se_ew snd { (* Defined at sweep.c:996 *)
conpute <is clc, FCAL, 2*CM.L, ANDL>;
case (<is clc, IFBR>) {
1-p2:
conpute <is clc, SFDL, SILL>;
loop (<is clc, LFOR>, nmm)
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, nk) {
conpute <is clc, CM.L, AlLL>;
conpute <is clc, AlLL>;
call cflow sign;
conpute <is clc, TILL, SILL>;
loop (<is clc, LFOR>, jt) {
conmpute <is clc, CM.L, 3*ARD3, 2*TFDL, 3*ARD1, 3*MFDL
, AFDL, | NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, 2*ARDl, AFDL, TFDL>;
1-(1-p2):
conpute <is clc, SFDL, SILL>;
loop (<is clc, LFOR>, mmi) {
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, nk) {
conpute <is clc, CM.L, AlLL>;
conpute <is clc, AlLL>;
call cflow sign;
conpute <is clc, TILL, SILL>;
loop (<is clc, LFOR>, jt)
compute <is clc, CM.L, 3*ARD1, ARD3, 3*MFDL, AFDL, TFDL
, I NLL>;
}

conpute <is clc, |NLL>;

}

conpute <is clc, |NLL>;

}
conpute <is clc, 2*ARDl, AFDL, TFDL>;

} (* End of else_ew snd *)

(* Calls: sign *)
proc cflow el se_ns_snd { (* Defined at sweep.c: 1082 *)
conpute <is clc, FCAL, 2*CM.L, ANDL>;
case (<is clc, IFBR>) {
1-p3:
conpute <is clc, SFDL, SILL>;
loop (<is clc, LFOR>, mmi) {
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, nk) {
conpute <is clc, CM.L, AlLL>;
conpute <is clc, AlLL>;
call cflow sign;
conpute <is clc, TILL, SILL>;
loop (<is clc, LFOR>, it) {
conmpute <is clc, CM.L, 3*ARD3, 2*TFDL, 3*ARD1, 3*MFDL
, AFDL, | NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, 2*ARDl, AFDL, TFDL>;
1-(1-p3):
conpute <is clc, SFDL, SILL>;
loop (<is clc, LFOR>, nmm)
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, nk) {
conpute <is clc, CM.L, AlLL>;

- 168 -

APPENDIX A PSL CoDE FOR SWEEP3D

conpute <is clc, AlLL>;

call cflow sign;

conpute <is clc, TILL, SILL>;
loop (<is clc, LFOR>, it)

compute <is clc, CM.L, 3*ARD1, ARD3, 3*MFDL, AFDL, TFDL

, I NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;

}
conpute <is clc, 2*ARDl, AFDL, TFDL>;

} (* End of else_ns_snd *)

(* Calls: *)
proc cflow last { (* Defined at sweep.c: 1178 *)
conpute <is clc, FCAL, 2*CM.L, ANDL>;
case (<is clc, IFBR>) {
1-pl:
conpute <is clc, SFDL, SILL>;
loop (<is clc, LFOR>, mmi) {
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, jt) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it)

conmpute <is clc, CM.L, 3*ARD3, 2*TFDL, 3*ARD1, 3*MFDL

, AFDL, | NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, 2*ARDl, AFDL, TFDL>;
1-(1-pl):
conpute <is clc, SFDL, SILL>;
loop (<is clc, LFOR>, mmi) {
conpute <is clc, CM.L, AlLL, TILL, SILL>;
loop (<is clc, LFOR>, jt) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it) {

compute <is clc, CM.L, 3*ARD1, ARD3, 3*MFDL, AFDL, TFDL

, I NLL>;
}
conpute <is clc, |NLL>;
}
conpute <is clc, |NLL>;

}
conpute <is clc, 2*ARDl, AFDL, TFDL>;

}
} (* End of last *)

(* Calls: *)
proc cflow max { (* Defined at sweep.c: 1263 *)
conpute <is clc, FCAL, 2*FARD, CMDL>;
case (<is clc, IFBR>) {
0.5:
conmput e <0>;
1-(0.5):
conmput e <0>;
}

return;
} (* End of nax *)

(* Calls: *)
proc cflownmin { (* Defined at sweep.c: 1264 *)
conpute <is clc, FCAL, 2*FARD, CMDL>;
case (<is clc, IFBR>) {
0.5:
conmput e <0>;
1-(0.5):
conmput e <0>;
}

return;
} (* End of nmin *)

(* Calls: *)

- 169 -

APPENDIX A PSL CoDE FOR SWEEP3D

proc cflow sign { (* Defined at sweep.c: 1265 *)
conpute <is clc, FCAL, 2*FARD, CMDL>;
case (<is clc, IFBR>) {

0.5:

conpute <is clc, ABSD>;
1-(0.5):

conpute <is clc, ABSD>;
}
return;

} (* End of sign *)

A.4 Subtask Object: fixed

subt ask fixed {
i ncl ude hardware;
i ncl ude gl obal sum

l'ink {

gl obal sum
Tx_sum = sum fixed (),
Tx_conmp = conp_fixup ();

}
(*
* CHI P3S
* Application Characterisation Tool
* Source : fixed.c
* RW Type: clc
*)
(* Calls: *)
proc cflow sumfixed { (* Defined at fixed.c:1 *)
conpute <is clc, FCAL, 2*POL1, AILL, TILL>;
} (* End of sumfixed *)
(* Calls: *)
proc cflow comp_fixup { (* Defined at fixed.c:8 *)
conpute <is clc, FCAL, AlILL, TILL>;
} (* End of conp_fixup *)
}

A.5 Subtask Object: flux_err

subtask flux_err {
i ncl ude hardwar e;
i ncl ude gl obal max;

var nuneric:

it = 25,
jt =17,
kt = 50;
l'ink {
gl obal max:

Tx_conp = conp_flux_err(),
Tx_max = max_flux_err();

}
(*
* CHI P3S
* Application Characterisation Tool
* Source : flux_err.c
* RU Type: clc
*

)

(* Calls: nax *)
proc cflow comp_flux_err { (* Defined at flux_err.c:1 *)

-170-

APPENDIX A PSL CoDE FOR SWEEP3D

conpute <is clc, FCAL, POD1, SFDL, SILL>;
loop (<is clc, LFOR>, kt) {
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, jt)
conpute <is clc, CM.L, SILL>;
loop (<is clc, LFOR>, it) {
conpute <is clc, CM.L, ARD3, CMDL>;
case (<is clc, IFBR>) {
0.5:

conpute <is clc, 3*ARD3, AFDL, DFDL, ABSD, TFDL,

call cfl ow max;
conmpute <is clc, POD1, TFDL>;
Ezonpute <is clc, I'NLL>;
Ezonpute <is clc, I'NLL>;
Ezonpute <is clc, I'NLL>;

}
} (* End of conp_flux_err *)

(* Calls: nmax *)

proc cflow max_flux_err { (* Defined at flux_err.c:37 *)
conpute <is clc, FCAL, POD1>;
call cfl ow max;
conpute <is clc, POD1, TFDL>;

} (* End of max_flux_err *)

(* Calls: *)
proc cflow max { (* Defined at flux_err.c:43 *)
conpute <is clc, FCAL, 2*FARD, CMDL>;
case (<is clc, IFBR>) {
0.5:
conmput e <0>;
1-(0.5):
conmput e <0>;
}

return;
} (* End of nax *)

A.6 Parallel Template Object: async

(*
* async.la - Sequential 'parallel' tenplate
*)
partnp async {
i ncl ude hardwar e;

var conpute: TX;

option {
nstage = 1,
seval =0
}
proc exec init {
step cpu {
confdev Tx;
}
}

A.7 Parallel Template Object: pipeline

#i ncl ude <npi defs. h>
partnp pipeline {

-171-

POD1>;

APPENDIX A PSL CoDE FOR SWEEP3D

i ncl ude hardware;
include Eval;

var conpute:
Tx_sweep_init,
Tx_oct ant,
Tx_get _direct,
Tx_pi peline_init,
Tx_kk_l oop_init,
Tx_el se_ew rcv,
Tx_conp_f ace,
Tx_el se_ns_rcv,
Tx_work,
Tx_el se_ew_snd,
Tx_el se_ns_snd,
Tx_l ast;

var nuneric:

3

HiloOwo w-

3-;c._._.g
- - -
o nn
P OEFRN

wN

option {
nst age
seval

}

proc exec Cet_i2
var phase;
{

var nuneric:
i2;
if (phase <= 4) i2 = -1;
else i2 =1,
return i2;

}

proc exec Cet_j2
var phase;
{

var nuneric

i2;
if (phase == 1)
el se if(phase ==
el se if(phase ==
el se if(phase ==
el se if(phase ==
el se if(phase ==
el se if(phase ==
else j2 =1
return j2

LU L e VI L o
'
=

~N oo wNT
—— o — N
NNDNNDDNN

}

proc exec Cet_nyid
var X, Y;
{

var nuneric:
nyi d;
myid = npe_i * (y - 1) + x;
return nyid;
}

proc exec West
var X, vy,
{

var nuneric:
west ;
west = 0;
if (x!'=1) west = Cet_nyid(x-1, y);
return west;

-172-

proc exec East

APPENDIX A PSL CoDE FOR SWEEP3D

y-1);

var X, Vy;
{ .
var nuneric:
east ;
east = 0;
if (x !'=npe_i) east = Get_nyid(x+1, y);
return east;
}
proc exec South
var X, Vy;
{ .
var nuneric:
sout h;
south = 0;
if (y!=1) south = Get_nyid(x,
return south;
}
proc exec North
var X, Vy;
{ .
var nuneric:
north;
north = 0;
if (y!=npej) north = Get_nyid(x, y+1);
return north;
}

proc exec Get_ew rcv
var phase, x, v;

{
var nuneric:
i2, ewrcv;
i2 = Get_i2(phase);
if (i2 >0)
ewrcv = West(x, vy);
el se
ewrcv = East(x, y);
return ew_rcv;
}

proc exec Get_ns_rcv
var phase, x, v;

{
var nuneric:
j2, ns_rcv;
j2 = Get_j2(phase);
if (j2 >0)
ns_rcv = South(x, y);
el se
ns_rcv = North(x, y);
return ns_rcv;
}

proc exec Cet_ew_snd
var phase, x, v;

{
var nuneric:
i2, ew_snd;
i2 = Get_i2(phase);
if (i2 >0)
ew snd = East(X, Yy);
el se
ew snd = West(X, Yy);
return ew_snd;
}

proc exec Cet_ns_snd
var phase, x, v;
{

var nuneric:

-173-

APPENDIX A PSL CoDE FOR SWEEP3D

j2, ns_snd;
= Cet_j2(phase);
(j2 > 0)
ns_snd = North(x, y);

j2
if
el se

ns_snd = South(x, y);
return ns_snd;

proc exec init {
var nuneric:

mo = nmm nmm ;
kb = (kt + mk - 1) / nk;

nib = (jt+1)*(nk+1)*(nm +1);
njb = (it+1)*(nk+1)*(nm +1);
step cpu {
confdev Tx_sweep_init;
}
for(phase = 1; phase <= 8; phase = phase + 1)
step cpu {
confdev Tx_octant;
}
step cpu {
confdev Tx_get_direct;
}
for(i =1, i <=mmo; i =i +1)
{
step cpu {
confdev Tx_pipeline_init;
}
for(j =1, j <=kb; j =] +1)
step cpu {
confdev Tx_kk_l oop_init;
}
for(x =1, x <= npe_i; x =x +1)
for(y =1, y <=npej; y =y +1)
{

myid = Get_nyid(x, vy);
ew rcv = Get_ew rcv(phase, x, vy);
if(ewrcv !=0)
{
step nmpirecv {
confdev ew.rcv, nyid,
ni b, MPI _Packed;

}
}
el se
{
step cpu on nyid {
confdev Tx_else_ew rcyv;
}
}

- 174 -

APPENDIX A PSL CoDE FOR SWEEP3D

}
step cpu {
confdev Tx_conp_face;
}
for(x =1, x <= npe_i; x =x +1)
for(y =1, y <= npe_j; y = 1)
{
nyid = Get_nyid(x, y);
ns_rcv = Get_ns_rcv(phase, x, y);
if(ns_rev !1=0)
{
step npirecv {
confdev ns_rcv, nyid,
nj b, MPI_Packed;
}
}
el se
{
step cpu on nyid {
confdev Tx_else_ns_rcyv;
}
}
}
step cpu {
confdev Tx_work;
}
for(x =1, x <= npe_i; x =x +1)
for(y =1, y <= npe_j; y = 1)
{
myid = Get_nyid(x, y);
ew_snd = Get_ew snd(phase, x, vy);
if(ewsnd!=0)
{
step npisend {
confdev nyid, ew_snd,
ni b, MPI _Packed;
}
}
el se
{
step cpu on nyid {
confdev Tx_el se_ew snd;
}
}
for(x =1, x <= npe_i; x =x +1)
for(y =1, y <= npe_j; y = 1)
{
myid = Get_nyid(x, y);
ns_snd = CGet_ns_snd(phase, x, y);
if(ns_snd !'=0)
{
step npisend {
confdev nyid, ns_snd,
nj b, MPI_Packed;
}
}
el se
{
step cpu on nyid {
confdev Tx_el se_ns_snd;
}
}
}
}
step cpu {

- 175-

APPENDIX A PSL CoDE FOR SWEEP3D

confdev Tx_| ast;

A.8 Parallel Template Object: globalsum

#i ncl ude <npi defs. h>

partnp gl obal sum {

i ncl ude hardware;

var conpute:

Tx_sum

Tx_conp;
option {

nstage = 1,

seval =0

}

proc exec init {
var nuneric: i,j;

for(i = 2; i <= hardware.Nproc; i =i + 1)
{
step npisend {
confdev i, 1, 1, Ml _Packed
}
step npirecv {
confdev i, 1, 1, MPl _Packed
}
step cpu on 1 {
confdev Tx_sum
}
}
for(i = 2; i <= hardware.Nproc; i =i + 1)
{
step npisend {
confdev 1,i,1, MPI_Packed
}
step npirecv {
confdev 1,i,1, MPI_Packed
}
}
step cpu {
confdev Tx_conp
}

A.9 Parallel Template Object: globalmax

#i ncl ude <npi defs. h>

partnp gl obal max {

i ncl ude hardware;

var conpute:

-176-

APPENDIX A PSL CoDE FOR SWEEP3D

Tx_max,
Tx_conp;
option {
nstage = 1,
seval = 0;
}
proc exec init {
var nuneric: i;
step cpu {
confdev Tx_conp;
}
for(i = 2; i <= hardware.Nproc; i =i + 1)
{
step npisend {
confdev i, 1, 1, Ml _Packed;
}
step npirecv {
confdev i, 1, 1, MPI_Packed;
}
step cpu on 1 {
confdev Tx_max;
}
}
for(i = 2; i <= hardware.Nproc; i =i + 1)
{
step npisend {
confdev 1,i,1, MPI_Packed;
}
step npirecv {
confdev 1,i,1, MPI_Packed;
}
}

- 177 -

Appendix B

ARMS EXPERIMENT RESULTS

The ARMS experiment results are included in this section. There are totally 149
application execution requests sent to the agent system, 144 of them are executed

and 5 of them are failed for resource discovery.

The user view of the results is shown in Section B.1, which includes all the
applications requests (including application 1D, application name, and required
time) and their execution details (including discovery agents, discovery time,
waiting time, execution time, and the number of processors used) during the

experiment.

There are 8 agents in the experimental system. The agent views of the results are
shown in Section B.2 — B.9 respectively. In each agent view, there is an
application browser and a correspondent Gantt chart. Note that each agent
identifies an incoming application using a new unique |D, which may be not same
as those shown in the user view. And also note that the Gantt chart only gives a

graphical view of up to latest 16 applications that are scheduled on an agent.

-178-

APPENDIX B ARMS EXPERIMENT RESULTS

B.1 Experiment Results @ Users
ID Application Name RT| Discovery Agents |DT\WT|ET #P|
52420 {/dcs/visi/junwel/ad/arms/memsort {30 |origin-->found 0 |0 [10 8
||52422 decs/visi/junwei/ad/arms/cpi 3 ftizer-->gem-->found 5 |0 2 [12
||52425 des/visi/junwei/ad/arms/improc |138|sprite-->found 0 |0 {40 8
(52426 |/des/vsi/junwei/ad/arms/fft 24 |rubbish-->tizer-->found[3 |0 [20 [16
(52430 }/dcs/vlsi/junwei/ad/arms/jacobi |47 |coke-->found 0 o [19 [15
||52432 des/visi/junwei/ad/arms/memsort |27 ftizer-->gem-->found |4 [0 |10 8
||52433 decs/visi/junwei/ad/arms/cpi 120|origin-->found 0 0 2 |12
||52436 des/visi/junwei/ad/arms/sweep3d (94 |burroughs-->found 0 [0 |14 |15
||52439 des/visi/junwei/ad/arms/fft 98 |burroughs-->found 0 [11 |36 (16
(52441 [/des/visi/junwei/ad/arms/jacobi 38 |coke-->found 0 |8 [19 [15
(52445 |/dcs/visi/junwei/ad/arms/fft 40 |tizer-->found 0 |4 o 16
||52448 des/visi/junwei/ad/arms/memsort |45 |budweiser-->found 0 [0 |24 8
(52451 |/des/vsi/junwei/ad/arms/jacobi 56 origin-->found o b | [15
(52455 |/dcs/vlsi/junwei/ad/arms/cpi 2 ftizer-->gem-->failed 11 | | |
(52458 |/dcs/vsi/junwei/ad/arms/sweep3d [120 ftizer-->found 0o 118 |15
(52459 /dcs/visi/junwei/ad/arms/sweep3d |55 |rubbish-->found 0 b 16 [15
(52461 |/des/vsi/junwei/ad/arms/closure [26 Jrubbish-->found 0 148 |15
||52463 dcs/vlsi/junwei/ad/arms/jacabi 76 |burroughs-->found 0 23 |21 |15
H52467 des/visi/junwei/ad/arms/improc (59 [burroughs-->tizer-- 6 (16 [40 (8
>found
(52469 /dcs/visi/junwei/ad/arms/jacobi [116tizer-->found 0 |8 [12 [15
||52473 des/visi/junwei/ad/arms/improc |160 |burroughs-->found 0 34 (72 8
||52477 decs/visi/junwei/ad/arms/cpi 55 |sprite-->found 0 0 |4 |12
152480 /des/vlsi/junwei/ad/arms/cpi 113 |gem-->found o b |12
(52484 |/dcs/vlsi/junwei/ad/arms/jacobi [123origin-->found o b | [15
||52486 des/visi/junwei/ad/arms/closure 9 |sprite-->found 0 0 @4 [15
(52490 |/dcs/vlsi/junwei/ad/arms/sweep3d [172|coke-->found 0 [o [12 15
52491 /dcs/visi/junwel/ad/arms/fft 38 |burroughs-->tizer-- 6 (0 (36 8
>found
52496 /dcs/visi/junwel/ad/arms/memsort (38 |[rubbish-->tizer-->gem-- (10 (0 |10 |8
>found
52497 {{dcs/visi/junwei/ad/arms/improc {75 |coke-->found 0 5 64 [8
||52499 des/visi/junwei/ad/arms/sweep3d |12 |sprite-->found 0 0 |8 |15
152500 |/dcs/vlsi/junwei/ad/arms/jacobi |40 |origin-->found o b | [15
||52503 des/visi/junwei/ad/arms/improc (102 |gem-->found 0 [0 [20 8
||52505 decs/visi/junwei/ad/arms/cpi 46 |sprite-->found 0 2 |4 |12
52506 |/dcs/visi/junwel/ad/arms/jacobi 14 |sprite-->gem-->sprite- (13 |0 |12 |15
>found
(52510} dcs/visi/junwei/ad/arms/closure |7 [gem-->sprite-->found |4 [0 4 |15
(52514 /des/vsi/junwei/ad/arms/closure [31 Jrubbish-->found o o B |15
152517 |/des/vsi/junwei/ad/arms/closure [15 Jrubbish-->found o 5 B |15

-179-

APPENDIX B ARMS EXPERIMENT RESULTS

||52521 des/visi/junwei/ad/arms/memsort |52 budweiser-->found 0 0 [24 8
(52525 |/des/visi/junwei/ad/arms/jacobi |48 |pudweiser-->found 0 [20 [14 [15
(52529 /dcs/visi/junwei/ad/arms/sweep3d [77 |pudweise-->found [0 [30 [0 |15
||52532 des/visi/junwei/ad/arms/improc |130|sprite-->found 0 |0 {40 8
||52533 des/visi/junwei/ad/arms/sweep3d 149 |burroughs-->found 0O 0 4 8
||52535 des/visi/junwei/ad/arms/improc [74 [rubbish-->tizer-->found 2 |0 |40 |8
52536 /dcs/visi/junwel/ad/arms/fft 30 [budweiser-->sprite-- |8 |0 |10 |16
>gem -->found
(52538 J/dcs/vlsi/junwei/ad/arms/sweep3d [56 |rubbish-->found 0 0 (16 (15
||52542 des/vlsi/junwei/ad/arms/cpi 39 [tizer-->found 0 [0 |14 8
||52545 decs/visi/junwei/ad/arms/cpi 83 |burroughs-->found 0 42 [7 |12
(52546 |/dcs/visi/junwei/ad/arms/fft 65 |rubbish-->found 0 [8 40 16
||52550 des/visi/junwei/ad/arms/improc {150 |burroughs-->found 0 M4 72 8
52551 ({des/visi/junwel/ad/arms/closure (31 [burroughs-->tizer-- 9 (0 {12 |7
>found
(52554 /dcs/vlsi/junwei/ad/arms/improc |173]budweiser-->found 0 |14 48 8
||52558 decs/vlsi/junwei/ad/arms/cpi 8 |gem-->found 0 0 2 |12
||52561 des/visi/junwei/ad/arms/improc [110|gem-->found 0O [0 [20 8
(52563 |/dcs/vlsi/junwei/ad/arms/jacobi [131|coke-->found 0 3 [19 [15
||52565 des/visi/junwei/ad/arms/closure |11 |gem-->found 0 0 |6 [7
(52567 /dcs/vlsi/junwei/ad/arms/sweep3d [166 |sprite-->found o b |8 [15
||52571 des/vlsi/junwei/ad/arms/memsort |16 |gem-->found 0 [0 |10 8
||52572 des/visi/junwei/ad/arms/memsort |57 |rubbish-->tizer-->found 2 [0 [20 |8
(52576 |/dcs/visi/junwei/ad/arms/fft 40 |tizer-->found 0 1 [36 8
(52578 |/dcs/vsi/junwei/ad/arms/fft 46 |coke-->found 0 [7 32 |16
||52582 des/visi/junwei/ad/arms/improc (87 [gem-->found 0 |0 [20 8
||52586 des/visi/junwei/ad/arms/memsort |37 [tizer-->found 0 |8 [20 8
(52589 /dcs/visi/junwei/ad/arms/fft 43 |rubbish-->tizer-->found 5 [20 [20 [16
||52593 decs/visi/junwei/ad/arms/cpi 55 [(origin-->found 0 0 2 |12
||52596 des/visi/junwei/ad/arms/improc |94 |rubbish-->found 0 [0 |80 8
||52598 des/visi/junwei/ad/arms/improc |98 |sprite-->found 0 (0 {40 8
152599 /dcs/visi/junwei/ad/arms/sweep3d [112|pudweiser-->found [0 [17 |0 |15
||52602 deslvisi/junwei/ad/arms/closure |4 ftizer-->gem-->found 5 [0 |2 |15
HSZGOG des/visi/junwei/ad/arms/memsort (18 |budweiser-->sprite- |9 |0 (10 (8
>gem-->found
||52609 des/visi/junwei/ad/arms/memsort 145 |budweiser-->found 0 |16 [24 8
||52613 des/visi/junwei/ad/arms/closure 2 [origin-->gem-—->failed 8 | | |
152617 |/des/visi/junwei/ad/arms/jacobi |68 [gem-->found 0o I8 |6 [15
||52621 des/vlsi/junwei/ad/arms/improc |167 ftizer-->found 0 [13 40 8
||52624 des/visi/junwei/ad/arms/improc (89 [gem-->found 0 7 [20 8
||52628 des/vlsi/junwei/ad/arms/memsort |35 |budweiser-->found 0 [0 |24 8
152633 /dcs/vsi/junwei/ad/arms/sweep3d [110|gem-->found 0 o {158
||52637 des/visi/junwei/ad/arms/improc |91 |rubbish-->found 0 [0 |80 8
(52641 /dcs/visi/junwei/ad/arms/sweep3d [117 [tizer-->found 0 [0 308
||52645 des/visi/junwei/ad/arms/memsort |53 |sprite-->found 0 0 [20 8
||52648 des/visi/junwei/ad/arms/improc [91 |origin-->found 0 |0 [20 8
||52649 des/visi/junwei/ad/arms/memsort |23 |coke-->sprite-->found [5 [0 [20 |8

-180-

APPENDIX B ARMS EXPERIMENT RESULTS

52652 {dcs/visi/junwel/ad/arms/memsort |17 [burroughs-->tizer-- 17 0 (10 8
>gem-->found
52654 {dcs/visi/junwel/ad/arms/memsort 26 |rubbish-->tizer-->gem--(9 [0 |10 |8
>found
52658 /dcs/visi/junwel/ad/arms/sweep3d |121 [origin-->found 0O 0 4 |15
||52660 des/visi/junwei/ad/arms/sweep3d |77 |burroughs-->found 0 |6 |14 |15
152661 |/des/vsi/junwei/ad/arms/fft 80 |coke-->found 0 o 32 |16
||52664 des/visi/junwei/ad/arms/fft 86 |origin-->found 0 [8 |10 16
H52666 des/visi/junwei/ad/arms/closure (13 [burroughs-->tizer-- 6 2 4 |15
>found
||52671 des/visi/junwei/ad/arms/improc |91 |sprite-->found 0 (0 {40 8
||52673 des/visi/junwei/ad/arms/closure |25 [rubbish-->tizer-->found 2 (3 |4 |15
||52677 dcglvisi/junwei/ad/arms/closure (3 [sprite->gem-->failed |12 |- | |
H52678 dcs/visi/junwei/ad/arms/closure (8 [sprite-->budweiser-- |16 |0 4 (15
>found
(52680 |/dcs/visi/junwei/ad/arms/fft 91 |gem-->found 0 [o [10 [16
||52684 des/visi/junwei/ad/arms/improc |190{tizer-->found 0 |0 40 8
(52688 |/dcs/vlsi/junwei/ad/arms/fft 30 |origin-->found 0 [o [10 [16
152691 |/dcs/visi/junwei/ad/arms/jacobi [37 |coke-->found 0 P2 [19 [15
152694 |/dcs/vlsi/junwei/ad/arms/sweep3d |58 |coke-->found 0 [18 [12 15
52695 |/dcs/visi/junwei/ad/arms/cpi 10 |coke-->budweiser-- 1310 4 (12
>found
52696 /dcs/visi/junwel/ad/arms/improc |174tizer-->found 0 (0 {40 8
52697 {{dcs/visi/junwel/ad/arms/closure |4 [rubbish-->tizer-->gem--9 [0 2 |15
>found
52702 {{dcs/visi/junwel/ad/arms/improc |140]origin-->found 0 [0 [20 8
(52703 }/dcs/visi/junwei/ad/arms/fft 69 |sprite-> found 0 |8 o0 16
||52704 deslvisi/junwei/ad/arms/memsort |10 ftizer-->gem-->failed 15 | | |
152709 /dcs/visi/junwei/ad/arms/jacobi |46 |origin-->found 0o b [158
H52711 des/visi/junwei/ad/arms/memsort (19 |budweiser-->sprite- |11 |0 (10 (8
>gem-->found
||52713 des/visi/junwei/ad/arms/improc (167 |sprite--> found 0 (18 {40 (8
||52715 des/visi/junwei/ad/arms/memsort |57 |budweiser-->found 0 0 [24 8
||52716 des/visi/junwei/ad/arms/closure |27 jgem-->found 0 [0 2 (A5
||52718 des/visi/junwei/ad/arms/sweep3d (153 |origin-->found 0 6 4 |15
||52724 des/visi/junwei/ad/arms/closure |11 |coke-->found 0 [0 6 (15
||52729 des/visi/junwei/ad/arms/closure |25 |origin-->found 0 0 [2 [15
H52731 decs/visi/junwei/ad/arms/cpi 2 |burroughs-->tizer-- 24 - |+
>gem-->failed
||52732 des/vlsi/junwei/ad/arms/cpi 47 [tizer-->found 0 4 4 [12
||52737 des/visi/junwei/ad/arms/improc {191 |burroughs-->found 0 |0 [72 8
||52738 decs/visi/junwei/ad/arms/cpi 88 (gem-->found 0 0 2 |12
(52740 |/dcs/vlsi/junwei/ad/arms/cpi 83 |udweiser->found [0 0 |4 [12
||52745 des/visi/junwei/ad/arms/cpi 31 |coke-->found 0 0 |6 [12
H52747 des/visi/junwei/ad/arms/memsort 21 |coke-->sprite->gem-- |14 |0 (10 (8
>found
||52749 des/visi/junwei/ad/arms/closure |5 |budweiser-->found 0 0 4 (A5

-181-

APPENDIX B ARMS EXPERIMENT RESULTS

||52751 decs/visi/junwei/ad/arms/cpi 98 |sprite--> found 0O (0 [14 8
(52754 /des/vsi/junwei/ad/arms/sweep3d |79 |coke-->found 0 o [12 15
||52756 des/visi/junwei/ad/arms/closure |25 |budweiser-->found 0 0 4 (A5
(52759 /dcs/visi/junwei/ad/arms/sweep3d 62 |tizer-->found 0 o 8 15
(52763 }/dcs/vlsi/junwei/ad/arms/closure [34 Jrubbish-->found o o B |15
(52765 |/dcs/vlsi/junwei/ad/arms/jacobi [34 |coke-->found 0 [19 [15
(52769 /des/vsi/junwei/ad/arms/fft 58 |coke-->found 0 [16 [32 |16
||5277O des/visi/junwei/ad/arms/improc |45 |sprite--> found 0 (0 {40 8
||52774 decs/visi/junwei/ad/arms/cpi 80 |sprite-->found 0O (0 [14 8
||52775 des/vlsi/junwei/ad/arms/memsort [35 |origin-->found 0 [0 |10 8
152777 |/des/vsi/junwei/ad/arms/jacobi ~ [31 Jrubbish-->found 0 o [p4 [15
(52781 /dcs/visi/junwei/ad/arms/fft 79 |pudweise-->found [0 [0 [24 |16
(52782 }/des/vsi/junwei/ad/arms/jacobi 153 tizer-->found 0 o [12 15
||52787 des/vlsi/junwei/ad/arms/memsort |67 |burroughs-->found 0 [0 |36 8
152790 /des/vsi/junwei/ad/arms/sweep3d [139budweiser-->found 0 [15 |9 [15
||52792 des/visi/junwei/ad/arms/closure |15 [tizer-->found 0 2 4 [15
H52795 des/visi/junwei/ad/arms/memsort (42 [burroughs-->tizer-- 5 |0 [20 8
>found
||52798 des/visi/junwei/ad/arms/memsort |50 |sprite--> found 0 [0 |20 8
||528OO des/visi/junwei/ad/arms/closure |30 |gem-->found 0 0 [2 [15
||52802 des/visi/junwei/ad/arms/closure |3 ftizer-->gem-->found [7 |0 [2 |15
||52807 decs/visi/junwei/ad/arms/cpi 93 |sprite--> found 0 (11 4 |12
52809 {/dcs/visi/junwel/ad/arms/closure |13 |burroughs-->tizer-- 5 6 4 |15
>found
(52811} dcs/visi/junwei/ad/arms/closure |13 |budweiser-->found 0 3 @4 [15
(52814 |/dcs/vlsi/junwei/ad/arms/sweep3d 152 rubbish-->found 0 [o 16 [15
52816 |/dcs/vlsi/junwei/ad/arms/jacobi 7 |(coke-->sprite-->gem-- (16 0 |6 |15
>found
(52820 }/dcs/vIsi/junwei/ad/arms/memsort |45 [tizer-->found 0 4 [20 8
||52822 des/visi/junwei/ad/arms/closure |9 |burroughs-->found 0 1 |7 (A5
||52825 des/visi/junwei/ad/arms/sweep3d 153 |burroughs-->found 0 5 |14 |15
||52828 des/visi/junwei/ad/arms/improc |55 |rubbish-->tizer-->found [3 [0 |40 8
(52831 |/des/vlsi/junwei/ad/arms/cpi 121 [coke-->found o o p 12

RT: Required Time

DT: Discovery Time

WT: Waiting Time

ET: Execution Time

#P: The Number of Processors Used

-182-

B.2

Experiment Results @ gem

APPENDIX B ARMS EXPERIMENT RESULTS

File(F}

spplD App Mame App Start Timne &pp End Time & pp-Resource Iiapping &l
52427 |idesAlsifjunweeifsdiammns opl [14:33:47 514:33:49 ooooiitti11111111
52436 Efdcsﬁ.rlsifjunweifam'armsfmemsort514:33:56 i14:34:E|6 Qoooooo011111111
52480 | idesvlsifjunweifsdarms/opd 143440 514:34:42 Qoootitt11111111
52503 |idesfelsifjunweifsdfammsfimproe | 14:35:03 [14:35:23 Qooooooo11111111 a2
52508 E.fdssf‘.r]si.fjunwei.fa-’-ﬂarrns.fmernsart514:35:06 [14:35:16 1111111100000000
52544 | idesfilsifunweifsarms/ Tt 143544 143554 i
52558 | idesilsifunwreifsdarms/ opd 143558 {14:36:00 Qoooiititi11111d
52561 Efdssﬁ.r]si.fjunweifa-’-l.farmsﬁmpmc 143601 [14:36:21 Qoooooo011111111
52565 |Mdeslsiunveeifsdfamosiclosure | 14:36:05 %14:36:11 0111111100000000
52571 ;Id;:sﬁ.r]si.fjunwei.fam'armsfmemsurt514:36:11 514:36:21 1111111100000000
52582 destlsifjunweifsdfarmsfimproe | 14:36:22 514:36:42 Qooooooo11111111
52607 |idesAlsiunweifdamsiclosme | 1453647 [14:36:49 [IIRREESRERRANREE!
52615 EIdssNhinunweﬂadJarmsImemsort514:36:55 [14:37:05 Qoooo00o011111111
52617 desfdstjunweladiamsjacobi 143705 !14:3?:11 IIRRRRERERRRNRRN!
52624 |idesfvlsuunweifsHarms/improe | 14:37:11 {14:37:31 Qooooooo11111111
52023 E.fdssf‘.r]si.fjunwei.fa-’-kfarrns.fsmeﬁd;14:3?:13 [14:37:22 1111111100000000
52663 EIdJ:shr]si.fjunufei.fa-ﬂJarrnsIrnernsurt;14:3?:43 %14:3’.":53 Qoooooo011111111
52669 ;Id;:sﬁ.r]si.fjunwei.fa-’-l.farmsimemsurt514:3?:49 i14:3?:59 1111111100000000
52680 | idesilsifunwreifsdfarms/fTt 14:38:00 ;14:38:10 i
52706 |idesAlsiunveeifadiamosiclosume | 14:38:26 [14:38:22 oliitittt111111d
52716 Efdcsﬁ.rlsifjunweifam'armsfclosure 143836 [14:32:38 [IIREEESRERREERRE!
52722 desilsifjunweifsdfarmsmemsort |14:38:42 %14:38:52 Qoooooo011111111
52738 | idestlsifjunweifsdarms/fopd 143858 {14:35:00 Qoootitti1111111
52761 E.l'dcsfﬁ.flsi.l'junwei.l'a-ﬂiarms.l'memsortf14:39:21 [14:39:31 Qooooooo11111111
52800 |idesflsifunweifadiams/closure [14:40:00 %14:40:02 Ol111tttL1111111
52809 ;Idsshr]sifjunufeifaMarrnsIclosure 14:40.09 i14:4ﬂ:11 O1111tt11111111
52832 |idesivlsifjunweeifadfarmsfacobd | 14:40.32 i14:40:38 IIRREESRERRRRRRE!

File(F)

Crantt Cha

14:36:47
processord]
processord
processord3
processordd
processorll
processarls
processorl?
processorlE
processold
processorll
processorll
Frocessorl2
Frocessorl 3
processorl4
Frocessorls
Frocessorl s

Ifr'J -

14:40:38 |—

-183-

APPENDIX B ARMS EXPERIMENT RESULTS

B.3 Experiment Results @ origin

& pplication Browser (@ o

ideshlsifjunwreifadiarms/mernsort | 14:33:40 14:33:530 0oo00ano111iiin
ideaflsifiumereifadfarmns fopd 14:33:33 14:33:535 nooo111111111111
idesilsifinnwreifadfamsjacobl | 1434:11 143417 oi1111111111111
ideshlsifiumwreifadiams/jacobl | 1434:44 14:34:30 1111111111111
idesilsifiunwreifadiarmsljacobi | 14:35:00 14:35:06 0111111111111
idcsfvlsifunwreifadfarms opd 14:36:33 143635 0oo0111111111111
Idecshlsifjunwreifadfarms/improe | 14:37:22 143745 Qooooooo111inin
Idcshlsifjunvrelfadfarms /eweep3d | 14:37:42 14:37:52 0111111111111
Idesfvlsifunwrerfadarms/{Tt 14:37:52 14:32:02 1111111111111111
Idcshlsiffunwreifadarms/fTt 14:32:08 14:32:1% 1111111111111
ldeshdsifiunwreifadfamms/improe | 14:38:22 14:32:42 00000a0011111111
ldeshlsifiunwreifadfammsfjacobi | 14:32:29 14:32:44 1111111100000000
ldeshlsifiumwreifadfarmsfeueepad | 143844 14:38:43 0111111111111
Ideshlsifunwreifadfamms/closure | 14:32:49 14:38:51 0111111111111
ideshlsifjunwreifadiarms/mernsort | 14:39:35 14:39:45 00o00ana111iiin

-184-

APPENDIX B ARMS EXPERIMENT RESULTS

Experiment Results @ sprite

;"‘;:Fll:ﬂil:i:tl.l:lrl. E'nl'_l:l‘ ite
LppID & pp Hame & pp Start Time &pp End Time &pp-Fesource Wapping)
iidcshilsifjunmifadl\l'armsﬁmpmc [14:33:45 {14:34:25 ooooooooii11111l
52477 %Idcsf\.’lsi.fjunu-'eifadl\l'arms.l'cpi 14:34:37 :14:34:41 ooooiiiiii111111 =
52420 idesfvlsiumoweladiammsiclosure | 14:34:445 {14:34:50 O111111111111111
52400 :Id::shilsifjunmifadl\fannsismede514:34:59 514:35:07 oiii111111111111
52505 Eidcshilsifjunmifadl\l'armsicpi 14:35.07 [14:35:11 ooooiiiii111111l
52514 lidesilsifuroseliadiamosiclosure |14:35:14 114:35:18 otitiiiii1111111
52519 lidecsfvlsiumowelfadiammsfjacobl |14:35:19 |14:35:31 Oi11111111111111
52532 :Id::shilsifjunmifadl\l'armsﬁmpmc 14:35:32 [14:36:12 ooooooooii11111l
52567 iidsshilsifjunmifadl\fannsismeﬁd;14:36:12 i14:36:2EI oiiii11111111111
52592 %Idcsf\.’lsi.fjunweifadl\l'arrnsﬁmpa'oc 14:36:38 :14:3?:18 ooooooooiiiiiiil
52645 Videsfvlsimoseladiamms/memsort | 143725 [14:37:45 ooooooooi111111l
52654 |ideslsifuroreifadammns fmetasort | 143734 514:3?:54 1111111100000000
52671 E.fdssf\.rlsifjunu-'eifadl\l'armsﬁmpmc 14:37:51 [14:32:31 ooooooooiiii11il
52703 Lidesfvlsifurosreliadiarms T 14:38:31 114:38:51 titiii1111111111
S2M3 ideshlstumoaetfadfammes/impros | 14:32:51 |14:39:531 ooooooooi111111l
52751 :Id::shilsifjunmifadl\l'armsicpi 14:32:11 [14:39:25 1111111100000000
5210 idesflsifuroseliadiams/improe. | 143930 514:40:1[! 1111111100000000
521714 %Idcsf\.’lsi.fjunu-'eifadl\l'arms.l'cpi 14:39:34 :14:39:48 ooooooooiiiiiiil
22192 Lidesfvlsimoreliadiarms/memmsort |14:39:58 [14:40:12 ooooooooi1111111
52807 |idesflsifuroreifadiaras iopd 14:40:18 |14:40:22 ooooiiiiii1111il

Zandt Char

F]le(Fj
143507 14:40:22
hiost1
host2
hies3
host4
host)S
host6
host0T
hostl2

host19
hostl0
hostl1
hostl 2
hostl3
hostl4
hostl 5
hostld

E—= 2

-185-

B.5

Experiment Results @ tizer

APPENDIX B ARMS EXPERIMENT RESULTS

A pp]j_u: aton Bro

LppID App Mame
152429 | idesvisijunweiadiarms it
52445 Efdcshilsﬁjunureﬂa-’ifannsffﬁ
52458 | fdesivlsifunvreifadfarins/sweepid |
52460 |idosidsifiunweifadarms facohi
52473 Efdsshlsifjunureﬂam'annsﬁmpa'oc
52497 desilsiffunweifadfarms/ftt
52537 | fdesksifjunweliadfarIos itnproe
532542 :IdJ:s.F\.flsi.l'junwei.faNarmsIcl:d
52560 | fdeshsifjunvrelfadfarms/closure
52574 %J’dcs.f\.rlsifjunwei.fa-ﬂmfanns.fmemsurté
52578 \fdeshsijumwrelfadiarms/fit
52586 |fdeshlsifjunweiadiarms/memsort |
52594 EIdclesﬂjunmﬂa-ﬂJannsIfﬁ
52621 | fdesivlzifjunwreifadfarmos irnpros
52641 | fdesilsifunvreifadfarmns/sweepid |
52672 :Idcshilsﬂjunureﬂad.fannsichsure .
52675 |fdesiulsifjunwreifadfarmns/closre
52624 %J’dcsh;lsi.fjunwei.fa-’-l.fannsﬁmpmc
52694 | fdesivlsifunvreifadfaros/irproe
52732 |fdeshlsifunwreiiadiarmsiopd
527509 Efdsshlsifjunureﬂam'amsfsweepEdf
52782 fdesivsifjunwreifadfarns jacobi
52192 | fdesivsifjunweifadfarms/closure
52200 :J'dJ:sJ"\.'lsiJ'junweiJ'ale'annsJ'mernsnrt=
52814 |fdesisifjunwrelfadfarms/closure
52220 %Idcshlsﬂjunwﬁa-ﬂiarms!memsurté
52831 | fdeshlsifjunweladfarns inproe

14:34:09
14:34:20
14:34:37
14:34:40
14:34:57
143537
14:35:42
14:36:00
14:36:14
14:36:17
14:36:34
14:36:54
14:37:14
14:37:21
14:37:54
14:37:58
14:32:04
14:38:14

14:32:56

14:39:19
14:30:42
14:30:54
14:40:00

[14:40:20

14:40:24
14:40:31

|14:34:09
|14:3420
[14:3437
1434:49
|14:35:20
|14:35:33
[14:36:17
|14:35:56
1143612
|14:36:34
[14:36:53
1143654
114:37:14
|14:37:54
114:37:51
|14:37:58
[1432:02
|14:38:44
[14:38:56
114:39:00
|14:39:27
|14:39:54
|14:39:58
|14-40:20
|14:4024
| 144044
[14:41:11

1111111111111
1111111111111
o111
noi1111111111111
0ooo0aoo111111n
1111111100000000
0000000011111111
1111111100000000
0111111100000000
1111111100000000
Qooooooo1111iin
1111111100000000
1111111111111
Q0000001111111
1111111100000000
0111111111111
0111111111111
00000a0011111111
1111111100000000
nooo111111111111
o111
o111
oi1111111111111
0000001111111
0111111111111111
0000000011111111

1111111100000000

Lpp Start Time &pp End Time &pp-Fesource Wapping
1433:49

hostl 1
hostl2
hostl 3
hiostl4
hoatl 5
hostl 6

File(F)
14:36:34
host)1
host2
host3
hostd
hosts
host6
host?
host2
host
hostlD

|14:'41:11

E—=

- 186 -

Experiment Results @ coke

APPENDIX B ARMS EXPERIMENT RESULTS

& pplic

&ppID & pp Hame
152430 | fdesflsifuroseiizarmms fanobi [14:33:50
52441 Videshlsifuroreifadfamsfiacobi | 14:34:09

52490 Lidesfvlsimoreliadiammsfsweepdd | 14:34:50

52457 |idesAlsiifumoreifadiammnsfiproe | 14:35:02
52563 E.fdcsf'\.'lsi.fjunweifadl\l'arrnsfjacobi 14:36:06
52572 |ideshvisuurowelfadarms/ Tt 14:36:25
52661 |idesfvlsiroaeliadiarms /T 14:537:41
52691 |idesflsifumoreifadiammsfacobi | 14:38:13

52694 E.fdcsf'\.'lsi.fjunweifadl\farmsfsweeﬂd§14:38:32
22124 i.fdJ:sMsifjunweiﬁ'adHarms.fclosu:e 14:35:44
52745 idesfvlsiroreliadiarms fopi 14:539:05
52754 :Id::shilsifjunmifadl\fannsismede514:39:14

& pp Start Time &pp End Time &pp-Fesource Wapping
114:34:00
[14:3408
[14:35:02
1436:06
[14:36:25
|14:36:57
14:32:13
|14:38:32
1143244
|14:32:50
[14:39:11
14:39:26
[14:30:45
114:40:17

0111111111111111
0111111111111111
0111111111111111
0000000011111111
0111111111111111
1111111111111111
1111111111111111
0111111111111111
0111111111111111
0111111111111111
00o0111111111111
0111111111111111
0111111111111111
1111111111111111
0o0o0111111111111

C . W

52763 [Mdeshsifunowelfadiarmalacobl | 14:39:26
52769 |idesfvlsuurowelfadfarms/ Tt 14:39:45
52831 |idesivlsifuroreliadiarms fopi 14:40:51

|14:40:537

Gantt Ch
File(F)
14:33:50 14:40:57

hostll [] []

hast02 N | 1 1 B

hostD3 || I 1 1 B

host4 || I 1 1 R

hostl3 [| [] = i1 B B

hostDe || I 1 1 B

hosth] || I Hl I B

hast03 | | = 1 1 B

hast0? H I B 1 1 B

hostlO || I 1 1 B

hostl 1 || N 1 1 B

hast12 N | 1 1 B

hostl3 || I 1 1 B

hostl4 || I 1 1 B

hostlS H I B Hl I B

hastl6 H I B Hl I B
IE"‘J'—l] .

- 187 -

B.7

APPENDIX B ARMS EXPERIMENT RESULTS

Experiment Results @ budweiser

& pplication Broy
File{F)
AppID App Marme App Start Tirae & pp End Time & pp-Resource IWapping
52448 EIdJ:sf‘.r]si.fjunmi.fa-ﬂJanns.fmrnsart;14:34:08 %14:34:32 Qooooooooiititees
52521 EIdssWhﬁjunmﬁadJannsImmsart514:35:21 i14:35:45 Qoooooooiititees
52525 | Mdesilsijunweliadiarms fjacobi :14:35:45 514:35:59 [SSERRREREREREE!
52529 |idesRlsifunreifadfammos sweepdd | 14:35:50 |14:36:.02 SRR AREREREE!
532554 Efdcsﬁ.rlsifjunweifam'amsﬁmpmc [14:36:02 [14:36:56 ooooooootiiitiitt
52599 HdesfAsijunweliadiarms fsweepdd | 14:36:56 !14:3?:05 oriftttteitttaat
52609 | fdesfdstjunweiiadiarmsmemsort | 143705 1143729 ooooooootitieeet
52628 EkwsﬁﬂsﬁuRW?ﬂh4hrnwhnsnman%143?ﬂ8 [14:37:32 1111111100000000
52694 |idesFlsifunvreifadiamns/clos e |14:32:14 %14:38:18 SRR RRRREREE!
52708 ;Id;:sﬁ.rlsifjunweifad.l'annsicpi 143828 514:38:32 ooooLiiiiittteel
5215 EIdJ:sﬁ.rlsinunwei.fa-’-lJ'annsJ'mrnsurt514:38:35 514:38:59 ooooooootititittt
52740 |ides Alsiunweifsdiarms e 14:32:00 (1435204 ooootitttiitaaat
52749 EIdcsNhﬂjunmﬂadJamsIclnsure 14:32:09 [14:39:13 SSARRRERRRERNEI
52150 | deshdstjunweladiarms/closure | 1439:16 !14:39:20 ISR ERRRARRRRREE!
22781 | deshlsijunwelfalarms Tt 14:39:41 114:40:05 1111111111111111
52790 ;Id;:sﬁ.rlsifjunwei.fa-’-l.fanmismepﬁi14:40:05 [14:40:14 RS NRRREREREREE!
52211 %14ﬂ0:18 SRR RRRRERRE!

| deshsifunoreifadfammsiclosure | 14:40:14
| |

Crantt Chart

hostl3
hostt 4
hostl 5
hostlé

Fils(F)
hostll
hostl2
hostl3
hinatlld
hostls
hostld
hostd?
hostlE
hostls
hostil
hostl 1
hostl 2

14:35:21

14:40:18

lF—=

-188-

APPENDIX B ARMS EXPERIMENT RESULTS

B.8 Experiment Results @ burroughs

L pplicatio 0) burmoughs
&ppID & pp Hame & pp Start Time &pp End Time &pp-Fesource Wapping il
52436 | ideshvisifpmweindiamusioweep3d | 1433:56 143410 0LL1111101111000 J
52430 | ideshdsifumweifsdfarras Tt 143410 143446 1111111111111
52463 |Weshsifureifadamsfocobi (143446 143507 (0111111111111
52473 |ideshilsiffunweifsdiomsfimproc (143507 (143619 0000000011111
52533 |ideshisifunweiiadiomsioweepdd 143533 (143627 |1111111100000000
52545 |ldeshsifimweifdiormosiopi 143627 (143634 0000111111111
52550 |Meshlsifureiladiormslimproc 1143634 (143746 |0000000011111111
52660 |idesfulsiffunweiiadiamsioweepdd 1437:46 (143800 0111111111111
52737 |ideshlsiffunoeifsdiomsfimproe |1438:57 (144000 0000000011111
52787 |ideshdlsifumwreifadisrmos/memsort |14:39:47 144023 |1111111100000000
52222 |Weshsifmreifadmsilosure (144023 (144030 (0111111111111
52225 |Mdeshlsiffunoreiladiormosfowesp3d (14:4020 (144044 |0111111111111111
Grantt Chart (@ burroughs
Fﬂs(F}l
14:33:56 14:40:44
hostdl
hostd2 _
hostd3 _
host4 _
host0S || I _
hostlé _
host? B
host03 I _
hostl9 o I B |
hostl) | I N
hostl 1 || I I
hostl 2 || I I
hostl3 o I I
hostl4 | I I
hostl5 || I I
hostl6 H I I
It-.~.1 E

-189-

APPENDIX B ARMS EXPERIMENT RESULTS

B.9 Experiment Results @ rubbish

& pplication Brow mubbish

P,pp Hame ﬁpp Start Tiroe AppEndT]me hpp-RBsnurce I\-'Iappmg j

E.fdssf‘.r]sﬂ_]unweﬂadmfarms.fsmeﬁd 14:34:19 5143435 RSN RRREEENE!
iIdJ:shr]sﬂ_]unmLfadJarrns.fclosure 143435 514:34:43 SRR ERRRRNE!
52514 |desflsijunweilfadiams/iclosare | 14:35:14 [14:35:22 [RNRRRRRRRREANE!
52517 |MdesFlsijunvreifadiams/closre (143522 ;14:35:30 OL11111tt11111l
52538 Efdsshr]sifjunwei.fam'anmfsmeﬁdf14:35:38 i14:35:54 [ARERRREERREENE!
52546 | fdesilsijunweifadiamms 14:35:54 i14:36:34 IRRRREERRRRRARAY!
52596 | fdesFdstjunweliadiamms/improc |14:36:36 |14:37:56 Qoooooooti11111
52637 :IdssWhﬁjmmﬁaMannsImprac 143717 514:38:3? 1111111100000000
52763 |idesilelfjunweeifadiammsiclosure | 14:39:23 {14:39:31 [RARRRRRRREENE!
52017 ;Id;:sﬁ.r]si.fjunweifad.farmsijambi 14:39.37 514:40:01 [SNARRRERRRRNE!

52814 | desflsijunweifadiammsfeweepad | 14:40:14 i14:4-EI:3EI [RNRRRREARREANE! |

el

hostl1
hoatl2
hostl3
hostl4
hostl 3
hostld

Fﬂs(F)
1434:19
hostl]
host2 _
hiost3 |
host4 _
hiostdS |
hostlf _
host)? _
hostz |
host _
hiostlD |

14:40:30

lF——=

-190-

